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NUMERICAL SIMULATIONS OF RADIONUCLIDES TRANSPORT
IN DOUBLE POROSITY MEDIA WITH SORPTION *

PETER FROLKOVIC T AND JURGEN GEISER ¥

Abstract. A mathematical model of the transport of radionuclides in double porosity media
with sorption processes is presented. A comparison of numerical solutions with a semi-analytical
solution for a simplified example is described.
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1. Introduction. A safety study of radioactive waste disposals requires math-
ematical modelling of risk scenarios where several different physical processes are
considered. Such a model should not restrict only to the description of the advective-
dispersive multicomponent transport in porous media with decay chain of radionu-
clides, but it should include the modelling of the exchange processes between the
mobile and the “immobile” pore groundwater and the kinetic sorption processes [5, 7].

In the next section such a mathematical model will be described. The description
is based on a mass balance formulation and in such a way it is “ready-to-use” for
the numerical discretization by finite volume methods. The used numerical methods
are briefly described in the section 3. The numerical results for a test example where
semi-analytic solution is known, are presented in the last section together with a brief
discussion of a more complex test example.

2. Mathematical model. We supposed that the volume V' of porous media
can be divided into 4 parts - the first two subvolumes that are occupied by a “mobile”
(flowing) pore groundwater and an “immobile” (steady) pore groundwater and the
second pair of subvolumes that represents the solid matrix of aquifer.

Each solute of the next described multicomponent system can occur in each part
of the porous media. In such a way the concentration C*? of the i-th solute can be
considered as the sum of 4 corresponding unknown concentrations - C (the concen-
tration in the mobile groundwater [mol/m?]), G¢ (the concentration in the immobile
groundwater [mol/m?]), C%, (the concentration of the adsorbed solute from the mo-
bile groundwater [mol/kg]) and G, (the concentration of the adsorbed solute from
the immobile groundwater [mol/kg]).

The mass of the i-th solute in V' can be determined then from
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In above ¢ and ¢;,;, denote the corresponding porosities of the volume V that
characterize the parts occupied by the mobile and the immobile water. Moreover,
the factor g € (0,1) divides the solid matrix part of V' (characterized by the porosity
(1—¢— pim)) between two parts where the adsorbed solute of the concentration C%,
respectively G, occurs. Finally, p [kg/m?] denotes the density of solid matrix.

Further, we consider a first order decay chain of nuclides with A* denoting the
decay constant rate of the i-th nuclide and & = k(%) denotes the index of the produced
nuclide. Following [5] we consider the same decay constants in each of 4 parts of porous
media.

Next we describe the partial differential equations for the unknowns Ci, G¢, C%,
and GY ;. If so called “equilibrium” (fast) sorption occurs, the system is reduced for
the unknowns C¢ and G% only, see a description later.

2.1. Mobile pore groundwater. Following [5] one has to consider that each
i-th nuclide belongs to an “element” e, i.e. e = e(i). Moreover, some parameters can

depend on the concentration Cz(i) of the element e that is given by
(2.1) o =30
i

and where ¢ runs through the indices of all nuclides that belongs to the element e.

The transport of the solute in the mobile groundwater that includes the sinks
and the sources due to the decay chain and due to the exchange processes with other
parts of the porous media, can be described by [7, 5]

(2.2) ¢ | CL+NCL— > MCE | + V- (dC] - DVC}) +
k=k(i)

@ (C] - GY) + k(K (C5P)Ci - Clyy) =0.

In (2.2) by ¢ we denote the velocity field that fulfills V-§ = 0. Further, D denotes
the diffusive-dispersive tensor [3]

D := ¢d°DT + |q|(ar + (ar — ar)dT - §/|71%)

where d = d° denotes the molecular diffusion for the e-th element, T denotes the
tortuosity tensor and finally a7 and ar denote the transversal, respectively the lon-
gitudinal dispersions.

The rate constants a®(?) characterize the exchange of the e-th solute element
between the mobile and the immobile groundwater and k¢ characterize the rate
constants of the sorption kinetic.

The particular form of the coefficient K = K (CE(')) depends on the type of the
used sorption isotherm. For the simplest linear case (Henry isotherm) K is a constant,
the nonlinear cases of Freundlich isotherm [5]

e(4 e(i)\ P!
(2.3) K = K29y = K, (CL( >)
and/or Langmuir isotherm [5]
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are also considered.
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2.2. Immobile pore groundwater.
(2.5) Gim | 5;GL + NG = dONGE |+
k=k(3)
+ (G}, - ) + kO (K(GL)G), - Giaa) =0.

