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ROLLING CONTACT WITH INERTIA AND FRICTION

DIRK LANGEMANN*

Abstract. The phenomenon of rolling is an essential part of the simulation of vehicles’s be-
haviour, the modelling of wear phenomena and the discussion of security aspects of transport.

We describe a visco-elastic body rolling on a support by a free time-dependent boundary-value
problem with NEUMANN boundary conditions. Searching for characteristic effects, we assume a simple
geometry, i. e. a nearly round wheel tyre rolling on a plane support, but we consider a formulation
in EULERian coordinates.

The model contains a driving or breaking moment acting on the axle, and it does not require
any given rigid body slip. On the contrary, we get it as an output of the model. Finally, we want
to investigate the stability of the quasi—stationary solution of the problem and show some extracts
from the behaviour of a rolling wheel.
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1. Introduction. The numerical simulation of rolling is an essential input for
many applications, in particular in the modelling of vehicle dynamics. Real rolling
is never perfect, i. e. it is always a sum of pure rolling and a sliding motion of the
wheel or a general rolling body. Furthermore, we find a contact patch of considerable
extension between the wheel and its support. The effects within the contact patch
influence the dynamical behaviour of the system, the amount of dissipated energy and
the resistance to wear and damage.

The classical literature about rolling contact in engineering sciences, cf. [6] and
[7], discusses mainly a quasi-stationary rolling contact. They regard an elastic body
moving with a constant speed v and a constant rotational velocity w over the support.
All effects within the contact patch are described in a coordinate system moving with
the same speed v, and the displacements and forces in the contact area are assumed to
be constant in the moving coordinate system. The fact founded in [3] that a driving
wheel causes an adhesion zone at the incoming border of the contact patch, plays an
important role in the named literature.

This simplification makes it impossible to discuss the stability of the solution or
to simulate acceleration or breaking of the vehicle. Observed stick/slip phenomena
cannot be modelled, too. In particular, the rotational speed acts as an input, and
hence w(t) cannot be simulated. Also, other approaches like [8] using elasticity of
finite deformations, [1] using sophisticated descriptions of a non—ideal support of the
rolling wheel, or [9] and [12] developing effective techniques to handle quasi—stationary
contact, cannot circumvent these problems.

Those are the reasons why we will formulate a time—dependent free boundary—
value problem for the simulation of rolling contact. The basic equations are presented
in Sec. 2 and they are solved by finite element methods in Sec. 3. Results and first
parameter studies are presented in Sec. 4. There, the fundamental behaviour of an
elastic wheel in rolling contact is shown by hands of an example.
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A critical input into the simulation of rolling contact is friction. Two particles
in contact — one at the wheel surface and the other at the support — have a relative
velocity s to each other. Having no better alternative, the classical CouLOMB’s friction
law is used, cf. [10]. We will accept this unsatisfactory assumption in this paper and
let the influence of the friction law to further investigation.

2. Basic equations. The reference configuration of the wheel is called Q C IR3.
The particles are X € Q and they are mapped by x : (X,t) — z(t) to the points z(t)
of the time-dependent deformed configuration x(€2,t). Due to the physical backround
we can assume smoothness like e. g. x € C?(Q2x[0,00)) . We denote the time derivative
by Z(t) and the nabla operator with respect to the deformed configuration by V., .

The stress tensor may be L, (x) and we will later refer to the question of what kind
L, is. We get the free boundary—value problem with NEUMANN boundary conditions

(1) o(z) - &(t) = Vg-Lg(x(t))+ f(z,t) in  x(Q,1),
p(z,t) = Lg(2(t))-n(z,t) on 9x(,1)

where p is the outer force density, f is the inner force density and n(z,t) is the outer
normal at the point z € 9x(Q,t) on the boundary of the deformed configuration and
at the time ¢. The density of the material is o(z). For completation of Eq. (1) we
need initial conditions z(0) = g and £(0) = Zo.

The inner forces consist in the gravity and in the inner damping of the visco—
elastic material fq(z,t) = ¢V, - Ly (&(t)) with the damping coeflicient ¢, cf. [5]. We
will not write this term explicitely into our equations but we will keep it in mind and
use it in the example following in Sec. 4.

The outer forces are the weight F; of the vehicle acting on the axle and a driving
or breaking moment M (resp. B) acting on the axle too, which may depend on time or
on the rotational velocity of the wheel. Both integrated quantities need to be applied
in a suitable manner on that part of the boundary 9x(Q,t) touching the axle. We get
the pressure p, from the splitted Fg and the force density m from the moment M. A
respective longitudinal force Fz is acting on the axle of a tracked wheel.

