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ON A SOLUTION AND ITS LONG TIME STABILITY OF A
NONSTATIONARY VON KARMAN SYSTEM FOR VISCOELASTIC
PLATES *
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Abstract.

We shall deal with the system of quasistationary von Karmdan equations describing great de-
flections of thin viscoelastic plates. We shall concentrate on a long memory material modelled by a
quasistationary system with a linear integro-differential main part and a nonlinear integro-differential
term. The existence of a solution as well as the convergence of a semidiscrete approximation are
verified. The behaviour of a solution for long-time values is studied.
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1. Introduction. Theodor von Karman (1910) stated the nonlinear system of
partial differential equations for great deflections and the Airy stress function of a
thin elastic plate. This system has been treated systematically starting in the sixties
by Berger and Fife [2] who have proved the existence of buckled states for a plate
subjected only to compressive forces. Ciarlet [7] has justified the von Kdrmén system
as the plate model derived from the equations for a 3-dimensional body. The von
Karmén system for viscoelastic plates was derived by J.Brilla [4], who considered
the linearized stability problem for the generalized n-th order viscoelasticity. We
have dealt in [3] with the short memory anisotropic case, where the pseudoparabolic
canonical equation with a nonlinear integral term has been derived and solved. The
integral term has in the anisotropic case rather complicated form defined by the matrix
exponential function. We shall deal here with the isotropic case, where the nonlinear
system and the corresponding canonical equation can be derived in a similar way as
the traditional elastic von Karman system.

The dynamic viscoelastic von Karmén systems are studied nowadays mainly in
the framework of controllability problems. Mufioz Rivera and Perla Menzala [11])
have considered the memory term only in the linear part of the system.

2. Formulation of the problem. We assume a thin isotropic plate occupying
the domain

Q={(z,2) € R*; x = (z1,72) € Q, —h/2 < 2 < h/2},

where Q is a bounded simply connected domain in R? with a Lipschitz boundary
I'. The plate is clamped on its boundary and subjected to the perpendicular load
ft,z), t>0, z €.

*This work was supported by Grant No. 1/5094/1998 of the Grant Agency of Slovak Republic
fDepartment of Mathematics, Faculty of Electrical Engineering and Information Technology, Slo-
vak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia (bock@kmat.elf.stuba.sk).
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ON LONG TIME STABILITY 407

Considering the great deflections we have the nonlinear strain-displacement rela-
tions

1 ..
€ij = 5(62-1” + Oju; + Ojwdjw) — 20;;w, i,j =1,2; €13 = €93 = 0.

Let {0/} be the stress tensor fulfilling the condition ¢*® = 0. The principle of virtual
displacements holds in the form

h/2
1) / (/ gwéaijdz> dr = / ft, z)v(z)dz for all (w1,ws,v) €U XU XV,
Q Q

—h/2

where v and w; are virtual displacements in the directions z and x; (i = 1,2) respec-
tively and U = H}(Q), V = H2(Q) are the spaces of admissible displacements.
The virtual strains are of the form

(2) (562'1' = %(6,’(413‘ + ajw,- + 8,-11)8]-1)) - Za,'j’l}, 1,7 =1,2.

The principle of virtual displacements implies that the stress resultants
h/2
(3) N,'j =/ o¥dz
—h/2
fulfil the homogeneous equations 9;N;; =0, 1,7 =1,2.
Then there exists the Airy stress function ® : 2 — R defined by the equations
(4) Nip = 022®, Nog =011®, Ni2 =—0129.

The stress-strain relations for the isotropic viscoelastic long memory material of
the Boltzmann type are of the form

) 0% = 21 = s + o] + oy # (L= e + b0

i,j €{1,2}, erp =en +e, o =0

with a Poisson ratio  p € (0,3), a positive decreasing relaxation function

E € C*(R") and a convolution product f * g(t) = f(f ft—s)g(s)ds.
Let us set

(6) [v, W] = B11V020w + DaavB 1w — 2012v012w, v, w € H*(Q).

