Proceedings of ALGORITMY 2000
Conference on Scientific Computing, pp. 227-235

PARALLEL WAVELET-BASED COMPRESSION
OF TWO-DIMENSIONAL DATA

MARIA LUCKA* AND TOR S@REVIKT

Abstract. In this paper we explain our strategy for parallelizing a wavelet based compression
routine. The compression routine is designed to work within a earthquake simulation model where
huge amount of data is written and read from disks. As the compression routine makes up for a
significant part of the computation it is very important that it parallelize well.

‘We have implemented the parallel version in OpenMP. This makes the implementation easy, but
it hides a fundamental problem. The optimal data layout on a distributed memory system changes
for the different parts of the algorithm. Thus either data has to be redistributed or the processors
have to do remote data access. Our experiments show that the remote data access work pretty well
on the Origin system thus for the number of CPU less or equal to 32, no significant slow down, due
to remote data access is seen.

Key words. parallel computing, data compression, wavelet transform, OpenMP

AMS subject classifications. 68P30, 65Y05

1. Introduction. Full 3-D finite difference scheme for the governing equations
of the ground motion of an earthquake is an extremely compute and memory intensive
task. In a recent paper Moczo et. al. [5] introduced a technique called Combined
Memory Optimization (CMO), which provides a solution to the data storage problem.

The technique has two main ingredients. First it applies and idea of Graves [4] on
how to keep only a limited number of 2-D planes in memory while doing the maximum
possible time steps on these data. Only when no more updates are possible the ”left”
2-D plane, is written to memory while the next plane to the "right” is read from
memory. Repeating this process we get a wave like progressing in time through the
data.

While saving memory space, this method might put severe strains on secondary
storage and I0-bandwidth. To limit these problems they mixed in a second ingredient,
data compression. Before data are sent to disk they are compressed by a wavelet based
compression routine.

While the above mentioned paper [5] concentrated on memory optimization the
present paper will focus on optimizing for computational speed of the code. Unfor-
tunately it turns out that the compression routine adds a significant overhead to the
computational cost. In the worst case we have measured as much 30% extra CPU-use
when compression is turned on. Thus while saving storage space the CMO technique
increase the need for faster arithmetic.

Our main technique for speeding up this code is parallelization. For explicit finite
difference scheme over a regular domain, parallelization is in principal straightforward,
though in practice a number of technical details need special care. These details will
not be covered in this paper, instead we concentrate on the problems related to
parallelization of the compression scheme.

The computational most expensive part of our compression scheme is the Fast
Wavelet Transform (the FWT). Parallelization of this has been studied elsewhere.

* Geophysical Institute, Slovak Academy of Sciences, Slovak Republic http://gpi.savba.sk/
t Dept. of Informatics, University of Bergen, Norway http://www.ii.uib.no/~tors

227

228 M. LUCKA AND T. SOREVIK

Mostly in the context of message passing on distributed memory parallel systems (see
(2, 3, 9] etc). In [1] Feil et.al. discuss different parallelization strategies for message
passing programming as well as shared memory programming. This paper builds
on these works and extend it by incorporating the entire compression process and
implementing it on an Origin 2000 system which has physical distributed memory,
but allows the shared memory programming model as it provides cache coherent across
the entire global memory.

This paper is organized as follows. In section 2 we describe the compression/
uncompression algorithm as it is applied in the context of FD-scheme for the ground
motion equations. We also provide some detailed timing of the separate parts of the
compression code for different problems sizes in order to pinpoint the computational
bottlenecks.

In section 3 we describe our parallelization. While we in section 4 are presenting
and discussing the results from our computational experiments. In section 5 we wrap
it all up with conclusion and directions of future work.

2. The compression algorithm. The data to be compressed are 2d arrays of
8-byte floating point numbers. The underlying idea of the compression algorithm is
to first transform the data into wavelet-space using a 2d-FWT and then storing only
the non-zero wavelet coefficients [8]. To achieve a substantial compression rate two
techniques are used.