F1G. 1. integrated forces of a driving wheel and a tracked wheel

Furthermore, the contact with the support S produces a normal pressure p,, . Due
to friction, it results in a tangential pressure p;. So, we get p = py +m + pp + p; .
The integrated pressures, i. e. the forces are shown in Fig. 1.

The distance of z(t) to the rigid or deformable support S may be d(z,t). The
point z is in contact to S if d(z,t) = 0, in this case we name the point y = 2 € S on
the support. The relative velocity of these points to each other is s(z,t) = &(t) —y(t) .
If S is rigid, then g(t) = 0 and s(z,t) = &(t) .
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Now, the following contact condition, cf. [5], has to be fulfilled at each point
x € 0x(,t) and every time instant ¢

2) d(z,t) - pn(z,t) =0 and pp(z,t) -n(z,t) <O0.

The tangential forces are governed by COULOMB’s law and it holds with the frictional
coeflicient k

(3) pi(,t) = mlz—||pn| if s#0 (sliding),
(4) Ipe (z,t)| < Klpn(x,t)| and py(z,t) -n(z,t) =0 if s =0 (sticking).

Most of the literature mentioned above focus on the quasi—stationary solution of the
system (2), (3) and (4) . The integral over the normal pressure p,, is the counteracting
force to Fg and thus, Eq. (2) has the form of a FREDHOLM’s integral equation of
the first type. Therefore, some difficulties occur while solving this subproblem. We
circumvent this problem by investigating the complete system in Sec. 3.

3. Numerical technique. In this section modifications are introduced which
make the numerical handling of Eq. (1) easier or only then possible. Let us give a
weak formulation of the boundary-value problem (1), p(z) € C! is a test function.
We get

(5) (i, )z = (Vo - La(z(t),9) . + (fs9)
= —/Lz(w(t)) : Veo(z)dz + / p(z,t) - p(x)de + (f,¢) .

x(€2,t)) Ix(Q2,t))

with the scalar product (.,.)z in £ = H(x(Q,1)).

We have not yet specified the tensor L,. The preferable choice would be the first
CAUCHY stress tensor 7X(z(t)) . In that case the numerical handling of the implicite
and non-linear system (1),...,(4) with a reasonable accuracy would be more than
actual computer technique can cope with.

On the other hand, the second PIOLA-KIRCHHOFF stress tensor X (X) is much
easier to handle, cf. [4], but it is impossible to model contact completely in undeformed
coordinates X, see [11]. Shortly speaking, that is because the outer normal of the
reference configuration is not orthogonal to the tangent of the contact patch.

We use the fact TX(z(t)) = |F(X)|'F(X)X(X) for z(t) = x(X,t) with the de-
formation gradient F'(X) = Vx(X). It is known, that 3(X) can be well approximated
by o(X,u) = AIV - u(X) + p[Vu(X) + Vu(X)™] with the LAME coefficients A and p
if u(X) is a small deformation, i. e. F(X) = I for all X € Q.

Furthermore, a rigid body transformation of an isotropic body effects no strain
and thus no stress. We divide the map x into a rigid body transformation 5 and a
small deformation u with x(X,t) = n(X,t) + u(X,t). With the rotational matrix
D(a) for the generalized angle a € IR®, we find by

©) (:(0.a(0) = aug_min, [ | D(=a)x(X,) = 3]l ax

z,a€IR?
the coordinates z(t),a(t) of the rigid body transformation n : X — D(a)X + z
minimizing the norm of the elastic deformation u for fixed time. In Eq. (6), the
coordinates z(t) and @(t) are computed by taking the average over all particles.
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We approximate %(X) ~ o(nX,u) and finally, we use

(7) Lq(2(t)) = [F(nX (2))| 7" F(nX (2))o (nX (z),u) -

Now, we can reformulate system (5) in undeformed coordinates X of the reference
configuration while still using the forces depending on the deformed configuration by
f(X,t) = f(z(t),t) and so on.

The discretization of system (5) using the simplification (7) is standard finite
element method. We choose test functions ¢;(X) € C*(2) with ¢ = 1,..., N and
write u(X,t) = Zf;l ui(t)p;(X) . In the easiest case where the deformation gradient
F =~ I in Eq. (7) is regarded as neglectable and the density ¢ is assumed to be
constant!, we get the system of ordinary linear differential equations (j = 1,...,N)

N N
®) o) il (pipi)e = Zuz'/QL% : Vi; dX+/mP'<Pj dX + (f,9i)c -
i=1 i=1

The great advantage of the linear system is the possibility to compute stiffness, mass
and damping matrices in a preprocessing. The influence of this linearization is as-
sumed to be lower than the incertainty of CouLoMB’s law (3), (4).