We recall that in the elastic case the well known von Karmén system for the deflection
w and the Airy stress function @ : has the form ([8])

ow

(1) DoA*w — [®,w] = f(z) in Q, w= 5 = OonTl
Eoh 0P
2 —_ 0_ 1 = — =
(8) A*d = 5 w,w]in Q, P 5 OonT

h3E,

Do=nma— 2y
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In order to convert a system (7), (8) into one equation for a deflection we introduce
the bilinear operator B :V x V — V defined by the uniquelly solved equation

(9) (Bu0),9) = [ [ueleds for all g € V,
Q
where the scalar product and the norm in the Sobolev space V = HZ(Q2) are

((u,0)) = / Aubvdz, lull = ((u,u))>.

Expressing a weak solution of the boundary value problem (8) by (9) and inserting it
into the equation (7) we obtain the nonlinear boundary value problem

(10) DoA%w + @[B(w,w),w] =f(z)inQ, w= g—qj =0onT.

Let us define the element g € V' uniquely defined as a solution of the identity

1
(0,9)) = =— / foodz for all g € V
Dqg Jq

and the operator

. _ _ hEq _ 6(1 —pz)
(11) C:V >V, C)=aB(B(v,v),v), a= 57 R

We formulate the operator equation in the space V'
(12) w+Cw)=¢q, weV

DEFINITION 2.1. The equation (12) is called the canonical equation for the bound-
ary value problem (7), (8).

The operator C' : V — V is compact and not negative. It holds
(13) (C(),v)) = al|B(v,0)|I*, veV.
Moreover C' fulfils ([8]) the inequality

(14)  (Cw) = C(v),u = v)) < all Bl xv;v) max{||ull?, lv]|*}lu - v,

which is very important in continuity and uniqueness considerations. Using a theory of
operator equations with compact operators there can be verified a following existence
and uniqueness theorem.

THEOREM 2.2. For every q € V there exists a solution w € V of the canonical
equation (12). There exists M > 0 such that a solution of (12) is unique for every q
fulfilling the condition ||q|| < M.

Let us define the material function D(t) = 12(+3H27E(t) Applying the principle of

virtual displacements and the viscoelastic stress-strain relations the following integro-
differential von Karmén system for the deflection w(¢,z) and the Airy stress function
®(t,z), t >0, z € Q; can be derived:

Ow

(15) D(0)A%w + D' x A%w — [®,w] = f(t,z), w= o = OonT,
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(16) A?P = —g(E(O)[w,w] + E' x[w,w]), ® = g—f =0onT.

Expressing the Airy stress function ® from (16) and inserting into (15) we obtain
the integro-differential equation for the deflection w :

(17)  D(0)A%w + D' A%w + g[E(O)B(w,w) + E' x B(w,w),w] = f(t,x),
with the boundary conditions

Ow
(18) w=—"=0onT,

A weak (canonical) formulation of the problem (17), (18) is
(19) w(t) + g xw+ aB(B(w,w) + gx B(w,w),w) =q(t) €V, t>0

where g(t) = % and a function ¢ € C(RT,V) is defined by the identity

(20) (g(t),v)) = ﬁ /Q F(t, 2)o(x)ds for all v € V.

3. On the Exponential Stability of a Solution. We shall suppose the time
differentiability of the right-hand side and of a solution. The time regularity of a
solution to the equation (19) can be verified in the case of sufficiently small right-
hand side ¢ and its derivative ¢'(¢) in a similar way as in [11]. Simultaneously we
impose stronger assumptions on the kernel function g. The questions of the exponen-
tial stability for a solution of the linear parabolic integro-differential equation were
investigated in [1]

THEOREM 3.1. Let g € W2Y(0,T;V) and w € W»1(0,T;V) be a solution of the
canonical equation (19) for every T > 0. Let the kernel g € C(0,00; R) be such that

(21) g(t) <0, g¢'(t)>0 foreveryt>0; 1 +/ g(t)dt =~ > 0.
0
Then there exist 8 > 0, K > 0 such that
(22) lw@)|| < Ke P [[lw(0)[| + || B(w(0),w(0))|]

t
+ Klmax la@)+ [ 0 5as) + ¢ ()]ds], ¢ > 0
8 5 0

Proof. We shall use the following modified relation concerning the kernel function g
derived in [11]:

((/Otg(t — s)v(s)ds,v'(t) )) = —%g(t)||v||2 n %gl %0
(23) —%%[g@v—(/otgds) ||v||2],v€V,

where

t
g®v= / gt — )|[o(t) — v(s)|%ds.
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Let us set  u(t) = ePw(t), gp(t) = e’lg(t), gap(t) = €*Ptg(t), B> 0. The equation
(19) has then the form

u(t) + /t 95t — s)u(s)ds + ae~ 2P B(B(u,u),u)(t) +
0

(24) ae—25t (( / t g2ﬁ(t—s)B(u,u)(s)ds,u(t)>) = Plq(t), £ >0

0

After multiplying the last expression with «'(¢) and integrating we obtain using the
relation (23) the identity

t
@I + gae= !B, w) @) +ap / €209 B(u, u)(5)|*ds
t 2 d t 2
- / l95(8) lus)] +<gﬂ—$gﬁ>®v]<s>ds+( / ggds) ()]
t
# 50 {e | [ mads B )OI - 199 Bl )0
(25) - [ a5 ds}
’ —203s d —
+/0 e [ggzg—ﬂ(s)gw]®B(u,u)(s)ds}—
Ju(O)IP + SallBlu,u)O)I +

2¢7((q(t),u(t) ) - 2/0 ”*(( Ba(s) +q'(s),u(s) ))ds, ¢ >0.

Applying the assumption (21) and restricting the value 8 € (0,%) we arrive at the
inequality

@6) 7 (IO + gae 1B )OI < O + Jal B O +

t
2¢7|g(®)]] [lu(@®)]] + 2/ ”[[|Ba(s) +¢'(s)l}ds max [lu(s)ll, t>0.
0 s€[0,t]

The estimate (22) follows setting K = v~ ' max{2, ($)~'/2}.

4. Approximation by the Rothe Method. In order to solve the above prob-
lem numerically we first convert the quasistationary system (15), (16) into the system
of nonlinear stationary equations similar to the classical von Karman system. We
shall use the Rothe method in a similar way as by Kacur [9] or Slodicka [12] in the
case of parabolic integro-differential equations.

We assume that the right hand side f belongs to the space W21(0,T; Ly (1)) for
every T > 0 and that the assumptions (21) abouth the kernel function g from the
previous section hold. Moreover we assume the exponential behaviour of the kernel
function g:

(27) 0<—g(t)<Ke ™, t>0,0< K <p.
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For each n € N we set

We substitute the system (15), (16) by

i—1
Bwi
(28) D0A2w,~ + 7Dy Zgi_jAzwj - [@i,wi] = fi, w;= oy =0onT,
=0
A h = 0%,
(29) Azq),' = —EEO [wl,wz] + ngi,j[wj,’w]'] , &; = 8I/Z =0onT.

Jj=0

The equation (29) is uniquelly solved and we obtain its weak solution ®; € V' in a
form
i-1

h
(30) P, = —§E0 B(wz,w,) + ngi_jB(U)j,w]')
7=0

After inserting ®; into the equation (28) we arrive at the stationary canonical equation
in the Hilbert space V:

i1 i1
(31)  wi+7Y_gijwj+aB | Bw,w)+7 Y gijBwj,w;),wi| =g,
=0 =0
1=1,..,n;
(32) wo + aB(B(wq,wp),wo) = go-

The last equation has a solution due to the theory of stationary von Kdrman equations.
The equation (31) is the Euler equation for the functional

1 a i—1
(33) Ji(v) = 5||v||2 + ZHB(U,U)H2 + [ {7 gijwiv ] | +
=0
i—1
+ a ngi*jB(wjaijB(vav) —((Qi,U)),UEV, ’L=17,TL
=0

The functional J; is weakly lower semicontinuous and coercive. Then there exists an
element w; € V fulfilling the minimum condition

(34) Ji(w;) = min Ji(v),

and solving the discrete canonical equation (31). A couple {w;, ®;} € V x V is then
a weak solution of the system (28), (29).
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Let us further define the following functions determined by values w;, dw; :

Wy, : [O,T] -V, wn(t) = w;—1 + (t — ti)éw,-, tic1 <t<t;, i1=1,..,n;
Wnp : [OaT] — Va ’U_)n(O) = Wo, u_)n(t) =wj, ti1 <t<tg, 1=1,..,n;
n [0, T] =V, w,(0) =0, 0p(t) =w;, t; <t <tiy1,i=1,...,n—1
We proceed with a priori estimates.