Thresholding: What we have is approximate values to inaccurate data. Thus
all data less than a certain value should be regarded as noise and could be represented
by zero without loss of significance. The noise level does of course depend on your
problem, the granularity of your discretization and the order of this approximation.
For the earthquake model we have found that setting equal to zero all coefficients less
than 2~Umax, where Umax being the largest wavelet coefficient, does not give any
measurable difference in the overall solution for N > 14.

Quantization: Thresholding implies that we introduce an additional absolute
error less than 2~ VUmax on the smallest coefficients. If we are willing to except the
same absolute error on the reminding non-zero elements we can store only the N first
digits of the mantissa and taking the reminding ones to be zero. Thus the wavelet
coefficients can be represented by only NV bits, giving us an extra saving factor of
N/64. This is implemented by converting the floating point numbers into integer and
than in the encoding phase only storing the last N bits of the non-zero integers.

Encoding/Decoding: After the wavelet coefficients have been massaged by
thresholding and quantization they are encoded. This is done a by traversing the
array of wavelet coefficient in linear order and pack the N bits of the non-zeroes into
an integer vector. The position of a non-zero coefficient is relative to the previous non-
zero and stored in the same vector as the coefficient itself. This makes the encoding
a truly sequential process. You can’t encode coefficient number ¢ + 1 before the
value and position of coefficient number i is in place. Similarly for the decoding, you
can’t unpack i 4+ 1 before ¢ is unpacked and you know its position. To minimize the
use of space, we store the positions using only m = [log, gap]| bits, where gap is the
maximum distance between 2 non-zeroes. The programming of the encoding/decoding
process relies heavily on the bitmap manipulation functions of Fortran90.

The 2d-wavelet transform: Our wavelet routine only works for arrays m x n
where m and n are integer power of 2. This is not an inherit feature of the FWT. In
general this constrain could be relaxed to m and n being divisible by 2¥ where & is
the decomposition depth. In our implementation we therefor first chop up the array

PARALLEL DATA COMPRESSION 229

TABLE 1
Timings in sec. for the sequential compression algorithm.

256x256 384x384 512x512 T768x768 1024x1024 1536x1536 2048x2048
Compress 0.043 0.092 0.153 0.341 0.699 1.493 3.225
Wavelet (55%) (61%) (59%) (63%) (67%) (65%) (11%)
Uncompress 0.033 0.065 0.108 0.236 0.527 1.109 2.581
Wavelet (79%) (73%) (76%) (77%) (80%) (T1%) (82%)

in Nfrag blocks of (different) power of 2 sizes !
The overall compression algorithm is displayed in Figure 1.

Fic. 1. Algorithm: compression

input: UU, Nfrag, N
/* Do the wavelet transform on all blocks of UU */
for i = 1,Nfrag

wavelet2d(block no. i of UU);
endfor
Umax = maxvy(j) | UU(4,7) |;
where(| UU |< Umaz x 2=N) UU = 0 ;/* Thresholding */
UUI = UU /* quantization; */
encode (UUI);

When uncompressing the data again, we reverse this process, but now threshold-
ing and quantization is no longer needed. The inverse wavelet transform is computa-
tionally essentially the same as the forward one.

In Table 1 we show some timings of the sequential algorithm. These timings
document two important features of the algorithm
(i) It is linear in the terms of the problem size.

(ii) The computationally most expensive part is the wavelet transform which ac-
count for 60-80 % of the total time. The percentage being smallest for the
compression as the reminding work are more in this case.

The significance of (i) is that the algorithm is data intensive and consequently
efficient memory management is crucial to good performance on todays hierarchical
memory system supercomputers. (ii) shows that any successful parallelization of
this compression algorithm has to incorporate an efficiently parallelization of the 2d-
wavelet transform.

3. Parallelization. Our parallel programming model is that of Shared Memory
Programming(SMP). Under this model we assume that all data is available to all
processors. When looking for opportunities for parallelization all we have to look
for is independent operations. That is; no processor writing into the same memory
location simultaneously.