Here, an analogous description as in the previous subsection could be used, ex-
cept that no convection, diffusion and dispersion transport is considered here. The
concentration G2 is defined analogously to (2.1).

2.3. Adsorption from the mobile groundwater.

9 i i
(2.6) 9(1 = ¢ — dim)p &CAd + A Chq — Z AChy | =
k=k(i)
kO (K(Ci)Ch - Cly) -

The right hand side of (2.6) occurs as the last term in (2.2). If it is replaced there
by the left hand side of (2.6) then one has the equivalent form of (2.2)

O i i
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V- (Ci — DVCE) 4+ ofD(CE —GY) =0.

Moreover, if the fast sorption is considered (i.e. 1/k¢() — 0 in (2.6)) then C%, is
given explicitly by

(2.8) Ciyy = K(C;)C4

and only the equation (2.7) for C% is considered instead of (2.2) and (2.6).

2.4. Adsorption from the immobile groundwater.

9 . .
(1-9)1—¢— dim)p (a Aa T NG — Z AkGlj&d) =

k=k(i)

(2.9) ke (K(GEL“))G; - Gz’Ad) .

Analogous description as in the subsection 2.3 can be used here.
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3. Numerical methods. The system (2.2), (2.5), (2.6) and (2.9) is discretized
using the so called “vertex-centred” finite volume method. The basic idea behind
this method is a construction of a dual mesh of finite volumes (FV) that is comple-
mentary to a standard finite element (FE) mesh. The unknown discrete variables are
placed in the vertices of the triangulation and for each vertex z; a finite volume Vj is
constructed.

The unknown numerical solution is constructed using well-known conforming FE
test functions and the discrete equations are constructed using local mass balance
formulation on the dual mesh. Such methods are very often called the “control volume
FE” [10] or the “FV element methods” [4].

A package RNT (Radio-Nuclides Transport) for the numerical solution of (2.2) -
(2.9) is developed using the powerful numerical library UG (Unstructured Grid) [1].
It is based on the implementation of the multicomponent reactive transport using an
effective memory format for the sparse matrices [8]. The future development should
include a coupling with the so called “density driven flow” where the velocity field ¢
fulfills more complex non-stationary flow equation [6].

If one of nonlinear form of the sorption isotherms is used (2.3) - (2.4) then the
resulting algebraic system will be solved by Newton method with an analytical lin-
earization. The resulting linear algebraic systems are solved by a biconjugate gradient
method with a multigrid linear solver as a preconditioner. The time discretization is
the implicit Euler method.

4. Numerical results. For a linear case of the system (2.2) - (2.9) and for
a simple form of ¢ special analytical solutions can be found [7, 2]. They describe
typically a time evolution of the concentration from a singular point source.

To validate the developed software package RNT the example of 4 species trans-
port with the retardation (fast sorption) and without immobile groundwater (i.e.
a®) = 0) was computed and the results were compared with the corresponding semi-
analytical solution. In a near future a comparison with semi-analytical solutions for
non-simplified system (2.2) - (2.9) should be provided.

The particular form of the equation (2.7) for i = 1,2, 3,4 is given then by

4.1 Ri9,Ct + RINCE — RI\F10 Y 4 v - (qCL — DVCE) =0
L

where A\ = 0. The decay constants correspond to the decay of chemical species
Perchlorethen, Trichlorethen, Dichlorethen and Vinylchlorid and they take the values
A =176, =22 ) =21and M = 2.0 [107* 1/d]. The velocity field takes the
constant value ¢ = (0.2,0.0) [m/d]. The molecular diffusion is neglected by taking
d' = 0 and the dispersion constants are taken to be ar, = 6.8 and ar = 0.2 [m]. The
retardation factors are given by R' = 8.0, R2 =2.0, R® = 1.1 and R* = 1.0.

The above problem is analytically studied for the case of unbounded domain in R?
and for nonzero initial conditions for C} only consisting of a singular “point impulse”
Clnst0(z,4)8(t) with § being a well-known delta function. The analytical solution
can be described explicitly for C}, to compute other components C%, C? and C} the
so called “Hantush function”

(o] 2
(4.2) Wi(a1,az2) = / %exp (—5 - Z—Z) d¢

must be evaluated numerically [7]. The complexity of the analytical solution grows
from the definition of C2 to Ci. To evaluate C%(xz,t) the function W has to be
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computed for two values of (a1,as), to evaluate C} (z,t) once the function W has to
be computed for 24 different values of (a1,a2). The integral in (4.2) was computed
numerically by using the Gaussian quadrature with 10 integration points per each
subinterval [9].

