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STABILITY OF POLYNOMIAL PRECONDITIONING

Y. LIANG, J. WESTON, M. SZULARZ *

Abstract. Polynomial preconditioners are frequently used in a parallel environment for the
computation of the solution of large-scale sparse linear equations (Az = b) because of their easy
implementation and trivial parallelization. It is well known that the construction of the precon-
ditioning polynomial can be transformed into a constrained optimization problem, namely that of
finding an m-degree polynomial in the matrix A, P,,(A), such that Py,(A) &~ A~!. Three typical
polynomial preconditioners arise, Neumann-series, Least-squares and Chebyshev. Theoretically, the
higher the degree of the polynomial preconditioner used, the closer is the resemblance to A=, How-
ever, high-degree polynomial preconditioning may lead to rapidly propagating rounding errors and
consequently worsen the stability of the preconditioned system. As a result, a trade-off is required.
This paper is concerned with the stability of the preconditioning operation. Experimental results
using a highly parallel machine environment (MPI on IBM SP2) are presented and a related analysis
is also included.
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1. Introduction. The interest in polynomial preconditioners [1, 3] is motivated
by the need for simple, yet efficient, methods for the speedup of iterative solvers [5, 10]
on vector and parallel processors.

Generally the objectives of preconditioning are to improve the stability of the sys-
tems of linear equations and to provide efficient solution procedures. It is well known
that the condition number [5, 10, 12] is an important parameter in the evaluation of
linear systems. Consider the polynomial preconditioned linear equations with form

(1) Pm(A)Ax = Pm(A)b

where P,,(A) is a polynomial in A with degree no more than m (It should be noted
that there is no difference between left and right strategies with respect to poly-
nomial preconditioning). P,,()\) may be constructed so that the condition number
k(Pm(A)A) is minimised. When constructing a suitable Py, (A), several issues must
be considered:

1. Estimation of the spectrum of A and the degree of P,,(A).

2. The additional cost (computation, communication and storage) brought
about by the preconditioning operation.

3. The perturbation of the preconditioning operation. In this paper the degree
and coefficients of Py, (A), two important factors which determine the stability
of preconditioning, will be discussed.

The main topic of this paper is the stability of the preconditioning operation
itself. The main focus of attention is the rounding error analysis associated with
preconditioning.
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Let 0(A) be the spectrum of A, i.e., the set of all eigenvalues [9] of A. When A
is positive definite, o(A) is contained by a single interval Q = [a,b] where 0 < a < b;
when A is indefinite, o(A) is contained by two disjoint intervals Q = [a, b]U][e, d] where
a < b<0<c<d For the sake of simplicity and practical application, this paper
is concerned with polynomial preconditioning for SPD (symmetric positive definite)
linear systems Ax = b. Further, because of its broader application, the GMRES
(Generalised Minimised RESidual) method is used instead of the more efficient CG
(Conjugate Gradient) method which may be used in the case of SPD linear systems.

Experimental results are based on benchmark linear systems taken from the
Harwell-Boeing collection [7].

2. Typical Polynomial Preconditioners.

2.1. Derivation of Polynomial Preconditioners. Assume that Py, (A) is the
appropriate preconditioning polynomial in A. It should satisfy

(2) Pmeig k(P (A)A)

where p,, denotes the set of all polynomials of degree not exceeding m and x(A)

~

denotes the condition number [10, 5] of the matrix A. Thus, P, (\) should satisfy

N A

(3) /\Pm()‘) ~0d, Pn€pnm

where § € R[3]. By assuming P,,,(A) = P, (\)/4 (i-e., scaling operation), the canonical
form for the construction of the preconditioning polynomial is given by

(4) min || -AP,(N)|| (A€ Q)
Prn€pm
where ||.|| represents a specific norm (i.e., uniform norm) and Q will usually be esti-

mated. The accuracy of estimation determines the convergence speed of the pro-
cedure used to solve preconditioned system. In [6] it is shown that, if €,11 =
Minxeo, P epm I1 = APn(A)|| 5 £(Pm(A)A) < {Emtt,

Clearly, the construction of a preconditioning polynomial for a system of linear
equations is just a polynomial approximation problem. Neumann-series [3, 10] is
the simplest method, while Least-squares [3, 10] and Chebyshev [3, 10] are optimum
approximation methods with respect to the gquadratic norm [4] and the uniform norm
(or minmaz norm) [6], respectively (Note:optimum approximation methods do not
necessarily guarantee the fastest rate of convergence).