Evidently, we get a non-linear system of ordinary differential equations if the
influence of F'(X) is taken into account. It is enormously more time consuming than
the linear system (8) but feasable. This influences the numerical solution but does
not change the fundamental behaviour presented in Sec. 4.

A next problem consists in the handling of condition (4) which does not express
the tangential traction p; as a funtion of the normal pressure p,, but as an inclusion.
In [11] a class of mechanical systems including real rolling is given for which the
influence of a smooth regularization of a discontinuous and non—single valued friction
law decreases with the order of the regularization parameter v. Instead of Egs. (3)
and (4) we use the regularization

©) (o) = =2 2 py (o, arctan 21

T s
for all s, cf. [2]. With Eq. (9), the system (8) is completed and can be solved by
standard methods.

4. Results. A very simple example is presented here, it has been choosen to
demonstrate fundamental effects shortly.

We have used a plane WINKLER-bedding as support S, i. e. elastic in vertical
direction and undeformable in the tangential directions. A soft wheel tyre with small
inner damping was chosen for the numerical experiments

We have taken the initial conditions ¢ = 0 and £y = 0. The numerical simulation
contains two steps, where step 1 was done to get realistic initial conditions for step 2:

1. The wheel falls onto its support by its own gravity, and then the vertical load
Fg is applied. After this step, the wheel lays stationarily on the support.
2. The wheel is accelerated by a driving moment M.

In Fig. 2, the longitudinal rigid body motion Zz;(t) of a driven wheel is shown.
Here, nearly whole the driving moment is consumed to overcome the friction force.
We have got a nearly linear motion of the centre of gravity of the wheel — comparable

1This assumption can be well accepted for standard elastic material like steel or aluminium.
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longitudinal motion rigid body slip and real relative velocity
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F1G. 2. position of wheel’s centre of gravity and its deviation from ideal linearity; slip

with a vehicle going slowly with a nearly constant speed of v &~ 0.75m/s. The twenty—
time exaggerated deviation from a steady motion is shown in the lower part of the
figure.

Although, the speed is very slow and the deviation from a steady motion is small,
vibrations occur in the contact zone. The right graphic shows the rigid body slip
5 calculated from the coordinates in Eq. (6), i. e. the slip a rigid body would effect
moving with the mean velocity. The points above § show the relative velocities of
selected points near the contact zone. Due to the low speed v they are slower than
3, but in general they are not. The vibrations are enforced with higher speed. The
wheel does not tend to a quasi—stationary motion, but it vibrates in a complex manner.
Further, the model provides the rigid body slip 5 as an output.

FiGc. 3. trajectory of a point after contact

The sectional view in Fig. 3 shows the motion of a single particle on the boundary
in detail. It has just before undergone contact with the support. It is visible that the
wheel spins and effects a negative slip s < 0. The particle slides backwards while it
is in contact with the support. Again, its vibration is remarkable and the assumption
of a quasi—stationary rolling is questionable. The dashed line in Fig. 3 shows the
position of the undeformed support. Due to the deformable support the wheel seems
to dip into.

A next question is the relation between the integrated normal and tangential
forces. Such an integrated friction law would be needed for a much easier multi-body
description of a rolling system. In Fig. 4 both forces are shown in a plot.

In this situation of rolling, the tangential force is nearly saturated with the fric-
tional coefficient kK = 1. The loops inwards the unsaturated frictional force charac-
terize stick phases and the intervals where the tangential force is nearly saturated
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frictional coefficient saturation of friction force
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F1G. 4. normal force vs. tangential force; effective frictional coefficient vs. rigid body slip

characterize slip phases.

In the right plot of Fig. 4, the effective frictional coefficient i(5) = Fr/Fy is
shown. We remark a strong dependence on 5. For comparison, the relation (9) with
the used parameter v = 10~ is given by the dashdot line. The point-wise friction
law has been integrated to a relation between Fr, Fiv and 3.

As seen in Figs. 2, 3 and 4, the fundamental behaviour of a visco—elastic rolling
body is dominated by vibrations which are in general not periodical. This leads to
the suggestion that the standard assumption founded in [3] is to discuss.

The proposed model simulates stick/slip effects. It contains the possibility of a
motion with nearly constant speed. Due to damping the model includes the case that
a wheel finishes rolling and stays left by itself in the case of M = B=0and Fz =0.
Further results will be presented in the conference communication.
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