We set ¢ = j in (31), multiply it with 7w; in V and add for j = 1,...,i. After
denoting

(35) wj = llwjl” + all(Bw;, w;)|I?

we obtain the identity

iij +77 ((2_: gjkwk;'wj>) +a ((Z_: gjkB(wk,wk),B(w,-,w,-))ﬂ
j=1 k=0 k=0
= TZ(((]j;wj))

and the inequality

i
ZIIZgg kwk||2+a||ZgJ kB(wy, wi)||” leqgll2 0<e<l
j=1 k=

Applying the assumption (27) and the convexity of the function ||.||? : V — R we

obtain the estimates
3 Z e*Qﬂ]T Z eﬂk'r Z eﬁk'rw +

i
Tzw, < 5 2 ol
j—1

(36) < ? 22 ﬁjT—e_ij)Zeﬂkka'F Z:H'JJ”2

k=0

where we have used the relations

- gir 1 1
BkT _ € - < EJT 1
Ze -1 - ,BT( )

We continue substituting the sums by integrals and using the integration by parts in
a following way:

i j—1 i G
? Z(e*'gﬁ — e 2PIT) Z PR <7 Z(e*'@” - e*w”)/ P70, (0)do
=1 = =1

0

t; jT
< / (e=Ps — e_ws)/ o)do + Z/ Bs 6_2’65)/ e’ do & 1do
0 0 1)7' s
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ti 1 1 ki
,3/ e P (s)ds — E(e_ﬁt" - Ee_wt")/ eP%o,(s)ds
0
/( ) [eﬁ(J‘r 5) [3(31’ 2s) + 2 s]ds Wi
J—L)T

1

ti 1 ) )
< /0 On(s)ds + — Z [ —1—pr - —e_ﬂ” + ie_B(J_l)T - Ze_ﬁ(J_z)T] w

™®| =

i

1 [t 1
< E/ Wn(s)ds + §T2eﬁ72wj,1 < (ﬂ + 7'6 TZw]
0

=1

Setting € = 1 — (%)1/2 and 79 > 0 such that 18me’™ < (£)1/2 —1 we obtain
comparing with (32), (35), (36) the a priori estimate

7Y llwjll? + ol (Bws, wi)I* < C1(8, K)llgoll* + C2(ﬁ;K)TZ llgsI?

37) < Ci(B, K)ol + C2(B8 / [(1 +70)llg@®)1> + 7ollg' (®) 1|7 ]dt,
i=1,...,n, T < 10;
where
___ WK _ i

We continue with uniform a priori estimates. The equations (31), (35) imply the
identity

wi=—|[7Y gicjwj,wi | | —a| [ 7Y gimiBwj,w;), Bwi,w;) | | + (g, w:))

and the inequality

2 2
i1 i1

w; < 277 Zgi—jwj +a Zgi_jB(wj,w,-) + 2/jgil>.
=0 =0

Again using the convexity of ||.||? and the properties of exponential functions we arrive
at the inequality

2K—2 i—1
wi S T ) W) + 2[|gil?
7=0

and applying the estimate (36) we obtain
(39) llwil* + af|(Bwi, wi)|* <

Cs(8, K)loll* + Ca(8, K / [ +70)[la@®) I + 7ol (ONI*)dt + 2llallEo,17,v)

1=1,...,n, T < 710;
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where
K? K?
(40) C3(8,K) = 7[01(&1() + 7o), Ca(B,K) = 702(/3,1()-

In order to obtain the convergence of the scheme we need the estimates of the

derivatives dw;.
After setting i = j, ¢ = j — 1 in (31) and substracting we have the identities

dwy + grwo + adB(B(wy, w1 ), w1) + aB(g1 B(wg,wp),w;) = dqs,

j-1
dw; + adB(B(wj,w;),w;) + gjwo + T Z 9j— k0w, +
k=1
-2
aB(r Y 6g; «B(wk,wk) + g1 B(w; 1,w; 1),w;) +
k=0
=
TB(Y_ g1 1Bwk,wy),0w;) = 8q5, j =2, ...,i.
k=0

After multiplying the last identities in the space V with réw;,j =1, ...,4; and adding
we arrive at

T_Z||<5wj||2 +a_2(( B(B(wj, w;), w;) — B(B(wj—1,wj-1),wj—1) , dw; ))

+7Y_((gjwo + aB(goB(wj1,wj 1,w;) , dw;)))

Jj=1
i Jj—2 j—1
+T2 Z ((Zgjkéwk + aB (Z (5gjkB(wk,wk),wj) , (511)j>)
=2 \ \k=0 k=0
j—2 i
+a ((Zgj1kB(1Uk;wk),B(5wj;5wj)>> = 7y ((8g5,0uwy)).
k=0 j=1