2.2. Neumann Series Preconditioning. The Neumann polynomial precondi-
tioner [3, 10] is the simplest polynomial preconditioner and it originates from the
basic algebraic relation

1 i
(5) \7’|/\|<1(A€%‘:),m_§>\.

The following theorem may be used in the construction of a polynomial approximation
for A—1.

THEOREM 2.1. Let G € R™", then Y o, G* converges if and only if p(G) < 1.
In addition, Y 1o GF = (I -G)~1.
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Thus, given any coefficient matrix A, trivially wA = I — (I — wA) (w is scaling
scalar). Let G = (I — wA), then A=! = w(I — G)~! where w can be adjusted so that
p(G) < 1 (p indicates the spectral radius of the matrix). It follows that

(6) AT =0 -G =w) G rw(+G+ G+ +G™Y).
i=0

Consequently P(A) = w(I+G+G?+---+G™~!) may be regarded as the required
preconditioner. In practical implementations, w should be determined according to
the characteristics of A. For example, if A is SPD, we can select w = Ajnqz, Where
Amaz 18 an estimation for the largest eigenvalue.

2.3. Least Squares Preconditioning Polynomial. The lease-squares precon-
ditioning polynomial [3, 10] is derived from an optimum approximation method based
on the quadratic norm [4]

(7) p, 0in, 1= AP ()]l

According to the definition of the quadratic norm, (7) is transformed into

(8) min /Q W)L = AP (A)]2dA.

Pr €Eom

where w() is a non-negative weight function on the interval .

With respect to an appropriate weight function, the least-squares precondition-
ing polynomial series can be generated via a three-term recurrence relationship of
orthonormal polynomials. Table 1 lists the low-degree least-squares preconditioning
polynomial series which is induced from the Jacobi weight function

9) wA) =M 11 —=N)",u>0and v >

N | =

with g = § and v = —1. The polynomials listed are for the interval [0,4] as this

yields integer coefficients which are not too large. For a general interval [0, 3], the
best polynomial of degree k is Py (4\/f).

Degree | Least-square polynomial
Pi()\) 5—A
Py(\) | 14—7Tx+ )2
P3()\) 30 —27TA +9AZ — X3
Py(A) | 55— 77T+ 4427 —11X3 + A2
TABLE 1
Least-square Preconditioning Polynomials

2.4. Chebyshev Preconditioning Polynomial. The Chebyshev pre-
conditioning polynomial [10] is derived using a minmax polynomial approximation
method based on the uniform norm

(10) pin max [1—AP,(A)|.
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ALGORITHM 2.1. The construction of the Chebyshev Precondition-
ing Polynomial (for SPD matrix)

oo =100 = %;0k+1 = 2%019 — Op—1;
(11) Po(N) = 5, Pi(N) = g,
o (0—X\ _
Pe()) = 522 + 2202 Py (3) — 2P 5 (V).

where 0 and 6 are the centre and mid-width of the estimation of the o(A) (A is SPD).
Algorithm 2.1 provides the formula for Chebyshev preconditioning polynomials.
It is derived using a 3-term recurrence relationship. Low-degree Chebyshev precondi-
tioning polynomials may be easily constructed using Algorithm 2.1. Table 2 illustrates
the Chebyshev preconditioning polynomials with degree 0 to 4. When using prede-
termined preconditioning polynomials, the cost of construction may be neglected.

PN [ 3

P | 252
PV | § + s
Py(n) | B E oA
Pi(\)

[16 2T —800 A3+ (16002 —2052 ) A2+ (60052 — 16005 ) A+ (800% —6002562 +557)]
1665 —200352 +5054
TABLE 2

Chebyshev Preconditioning Polynomials (Po()) through Pa()\))

2.5. Polynomial Preconditioned GMRES. The GMRES (Generalised Min-
imal REsidual method) [10, 2, 3], is applicable to general nonsymmetric matrices.
However, in order to avoid the difficulties associated with estimating the spectum of
such matrices [9], this paper is concerned with SPD systems only. GMRES is finally
attributed to the following least-squares problem [4]

( ) :cs=:corfli-lg(A,r0) ” iII ||2
where
(13) Ks(A,r0) = span{re, Arg, A%rq,---, A* 1ry}.

Here K4(A,ro) (ro = b— Azy and z¢ is the initial guess of solution) is called the
s-dimensional Krylov subspace [10]. GMRES [2] solves (12) by constructing an or-
thonormal basis {v1,vs,---,vs} for Ks(A,re) using the Arnoldi algorithm [5, 10] and
then finding the optimum solution based on the above basis.

