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SIMULATION OF FREE SURFACES OF MAGNETIC LIQUIDS

GUNAR MATTHIES* AND LUTZ TOBISKA'

Abstract. The dynamic behaviour of magnetic liquids under the influence of magnetic fields can
be described by a coupled system of nonlinear partial differential equations. A numerical solution
strategy for determing the time-dependent free surfaces of magnetic liquids is proposed and applied
to determine the shape of an oscillating drop in a uniform magnetic field.
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1. Introduction. Ferrofluids (or magnetic liquids) are colloidal suspensions of
ferromagnetic particles in a nonmagnetic carrier liquid (oil, water). Due to the small
size of about 10nm the particles are magnetic monodomains and the fluids behave like
super-paramagnetic material. The interaction between the magnetizable fluid and an
external magnetic field gives rise to several interesting phenomena like new or mod-
ified instabilities, field dependent viscosities and viscoelastic effects. The possibility
to modulate the hydrodynamic parameters of the fluid with an external magnetic
field also opens the way for a variety of technical and medical applications. For more
details on ferrofluids see [14] or [2].

The main objective of this paper is to describe the underlying equations for mod-
elling magnetic liquids and to develop a numerical solution strategy for solving flow
problems with free boundaries under the influence of external magnetic fields. The
coupled system of nonlinear partial differential equations is splitted into smaller sub-
problems. Each of them has to be solved by a robust, reliable and accurate numerical
method. In particular, we apply our solution strategy to simulate the dynamic be-
haviour of a ferrofluid drop under the influence of an external magnetic field.

The paper is organized as follows. In Section 2 we recall the Maxwell and Navier-
Stokes equations specified to ferrofluids with a free surface. Then, Section 3 is devoted
to an iterative decoupling strategy for the whole problem and the derivation of fast
and accurate solvers for the corresponding subproblems. Finally, in Section 4 the
proposed solution method will be applied to the case of an oscillating drop in an
magnetic field.

2. Mathematical Modelling of Magnetic Liquids. Starting with the Maxwell
equations applied to a nonconducting fluid the magnetostatic problem is given by

(2.1) VxH=0, V-B=0

with the magnetic field strength H and the magnetic induction B. The first equation
guarantees the existence of a magnetostatic potential ¥ which satisfies H = —V .
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2 G. MATTHIES AND L. TOBISKA

The dependence of H and B is described by
(2.2) B = puo(1+ x(H)H = ug(H + M),

where M denotes the magnetization and po the permeability constant. The suscepti-
bility function x depends on the magnitude H of the magnetic field H. This function
is defined in different way inside and outside the magnetic liquid. As usual [14], inside
the of the magnetic liquid the Langevin function is used which results in

0 outside the fluid,

(2.3) X(H) = % (coth(yH) — 7%) inside the fluid,

where Mg denoted the magnetization of saturation. The parameter ~ is fixed in
such a way that yMg/3 corresponds to the slope of the susceptibility function in the
linear regime. Let us suppose that the magnetic liquid occupies the domain (%),
0 <t <T,and that Q(t) C © C R%. We further assume that for all ¢ € [0, 7]
the distance dist(0(2, §2(t)) is large compared to the diameter diam(€2(t)). A uniform
magnetic field Hy is applied on 092 which corresponds to Dirichlet boundary condi-
tions for the magnetostatic potential W.

The hydrodynamical properties of the magnetic liquid are described by the time-
dependent incompressible Navier-Stokes equations

(2.4) w+ (u-V)Yu—V-o(u,p)=f+aMVH in Q), t>0,
(2.5) V.u=0 in Q), ¢t >0,

where u, p denote the velocity and pressure, respectively, Re the Reynolds number,
a a dimensionless parameter describing the strength of influence of magnetic forces,
M =M,

2

ReD(u)z’j —-pdij, t,5=1,...,d

Oij = U(uap)z'j =

is the stress tensor and

1 (0u; Ouj .
D(u)”_§(6x1+8xz> Z,J—].,...,d

the deformation tensor. We consider the case in which the whole boundary I'(¢) of
the fluid domain is a free boundary, thus we apply the following boundary and initial
conditions:

ﬁ
Ca

) n-o(u,p)n= + %(M-n)2 on I'(¢)
) t-o(u,p)n=0 onI(¢)

) u-n=VW onl(t)
)

6
7
8
9 u(0,.) =uy in Q(0).

2.
2.
2.
2.

Here, H denotes the mean curvature, Ca the capillary number, V1 the normal velocity
of the free boundary, n and t are the unit outer normal and tangential vectors,
respectively. Note that (2.1)-(2.9) is a coupled system of nonlinear partial differential
equations with a free boundary I'(¢t), t > 0.