To avoid numerical difficulties by approximating the singular form of the solution
at t = 0 and (z,y) = (0,0), the values of the analytical solution at ¢ = 100 were taken
as the initial conditions. The domain was taken to be a rectangle with the left bottom
corner (—500,—100) and the right top corner (1300, 100). The boundary conditions
were zero flux B.C. at the top and the bottom of the domain and the inflow B.C. with
Ct = 0 on the left and the outflow B.C. at the right part of the rectangle. The initial
conditions for the numerical solution and the results at ¢ = 2000 days are presented
in the Figure 4.1.

L5

0
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Fic. 4.1. C’i fori=1,...,4 at t = 100 days (initial conditions) and t = 2000 days.

The pictures were stretched in y direction. The contour lines are plotted from
the corresponding minimal value to the maximal value of the particular component of
the numerical solution. The initial grid, consisting of 6 square elements, was refined
using a combination of a uniform refinement and a local refinement around the point
(0,0) with the grid step h varying from h = 200/(2°) to h = 200/(2'%) [m]. The final
grid consists of 7690 elements. The time step was chosen 7 = 1 day.

The relative discrete maximum error for each time was computed by

W (1) o IV [0 (5 Em) — tesact (5, )]
maxj;—i,...,N |uezact(xj7tm)|

where NN is the number of vertices for a particular grid. The values of this error for
each component C'} at each discrete time are plotted in the Figure 4.2.
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FiG. 4.2. The relative mazimum error for 4 components of the numerical solution

To illustrate the convergence of the numerical solution we compare the error for
2 successive grids. In the Figure 4.3 the error for the numerical solution from the
Figure 4.2 is compared with the one on a finer grid (once more uniformly refined with
22 056 elements) with the identical fixed time step 7 = 1 day. It is clear that the grid
refinement decreases significantly further the numerical error.
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F1G. 4.3. Comparison of relative mazimum error for two successive grid refinements
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Further, we compare the influence of the time discretization on the numerical
error. We computed the example on the grid as in the Figure 4.2, but with the time
step 7 = 0.5 days. The error for both numerical solutions can be compared in the
Figure 4.4.
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F1G. 4.4. Comparison of the relative mazimum error for two successive time step refinements

It is clear that a further refinement of the time step gives only marginal reduction
of the numerical error. In fact at the initial time period the error is greater with the
finer time step (), compare especially the top lines for C} and the bottom lines for
C1. Nevertheless, after some initial period for the finer time step the error is getting
smaller for each component of the numerical solution.

As the analytical solution is well defined only for unbounded domain it is impor-
tant to insure that the bounded computational domain is large enough to have no
undesired influence from the boundary conditions. To illustrate an importamce of
this topic we compare the relative maximum error of the numerical solution on the
original domain with the solution computed on a smaller domain with the left bottom
corner (—200,—100) and the right top corner (1000, 100).

The computations were performed on a coarser grid consisting of 4 096 elements
and for a coarser time step 7 = 10 days. The numerical results are identical for
t < 1000 days, but afterwards the error for the last component of the numerical
solution starts to grow and similarly for other components later.

It is interesting to note that such undesired influence of the boundary conditions is
not “visible” on the numerical solution itself, see the Figure 4.6. There the numerical
solution at t = 1300 days for C% and C7 should be already “corrupted”, but it can
be seen only hardly from the pictures.

Finally, to demonstrate a capability of the developed package RNT we present an
analogous, but more complex test example with 9 components for the system (2.2),
(2.5), (2.6) and (2.9), see the Figure 4.7 for an illustration of numerical results.

In this Figure a row of 4 pictures shows the contour lines of a particular radionu-
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FiG. 4.5. The error of the numerical solution on the larger and smaller domain

=

F1G. 4.6. Numerical solutions for C’% and Cﬁ at t = 1300 days on the smaller domain

clide concentration in the mobile and the immobile groundwater and the correspond-
ing adsorbed concentrations. The pictures in a single column represents a decay chain.
Both nuclides Th-234 and Am-242 in the 4th row decays to the nuclide U-234 in the
fifth row.

The computational grid consisted of 4 096 elements with 36 discrete unknowns
per each vertex of the grid. The example was computed on a Power Macintosh G3
for 1 300 time steps and the computations took about 16 hours.

5. Conclusions. In this paper the mathematical model was presented that en-
hances the standard model of the transport of radionuclides decay chain in the flowing
groundwater by considering the exchange processes with the immobile pore ground-
water and the sorption kinetic processes. The code validation was performed that
confirmed for particular examples the capability of the software package to solve well
numerically the analytical model.
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