The main drawback to GMRES is the increasing computational /memory cost as
the number of iterations increases [2, 10]. In this paper two remedies will be employed.
The first is to restart algorithm periodically [10]. For example, Algorithm 2.2 restart
every s steps. The second is preconditioning. Note that the use of the Arnoldi
algorithm to construct orthonormal bases for iterative methods for the solution of the
eigenvalue problem is also the most costly operation in such methods. Observe also
that, with little extra cost, an estimation for o(A4) may be obtained using the GMRES

algorithm.
GM}?E%J.SGORITHM 2.2. Adaptively Polynomial Preconditioned (P, (A)) Restarted
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(1) Start: choose zg, s (dimension of the Krylov subspace),
m (degree of P,,) and {l(estimation about o(A));
(2) Arnoldi process:

(&) T0 =b— Azo; B =|roll2; vi=ro/B;

(4) FOR j=1,---,5 DO

(5) 2j = Ppm(A)v; where P, is constructed according to ;
(6) w = Azj

" FOR i=1,...,5 DO

(8) hij = (w,v;);

9) w=w — h; ;jv;;

(10) ENDFOR

(11) hjvii = llwll2; vjyr =w/hjta,5;

(12) ENDFOR

(13) Define Zs = [2j,+-,2s] and Hpm = {hi;} 1<i<j+1,1<j<5s),

Compute the extremal Ritz value so as to adjust Q;
(14) Achieve the approximate solution:

(15) Ts = X0 + Zsys such that ys = argming||Be1 — Flsy||2;
(16) Restart: IF (not convergent) xo =z, and then GOTO (2)

In this paper GMRES-Neum, GMRES-LS and GMRES-Cheby represent
Neumann series, Least-squares and Chebyshev polynomial preconditioning GMRES
respectively. The experimental results show that, in the case of low degree (< 5), the
convergence performance of GMRES-Cheby is generally better than that of GMRES-
Neum and GMRES-LS.

3. Perturbation of Polynomial Preconditioning. Perturbation analysis [11]
is an important issue in scientific and engineering computation. Firstly, there may be
errors in the input data, caused by prior calculations or perhaps measurement errors.
Secondly, there are errors caused by the algorithm itself, or the approximations made
within the algorithm. In order to estimate the errors in the computation from both
these sources, we need to understand how much the solution of a problem is changed
if the input data is slightly perturbed [11].

Algorithm 2.2 shows that preconditioning operation is

(14) P40 = (Y 0t
k=0

which is actually considered as a polynomial evaluation problem [5]. With respect to
the characteristics of matrix computation, (14) is implemented using Horner’s rule
[5]. The corresponding algorithm is given below.
ALGORITHM 3.1. z + Py (A)v (P, =Y 1ty arAF)
1) 2m = v
(2) for k=m — 1 downto 0
(3) z(k) = Az(k+1) + apU;
(4) endfor

In Algorithm 3.1, z(¥) represents the value of z at (m — k)th iteration step, thus
z2=20 = P,(A)v.

Only the rounding errors [11] associated with matrix-vector products need be
considered, since the errors associated with perturbations in v and A and the rounding
errors of other operations are relatively insignificant. Let (Av) ¢ be the output of the
matrix-vector product Av, then

(15) (Av) j1 = Av + 5(Av).
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Define the diagonal modification matriz I' € R™™, whose entries satisfy 0 < v;; <e
where ¢ is the machine precision (roundoff unit). Then (15) yields:

(16) (Av)g = (I +T)Av,

which may be used to obtain the accumulated error of Algorithm 3.1. This approach
is simpler and more optimistic than that of Wilkinson [11].
For the first iteration:

zg,’ln) = Q.
Due to the influence of rounding errors,

z?ln R am(Av) s + am1v = (I + F(l) 1)amAv + apm_1v
Similarly,

A7) 277 = (I +T0 )+ T )emA? + (I + T 5)em 140 + a0,

By induction, it follows that

(18) 2D = Z[H (I + T Nau A%,
i=0 k=1
then
(19) 1) =2l = 1Mo + T )i A’y - azdivll,