FREE SURFACES OF MAGNETIC LIQUIDS 3

3. Decoupling Strategies. A closer look to the structure of the system (2.1)-
(2.9) suggests the following decoupling strategy. We split the time interval [0,T]
into 0 =ty < t1 < ... <ty =T. For a given domain §(¢,) the solution of the
magnetostatic problem (2.1)-(2.2) is determined. Then, having the magnetization M
and the magnetic field H, we solve the nonstationary Navier-Stokes equations (2.4)-
(2.5) in the time interval (., t,+1) using the initial condition at t = ¢,, from a previous
calculation or (when ¢, = 0) from the initial state and the normal stress boundary
conditions (2.6) and (2.7). Now, from (2.8) we get an information how to move the
free boundary I'(¢,) = I'(tn+1). In the corresponding new domain Q(t,41) we start
again with calculating the solution of the magnetostatic problem (2.1)-(2.2). In the
following sections we will describe the efficient solution of each subproblem in detail.

3.1. Fast Solution of Magnetic Fields. The fast and robust solution of the
magnetostatic problem plays an important role in the whole simulation process since
the magnetic field has to be calculated in each time step inside and outside the mag-
netic liquid.

The standard weak formulation of (2.1)-(2.2) is given by
Find ¥ € H} () such that

(3.1) (w(|VE))VE,Vv) =0, Vv e Hy(Q),

where H)(Q) is the space of those functions v € H'(Q) which satisfy the given
boundary condition on 9.

We want to discretize the problem by using a finite element method. To this end
we take some finite element approximation spaces Vp p ~ Hp () and Vi, ~ H}(Q).
Moreover, in order to solve the nonlinear system one has to linearize the problem.
There are several techniques to do this. The first one is to use a Newton-like method.
This is analysed in [8, 9]. We choose a fixed point iteration for linearization. Alto-
gether we obtain the sequence of linear problems:

Given a current iterate \1,271 one iteration step reads as follows
Find ¥} € Vpj such that

(3.2) (n(|VEY ' )VER, Vo,) =0, Vo, € Vg,

i.e., in each iteration step a Laplace-like problem with jumping coefficient has to
be solved. As first approximation ¥) for the magnetostatic potential we take the
potential which corresponds to a homogenous magnetic field.

Since the magnetic field is a sensitive input data for the Navier-Stokes equation
we use isoparametric finite elements of second order for the approximation of the
magnetostatic potential ¥, in contrast to [8, 9].

3.2. Incompressible Navier-Stokes Equation in Fixed Domains. Here,
we describe how to get a stable discretization of the Navier-Stokes equations in a
fixed domain Q. Let 75 be a regular decomposition of {2 into shape regular triangles
or quadrilaterals. It is well-known that the finite element spaces V}, and @ used
to approximate velocity and pressure, respectively, cannot be chosen independently.
They have to fulfill the Babuska-Brezzi stability condition

(33) sup (qha V. vh)

> Bllgrllo, Van € Qn,
vhEV |vh|1
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with a positive constant § > 0 which is independent of the mesh size parameter h [7].
Note also, that due to the normal stress boundary conditions we have to work with
the bilinear form

(3.4) a(u,v) = % > /Q Dy (w)Dy; (v)da

ij=1

instead of the simpler form Re ' (Vu,Vv). This causes additional problems when
using nonconforming elements since Korn’s inequality is not automatically fulfilled
for nonconforming approximations, such that the bilinear form (3.4) could violate
the coerciveness. Indeed, the simplest nonconforming finite element pair of piecewise
linear /constant approximation satisfies the Babugka-Brezzi condition but not Korn’s
inequality [1]. Thus, we will concentrate in the following on conforming finite elements
only.

First, we consider quadrilateral finite elements. Let (-1, 1)2 be the reference
square K, and Fk the mapping from K onto an arbitrary quadrilateral K. In general,
Fk is a bilinear mapping. Let Qx(K) and Py (K) be the following sets of polynomials
on K

k
Qr(K) =< 4(#1,82) = Y aydidd o, Po(K) = pd1,d2) = Y aidid)
i,j=0 0<i+j<k

Then, we define
QrK):={g=G4oFg': e Qr(K)}, Pu(K):={p=poFx':pe P(K)}
and

Qr:={ve H'(Q) : vk € Qr(K)}, k>1,
Qo :={v € L*(Q) : vk € Qo(K)},
Plise .= {v e L*(Q) : vk € P(K)}, k>0.

We used in our computations the pairs of quadrilateral finite elements Qo/P%¢,
Q2/Q1 which fulfil (3.3). As usual, the facts that the velocity is a vector valued
function is not indicated in these notations.