3.1. The 2d-wavelet transform. The wavelet transform possesses 2 level of
parallelization. An outer level over each piece of the array. This correspond to
straightforward parallelization of the the for-loop in the algorithm displayed in Fig 1.
Unfortunately this parallelism suffer from limited scalability and poor load balance,

1This correspond to writing m as with binary digits as m = bsbs—1...bo, b; € {0,1} since this is
equivalent to m = Z:zo b;2*. All non-zero b; then contribute to one block in the actual direction.
The total number of 2d-blocks being the product of nonzero binary digits in m and n.

230 M. LUCKA AND T. SOREVIK

F1c. 2. Algorithm: The 2d Wavelet algorithm

input: UU /* UU M x N matrix */
for j = 1,N

wavelet1d(UU(:,j)); /* Multiple Column transform */
endfor
for i = 1,M

wavelet1d(UU(i,:)); /* Multiple Row transform */
endfor

as the number of pieces, Nfrag is rather small and the pieces are of unequal size. We
have therefore chosen to seek for parallelism within the wavelet routine itself and run
the for-loop sequential. This is easy, provided we have a routine for the 1-d wavelet
transform. The 2d-FWT might than be describe as in Fig 2.

As is evident from the above description each iteration of the for-loop operates
on different data, thus there is no dependencies between the individual iteration, and
they might be executed in parallel. It is however necessary to synchronize between
the two loops, to make sure the different row transforms operates on data already
massaged by the column transform.

Moreover, if memory is physically distributed then data, perfectly distributed
for the column transforms, has the worst possible distribution for the multiple row
transforms. The datamotion enforced by the row transforms correspond in essence to
a matrix transpose. Each row is read and moved into a column vector. This could be
done explicitly, by putting in and explicit call to the transpose of UU, and than just
repeated the first for-loop. We’ve found this not to be beneficial on our system.

3.2. Thresholding, quantization and encoding/decoding. Thresholding,
quantization and encoding require 3 pass through the data. In addition an initial
pass to find the maximum of the absolute value of the wavelet coefficients is required.
To prepare for the encoding we also need to find the maximum number of consecutive
zeroes (after thresholding). This can be included in the pass for thresholding or
quantization. It does however make the pass with the zero-finding-sequence into a
very sequential operation.

There is two operations here that is not trivially parallel. It is the search for
the longest sequence of zeroes and the encoding itself. These are inherently sequen-
tial. Our parallelization strategy is therefore to split the array in Nproc equal pieces
(Nproc being the number of available processors) and run the compression routine
independently for each part. This does not alter the accuracy (or loss thereof) of the
wavelet coefficients, but it might change the compression rate as this depends on the
length of the number of consecutive zero-elements. For our test data we have found a
moderate increase in the the compression rate. This does not have any influence on
the running time.

3.3. The data access pattern. The algorithm do requires two different data
access pattern to the 2-d array which are to be compressed. The wavelet transform
splits the data into ’power-of-2’ blocks and access these blocks sequentially. The
parallelization is applied to each of these blocks, thus for parallel execution each of
these blocks is accessed columnwise by different processors. While in the encoding
phase, the entire array is treated as one unit which also is accessed column wise.

PARALLEL DATA COMPRESSION 231

0 1 2 30123 o
o 0:1:2:3

0/ 13 30123 o

Data to processor for Data to processor for
2-d wavelet Encoding

F1G. 3. The data access pattern for 4 CPUs on a 3841384 arrays. The 2-d wavelet transform
to the left and the encoding to the right

For a UMA (Uniform Memory Access) shared memory system this should (in
principal) have no effect on the computation speed. On a NUMA (Non Uniform
Memory Access) it will. Because distributing data for shortest possible access path
in one part of the algorithm inevitably force non-local access in the next part. An
example of this is displayed in Figure 3.