< o M Theo (I + T D]as Al — a; Alv]la.
It follows that

120 = 2Ol < 701+ )i Alv — a; Al

(20) < T (L + €Y — Nag v,

Note € < 1, thus (1 +¢)F =1+ ke + O(¢?) &~ 1 + ke. Therefore,

0 m . i
2 — 2Ol < 3%, llicoi A%l
(21) < me ZZ:O(”OQ’AZ'U”Q)
<me o | ai | Al

Since polynomial preconditioners are commonly used in GMRES (e.g., Algo/
rithm 2.2) and other Krylov subspace solvers [10], ||v||2 is always 1. In addition,
without loss of generality, the matrix A can be scaled ! such that ||A|]z = 1. As a
result, from (21) it follows that

(22) 1249 — 2Ol <meXT e

Clearly, the bound of ||z](¢(l)) — 29|, is dependent upon:

1Scaling may change o(A) and eventually influence the coefficient of Pp,(A).
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1. m, the degree of the preconditioning polynomial. Theoretically, the higher
the degree of the preconditioning polynomial, the closer is the approximation
to A~L. However, due to the limitation of the finite precision of the computer,
the construction of a high degree polynomial may incur great accumulated
errors and yield poor convergence performance. This conclusion is supported
by the experimental results presented in Figure 1((II) and (III)), which record
the convergence 2 traces of ~GMRES-LS— and ~~GMRES-Cheby— using
several benchmark linear systems with dimensions ranging from 729 to 11948.
The degrees of the polynomial preconditioners in these figures range from 0
to 10 .

2. 3" | @ |, the sum of the absolute values of the coefficient of the precondi-
tioning polynomial. Table 3 shows that the coefficients of least-squares and
Chebyshev preconditioning polynomial increase sharply while the Neumann
series preconditioning polynomial satisfies (}_7, | @; |= m +1). The experi-
mental results presented in Figure 1(I) and Table 4 show that the convergence
of —GMRES-Neum— is not seriously influenced by m.

Z;’;o | a; | | degree of Py (A)
0 1 2 3 4
Neuman-series | 1 | 2 3 4 5
Least-squares | 1 | 9 58 | 364 | 2027
Chebyshev | 2 | 16 | 98 | 576 | 3362
TABLE 3

Yo lai| (o(A) Cl0,1])

convergent iteration count degree of P, (A)
N1 2 4 8 16 | 32 | 64 | 128
GMRES-Neum | nos7 27 | 16 | 24 | 21 7 6 3 3

plat1919 | 37 | 33 | 28 | 27 27 | 27 | 27 | 27
besstk18 | 74 | 70 | 61 | 47 34 | 27 | 20 | 27
GMRES-LS nos7 29 | 33 | 28 | 29 - - - -
plat1919 | 38 | 28 | 39 | 41 - - - -
besstk18 | 76 | 62 | 38 | 29 - - - -

GMRES-Cheby | nos7 29 | 27 | 28 | 526 | co | o0 [e's)
plat1919 | 49 | 44 | 30 | 293 | o0 | 00 | o0 | o0
besstk18 | 93 | 84 | 72 | 43 oo | oo 00
NOTE “” : The implementation is inapplicable yet;
“o0”: The solver does not converge.
TABLE 4

Convergence of GMRES-polynomial

4. Results and Conclusions. The analysis and supporting experimental
results presented in this paper show that the stability of the major operation P,,(A4)v
is determined by two parameters m and Y ;" | o; |, the degree of the precondition-
ing polynomial P,,(A) and the sum of the absolute values of the coefficients of the
polynomial, respectively. Further, it would appear to be the case that the second
parameter is the more significant of the two.

G —A _ . . .
2The convergence criterion is W < .111 % 10715 where z, is the approximate solution

at sth step. This seems a little bit stringent but that level of accuracy is required in practical
applications such as eigenvalue computations.
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Fic. 1. Convergence of GMRES-polynomial: (I)GMRES-Neum, (II)GMRES-LS, (III)GMRES-
Cheby.

Thus, the use of the Neumann series polynomial preconditioner in preference to
the Least-Squares and the Chebyshev preconditioners is to be recommended when the
degree of the polynomial used is large. This is so despite the fact that the correspond-
ing Least-squares and Chebyshev polynomial preconditioners of the same degree are
theoretically better approximations to A~! than the Neumann-series preconditioner.

Undoubtedly, a comprehensive analysis of the stability of preconditioning involves
far more than a study of the above parameters. Thus, for example, both the accuracy
of the estimation of o(A) and the plot-structure of A may influence the perturbation
of preconditioning. Issues such as these will be addressed in future work.
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