Using the property (14) of the operator C : V — V, C(v) = B(B(v,v),v) and the
properties of the kernel function g we obtain the inequality

i i
Ty lldw;l® < 4a|BI? jemax llw; 17 ) llow;|®
=

j=1
i j—1 2
+ 27 Z gjwo + aB(goB(wj_l, U)j_l) + T Z (5gj_kB(U)k, ’U)k) y 11)]') + (Sq]'
j=1 k=0
i ||li=2 2
(41) + 273 Z Zgj,kéwk
=2 |l k=0

Let us assume that

(42) 4a||BIP[lwjl* <1-6, 8 € (0,1), j =1,...,n.
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Comparing with the a priori estimate (39) we can see that the condition

T
Cs(ﬁ,K)Ilqo||2+C'4(ﬂ,K)/0 [(1+70)lla@)II” + 7ollq’ (2) 1)t

1-96

2
(43) + 2/l < 1B

is sufficient for fulfilling the estimate (42). Applying the assumption (42), the a priori
estimate (39) and the properties of the function g we obtain the inequality

i i j—2
(44) Y 6will* < Cs+Cer> D [|dw .
j=1 j=2 k=0
The discrete Gronwall lemma, then implies the a priori estimate
i
(45) Y |Idw;l> <Cr,i=1,..,m; 0< 7 <10
j=1

The sequence of functions {wy,} defined by their discrete values is then bounded
in the space W21(0,T;V) :

(46) lwallw2.10,7;v) < Cs,n € N.

Then there exists its subsequence (again denoted by {w,}) and a function w €
W21(0,T;V) such that

(47) w, = w  in w21(0,T;V),

(48) wy (t) = w(t), Wy(t) = w(t) in V for every t € [0,T],
(49) wy, = w, Wy, =~ w in L*(0,T;V),

(50) Wy = W, Wy, = win LP(0,T;W™HQ)), p> 1, r > 1.

The sequence ®,, of step functions obtained from the equation (30) is bounded in the
space L>®(0,T;V) by the estimate

hEo(1 —6)

1 D, poorvy < ——2
(51) | @0z (0,5v) < 1al[B]

n=12,..

We receive the last estimate directly from the expression (30) and the estimate (42)
applying the exponential growth of the kernel function g. Then there exists a subse-
quence (again denoted by ®,) and a function & € L*°(0,T; V) such that

(52) @, —~* ®in L>(0,T;V)
We shall verify that a function ® is defined by the expression

(53) o= —gEO[B(w,w) + g% B(w,w)].

Let us set

B(w,w) =U, B(wn,wy) =Un, n=1,2,...
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We can express the functions ®,, in a following way:

(54)  B(t) = —gEO [m(t) + /Ot g(t — 8)Tn(s)ds — /tt’ g(t — 8)Tn(s)ds
h ti N
— §E0 [ ; [g(ti —s) —g(t — s)]Un(s)ds] i1 <t<t;, i=1,...,n
Let v € L9(0,T;V), g > 1 be arbitrary. Using the property ([8])
(55) ([w,v],w) = (u, [v,w]), w,v,w €V
and the definition of B we have the relations

(Un(t),v)) = ([0n(t),v(t)], Wa(t)]), t € [0,T], n=1,2...

and

<

‘ / ([@n, 0], Bn) — (fw, ], w)(t)dt

T T
| (@n = ol wnat + | [ (ol 0, - )]
0 0

Applying the convergence (50) and the boundedness of {@,} in L>(0,T’; V) and hence
also in L>(0,T; L?(Q)) we obtain the converegence

(56) U, =*Uin L®(0,T;V).