Now we describe the triangular finite elements which have been implemented in
our code MooNMD. Let us denote for k£ > 1 by Py the space of continuous, piecewise
polynomials of degree k, by Py the space of piecewise constant functions. The refer-
ence triangle has the vertices (0,0), (1,0) and (0,1). In particular the computations
reported in Section 4 have been performed with the triangular finite element pair
P,/P,. For more detailed descriptions of the finite element spaces we refer to [3, 6]
and the literature cited there.

If we combine a discretization in space by using the finite element space V} and
@1, with the simple backward Euler scheme with time step 7, = t,4+1 — t,, we get the
following discretization corresponding (2.4)-(2.7):
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For given u} € Vj, find u}™ € V;, and p}*™* € Qp, such that

uZ—H —uy 2 n+1 nt+l . ntl n+1 n+1
p , Vi | + %(D(uh ),D(Vh)) +n(uh » Up ,Vh) - (ph 7v'uh )
n

2
(3.5) _ @/H Vhndy+ (£,v) + (En,va) Vi € Vi
T
(3.6) (gn, V-upt) =0 Vg € Qp.

Here, the notation uj stands for an approximation of u(t,,.), n(.,.,.) denotes the
convective term given by

n(w,u,v) := ((w-V)u,v) VYu,v,w eV,

and (f,,.) abbreviates

(£, ve) := a(MVH,vp) + % /(M ‘n)?vy -ndy
r
The backward Euler scheme is a very stable time discretization but, unfortunately,
it is only of first order and rather dissipative. A nice alternative to the backward Euler
scheme is the fractional #-scheme which we describe for simplicity on the following
model problem

u+Au=0
u(0) = ug

in a Banach space.

Let 6 =1 — ‘/TE and a,8 € (0,1) with a4+ 8 =1 and « > 1/2. We split each
time interval (t,,, t,41) into three subintervals (¢, tn19), (bnto,tnre ) and (Eniper, tni1)
where t,,9 =t, + 07, and t, 9 = t, +60'7, with §' =1 — 6.

The fractional #-scheme for the time interval (¢,,t,+1) is defined by:

+6
u™ T_ u™ 4 aAynto + ﬂAu” = 0
E n
UTH_G, — u"+9 n+6’ n+6 —
TT=20)r, + pPAu + aAu =0
+1 +0' )
u” 6; u™ + aAd u”+1 + ﬁA un+0 = 0
n

If one chooses a = (1 — 26)/6" all implicit operators on the left hand side are equal.
The fraction #-scheme is of second order, strongly A-stable and nearly non-dissipative
which makes it attractive for the considered type of problems . A theoretical analysis
of the fractional §-scheme can be found in [11].

Originally [4], the fractional -scheme has been applied to the Navier-Stokes equa-
tions as an operator splitting method to solve separately in each substep either a gen-
eralized Stokes problems or a transport problem. Since in the meantime fast multilevel
solvers have been developed the splitting approach is no longer essential. We follow
this new techniques and solve in each substep the whole Navier-Stokes equations.
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The space-time discretizations described above correspond to a nonlinear alge-
braic system of equations of the form

o (40 7Y ()= (),
0 P 92

which has to be solved in each time step. Now, u and p represent the nodal vectors
for velocity and pressure, respectively, g; and g, are the given right hand side vectors.
The formats of the matrices A(u), B depend on the dimension of the finite element
spaces V}, and Qp. A simple linearization method can be obtained by replacing A(u)
by A(u°?), where u° is a previous iterate or the initial guess from the previous time
level. Thus, it remains to solve a large coupled linear system with the same structure
in each nonlinear iteration step. This can be done efficiently by a multilevel approach
as described in [10]. The essential ingredients of this multilevel approach are Gauss-
Seidel smoother and prolongation operators defined by evaluating nodal functionals.
The latter opens the possibility to use different discretization methods on different
or even on the same level of mesh refinement. The different convergence behaviour
of multilevel methods for low and higher order discretizations gives an attractive
alternative to combine the higher discretization scheme on the finest mesh with robust
and fast multigrid methods based on low order nonconforming discretization schemes,
like the space of nonconforming, mean value oriented, rotated piecewise bilinears Q7°
defined and analysed in [13, 15]. For a detailed discussion of the design of multigrid
methods and their efficiency we refer to [10].