Our testbed is an Origin 2000 system. On this system the operating system takes
care of the data layout. It uses a "first touch” policy. In our case we have generated
the test data the same way as we access it for the encoding and consequently we
expect the data placement to be near optimal for the encoding phase.

4. Implementation and experiments. In our implementation we have used
the newly created industry standard, OpenMP, [7] [6] to implement our SMP paral-
lelization. This works by inserting compiler directives into the code in order to tell the
compiler where it safely can run multiple task concurrently. There are two different
kinds of parallel region. (i) Loops with independent iterations and (ii) Independent
code blocks. In our case we have only used loop-parallelization.

The code has been implemented in Fortran90, and all experiments have been
conducted on an Origin 2000 with 195 Mhz MIPS 10000 [10]. For the 2d-FWT we
have used a depth of 4 and a filter type/length of 12.

Running time for the sequential code is presented in section 2, so here we’ll only
present speed-up numbers. In Figure 4 we present running time for 3 different problem
sizes. The timing is splitted in compressing and uncompressing. As usual we see that
the speed-up tends to tail off as the number of processors increase, and that the
largest problem has the best speed-up. The speed-up compares very favorable with
the numbers presented in [1]. As we have had no access to their code, we can not tell
whether this is due to differences in computer system, choice of wavelet parameter or
details in algorithm or implementation.

The next two figures show details of two different problem size. For the 2048x2048
case the different parts of the algorithm shows similar speed-up, while in the 1792x1792

232 M. LUCKA AND T. SOREVIK

35

30

25F

10

0 I I I I I I
0 5 10 15 20 25 30 35

F1G. 4. Speed-up curves for 8 different problem size. For compressing dashed line is 102421024,
dotted line is 1792x1792 while dash-dot shows 2048z2048. The uncompressing is shown by circles
for 1024x1024, stars for 179221792 and pluses for 2048x2048.

case the wavelet-transform tends to hit the ceiling at a much earlier stage than the
reminding part of the code. The reason for this is that in this case the wavelet-
transform is performed on 9 blocks of the array, the largest one being 1024x1024 and
the smallest one only 256x256. Thus only for the largest one of these we can expect
speed-up similar to the 1024x1024 case. For the reminding blocks, which account for
almost 2/3 of the data, we must expect the parallel efficiency to be less. This explains
why the 1792x1792 case shows poorer overall speed-up than the smaller 1024x1024
case.

For the decoding we observe superlinear speed-up. The decoding, as well as the
encoding, needs slightly above 8M x N bytes of storage. On our system each CPU
has 4 MB of level 2 cache, thus as we increase the number of CPUs more of the data
fits into cache, and eventually all of data needed fits into cache. In our tests the
decoding comes immidiately after the endoding. As the decoding access the same
data as the encoding it benefites greatly from this order of computation as the cost
of moving data from main memory to cache is paid by the encoding routine. As this
part of the code needs no synchronization and is perfectly loadbalanced, we therefor
observe superlinear speed-up. Of course the other parts of the code also benefit from
increased total cache size as more processors are added, but this is countered by
slow-down factors as synchronization and none local memory access.

PARALLEL DATA COMPRESSION 233

40

30

251

151

10

0 I I I I I I
0 5 10 15 20 25 30 35

F1G. 5. Speed-up curves for the different parts of the 204812048 case. Lines are for the wavelet-
transforms, dashed for forward and dotted for backwards. The stars and the pluses are for the
remaining components of the compression/uncompression respectively.

In the 1792x1792 case the data is splitted into 9 different blocks of unequal sizes
for the wavelet transform. Here we do expect less speed-up when compared to the two
other cases. There is two reasons for this. As explained above the wavelet transforms
operates on smaller arrays, making the parallelism more fine grained, and as the
differences between the 1024x1024 and 2048x2048 cases shows, the larger the problem
the better the speed-up on the 2d-wavelet transform. The second problem is that in
this case we encounter the problem of differences in data access between the FWT and
the core encoding process, discussed in section 3.3. Having a cc-Numa architecture,
this could potential produce severe, slow downs at the Origin 2000. The initial data
layout does in our case confirm with the optimal layout for the encoding process, and
as the detailed timings shows the speed-up for this part is as good as for the two
other cases. The 2d-wavelet transform does, as expected, not show the same excellent
speed-up in this case, but by and large we find the Origin’s behavior on the 1792x1792
case to proof that this computer do the remote memory access quite efficiently.