Applying the relation

T
/0 (Un(t) = T (t), v(8)))dt = Z / ] ~ s v o) =
TZ/ y wz+w,~,1,v],6wi)

we obtain using the a priori estimate (46) the convergence

lim [ (Un(t) — Un(t),v(t)))dt =0

n—oo 0
and comparing with (56)
~ 1
(57) U, = U in L?(0,T; V), S =L

The operator G : LP(0,T;V) — LP(0,T;V) defined by
t
(Gu)(t) = / ot - syu(s)ds, u € LP(0,T; V);
0

is linear and continuous and the convergence

(58) GU,, = GU in L?(0,T;V)
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follows. The function defined by the sum of the second and the third integral in (54)
converges weakly to 0 in LP(0,T; V) as a consequence of previous a priori estimates
and properties of the function g. Then we obtain using (56), (58) the relations (52),
(53). Using the strong convergence (50), property (55) and the estimate ([8])

(59) [([u, v], w)| < Cllull [lWllwra@) lwllwrsw), wo,weV

we obtain after limiting process in a weak form of the equation (28) that a function w
is a solution of the canonical equation (19) and the couple {w, ®} € W21(0,T;V) x
L>(0,T;V) is a weak solution of the von Karmén system (15), (16) in a form

(60) /OT ((D(O)w + /Ot D'(t — s)w(s)ds — B(@(t),w(t)),v(t)» dt
=00 [ C(Calt),o(0) Yt Yo € 20,7 V),

T
(61) / ((®(2), B(t) ))dt =

- g /T(( E(0)B(w,w)(t) + /t E'(t — s)B(w,w)(s)ds, ¥(t) ))dt V¥ € L*(0,T;V).
0 0

The function w : [0,T] = V is C%1/2 Holder continuous due to continuous imbedding
(see [5], Corollary 1.4.38)

w20,T;V) c C%2([0,T],V).
The function B(w,w) : [0,T] — V is continuous due to the relation
B(u,u) — B(v,v) = B(u+v,u —v), u,v € V.

The functions ® : [0,7] — V, B(®,w) : [0,T] = V are then continuous too. We can
then substitute the integral form of the equations (60), (61). The result is a following
theorem.

THEOREM 4.1. Let {W,,®,} is a sequence of step functions achieved from the
discrete values defined by the system (40), (41), (42). There its exists a subse-
quence (with the same notion) such that the convergence (51)-(56) holds and a couple
{w,®} € W2L0,T;V) x C([0,T;V) is a weak solution of the von Kdrmdn system
(15), (16) in a form

(62) (DO)w(t) + (D' w)(t),v)) = /Q([‘Ihw] + f(t,z))v(z)dz
forallv eV, te0,T];
©) (@) =5 [(EOwul) + E « wu)6) ¥

forallveV, t€[0,T].

REMARK. We have verified the convergence of the method under the restrictive
assumption (43) on the right-hand side ¢. This condition is closely connected with
questions of continuity and uniqueness of a weak solution {w,®}. It is possible to



418 1. BOCK

improve this condition, but one cannot expect the convergence of the Rothe method
for an arbitrary right-hand side.

The exponential decreasing of the kernel function g corresponds to the most of
viscoelastic materials (see [6] for the details).

Combining the Rothe method with finit elements with respect to space coordi-
nates we obtain the nonlinear algebraic system for every time line ¢ = ¢;. The mixed
formulation of the problem due to Miyoshi [10] converting the weak formulation of
the problem (28), (29) into the problem involving 8 unknown functions with at most
2-nd order derivatives is more suitable to full numerical approximation. The scheme
is based on the fact that a solution pairs {w;, ®;} achieve H3(f2) regularity in the case
of the bounded convex region Q with a Lipschitz boundary. After applying the Green
formula the system (28), (29) can be substituted by a following weak formulation in
the space H = H}(Q) x [H1(Q)]3:

(6) DLW U)+Dor S gi s £(W5,U) — (Wi, Ul ) = (firw),
=0
(65) ﬁ(‘I’@,ﬁ) = _gEO [WZ,WZ] + ngifj([Wj,Wj] , U

7=0
for all {U, 0} € H2, U = (u,Ur1,Uia,Uss), U = (@b, U1, Uya, Uss),
Uz = Un, Ui = Usy,

L(W,U) = /Q D 0aWapdpu+ Y 0wdalap + WaplUap | da,
o, a<lp

[U, W] = Ur1Vaz + U2 Vi1 — 2U12V12.

Piecewise linear finite elements on the regularly triangulated domain Q can be used
in order to solve the system (64), (65). A special choise of basic functions near the
boundary enables to satisfy the vanishing of the normal derivatives of the functions
w;, ®; on the boundary. These boundary conditions have the character of natural
(mechanical) boundary conditions in the system (64), (65). The number of the re-
sulting equations can be reduced essentially using certain types of piecewise constant
functions (see [10] for the details where also the linearization process is proposed).
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