3.3. Arbitrary Lagrangian Eulerian Approach for Time-Dependent Do-
mains. In order to solve the coupled free boundary problem mentioned at the begin-
ning, we still have to take into consideration that the domain €2 is time-dependent.
As a consequence the nodes where the solutions are evaluated change their position
in time. Thus, we need a special treatment of this problem. One possibility is to use
the Arbitrary Lagrangian Eulerian method (ALE) which has been successfully applied,
e.g. to fluid-structure interaction problems [12]. The ALE approach is a generaliza-
tion of both the Eulerian and Lagrangian approaches and focusses neither on material
points nor on a fixed spatial region. The view point is directed at special points, say
Y € Qy at time t = 0, which will change there position with the continuum but
independently from the motion of material points. Usually, the domain Qy is called
reference domain. Note that Qy has not necessarily to be the domain 2(0). The
special case of interest for the considered class of problems is the situation where Y
represents the grid coordinates. Let ®(¢,.) : Qy — Q(t) be the bijection between the
reference domain Qy and the actual domain Q(t) at time ¢. Then, y(t) = ®(¢,Y) are
the mesh coordinates at time ¢ > 0 and y(¢) — Y the mesh displacement. The time
discretization has to be expressed with respect to the ALE coordinates. Taking into
consideration that for a scalar function A(¢,y) = A(t, ®(¢,Y))

Nl O\ L oy o

(3.8) E‘Y T otly  otly

holds we get

OA| _ O

(3.9) Bl = Btly

w-VA



FREE SURFACES OF MAGNETIC LIQUIDS 7

with the mesh velocity w. Consequently, with respect to the ALE coordinates the

substantial derivative will be

d\x 0O\

dt Ot
Applying this approach to the Navier-Stokes equation in case of the backward

Euler time discretization, we get

(3.10) +(u—w)- VA

aptt —up 1 1
(3.11) (7,vh> +/ (@t —w) - V)apt! vy, do
Qtn)  J9tn)

as the discrete version of the substantial derivative. Here, ), ! is defined by
™ (2) = uf T (@(tnt1,Y)) with z = ®(¢,,Y).

Furthermore, we have to deal with the curvature term in (3.5). Using the Laplace-
Beltrami operator Af, the tangential derivatives V f and the identity

éidr = 27—{n,

we get by integration by parts

(3.12) /2”Hn-vd'y = /(é@dr) -vdy = —/Zidr : Vvdy.
r r r

For more details on the underlying differential geometry see e.g. [5].
The identities in (3.12) allow us to derive the following relation

/D dx—/pV vdx+—/Vzdp Vvdy
Re
= [ (V-otup) vis

Q

for a sufficiently smooth, vector-valued function v, i.e., compared to standard weak
formulation for the Navier-Stokes equations with Dirichlet boundary condition we
get an additional term. This term can be treated in different ways, explicit or semi-
implicit. We will use the semi-implicit way where Vidr(y,) is replaced by V (idr,) +
Tnﬁ’,TL ). This treatment of the curvature term gives more stability since we get an
additional term to the bilinear form which is symmetric and positive semi-definite.

Once @} have been calculated we update the position of the boundary T'(¢) by

n+1

@ (o),

="+ 71,1

The new positions of the inner mesh points are obtained by elliptic regularization.

4. Numerical Testexample. We consider a drop of magnetic liquid which is
in magnetic saturation, i.e., the magnetization M inside the drop is constant. Fur-
thermore, we assume that the drop is in a zero gravity field.

Fig. 4.1 shows the considered drop of magnetic liquid between two coils which
generate the external magnetic field.

As initial domain we take an ellipse with different radii of the main axes, r, = 1.0,
ry = 1.2, the reference domain is the unit circle. Furthermore, we assume that the
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F1G. 4.1. Drop of magnetic liquid between two coils

%

Fi1a. 4.2. Grid of initial domain (left)and domain at time t = T'/2 (right)

fluid is in rest at time ¢ = 0, i.e., u(0,.) = ug = 0. Surface tension and magnetic
pressure act as driving forces which cause an onset of drop motion towards a shape
of lower energy. Due to inertia the drop will not stay in the shape which has the
minimal energy. But the drop will oscillate around its shape of minimal energy. The
length of the oscillation period will be denoted by T'.

The triangulations of the initial domain Q¢ and the domain Q at time t = T'/2
are shown in Fig. 4.2.
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F1c. 4.3. Trajectories of tips of drop as function of time, left with field, right without field

Fig. 4.3 shows the trajectories of the tips of the drop as function of time for two
cases, with and without an external magnetic field. We see that the horizontal and
vertical radii oscillate around their equilibrium values. The equilibrium shape in the
absence of a field is a circle. If a field is applied the equilibrium shape changes to an
ellipse. There is a slightly decreasing of oscillation amplitude due to damping effects.
The damping increases with a decreasing Reynolds number Re.

Fig. 4.4 illustrated the velocity inside the drop at different times during one
oscillation period. It is clearly to see that the drop is a state of rest if it reaches the
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F1g. 4.4. Flow field inside to drop at t =T/4,t=T/2,t=3/4T,t =T

turning points of oscillation.
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