5. Conclusions. In this paper we have investigated the parallelization of wavelet
based compression routines. We found it is quite easy to produce a parallel SMP-
style code using OpenMP. This program style hides the need for explicit coding of
the communication, when accessing remote data, but it does not remove remote data
access. This could potential create severe bottleneck on a distributed shared memory
system like the Origin 2000. We're happy to say this did not seem to the case for our
problem.

To achieve high performance we found sequential cache optimization also to be
of great importance. Since cache optimization gives good datalocality we found that
it also tends to increase the parallel speed-up as it reduced the need for non-local
memory access.

234 M. LUCKA AND T. SOREVIK

45

40 -

351 b

251

20

10

0 I I I I I I
0 5 10 15 20 25 30 35

F1G. 6. Speed-up curves for the different parts of the 1792x1792 case. Lines are for the wavelet-
transforms, dashed for forward and dotted for backwards. The stars and the pluses are for the
remaining components of the compression/uncompression respectively.

The most time consuming part of this algorithm, the 2d-wavelet transform, has as
discussed above, 2 levels of parallelism. This is not exploited in our implementation.
We are currently investigating ways of doing this.

We are also working on integrating the compression routine in the full earthquake
model and parallelizing this.

Acknowledgment. It is with great pleasure we acknowledge Jozef Kristek’s
contribution to this work. He wrote the first sequential version of the compression
code. He has also contributed by stimulated and clarifying discussions on how the
code works.

We are also happy to acknowledge valuable comments from an anonymous referee,
which has greatly improved the quality of this paper.

This project has been supported by a grant from the Norwegian Supercomputing
Program for computing time on the Origin 2000 and by a Collaborative research grant
from NATO.

REFERENCES

[1] Feil M., Kutil R., Uhl A., Parallel Wavelet Transform on Multiprocessors Europar 99, Lecture
notes in Computer Science 1685, Springer Verlag., 1999, 1013-1017

[2] Woo M-L., Parallel discrete wavelet transform on the Paragon MIMD machine. Proceedings of
the 7th SIAM conference on parallel processing for scientific computing, 1995, 3-8.

[3] Uhl A., Wavelet packet best basis selection on moderate parallel MIMD architecture, Parallel
Computing 22(1), 1996, 149-158.

[4] Graves R.W., Simulating seismic wave propagation in 3D elastic media using staggered - grid
finite differences. Bull. Seism. Soc. Am., 1996, (86) 1091-1106.

[5] Moczo P., Luckd M., Kristek J., Kristekovd M., 3D displacement finite differences and a combined
memory optimization. Bull. Seism. Soc. Am., 1999, 89, 69-79.

PARALLEL DATA COMPRESSION 235

[6] OpenMP: A proposed industry standard API for shared memory programming. Technical report,
http://www.openmp.org/, October 1997.

[7] OpenMP Fortran Ap-
plication Program Interface, Ver.1.0. Technical report, http://www.openm.org/, October
1997.

[8] Watson A.B., Yang G.Y., Solomon J.A., Villasenor J., Visual Thresholds for wavelet quantization
error, SPIE Proceedings, Vol.2657, Human Vision and Electronic Imaging, B.Rogowitz and
J.Allebach, Ed., The Society for Imaging Science and Technology, 1996.

[9] Nielsen O.M., Hegland M., A Scalable Parallel 2D Wavelet Transform Algorithm, TR-CS-97-21,
The Australian National University, December 1997.

[10] Technical Overview of the Origin Family,
http://www.sgi.com/Products/hardware/servers/techonolgy/

