Proceedings of ALGORITMY 2000
Conference on Scientific Computing, pp. 217-226

ANATOMY OF AN AUTOMATIC SOLUTION GENERATOR
FOR DIFFERENTIAL EQUATIONS

DANA PETCU*

Abstract. Designing a new automatic numeric solver for ordinary differential equations is
motivated only if it answers some critical user needs. Such needs and their solutions are discussed
in this paper. We describe also the capabilities of a prototyped problem solving environment.

Key words. Software for scientific computations, parallel methods, scientific visualization

AMS subject classifications. 65L05, 65L12, 65M20, 65Y05, 68120

1. Introduction. A vast collection of mathematical software, representing a
significant source of mathematical expertise, is available for use by scientists and
engineers in their efforts for modeling the solution of real systems. Designing a new
mathematical software is motivated only if some user requests are not fulfilled by the
actual software. In this paper we underline some of such requests (Section 2) and
we shortly describe the facilities of our prototype of a solving environment (Section
3) for initial value problems (IVPs) for ordinary differential equations (ODESs) of the
following form:

(1) y'(t) = f(t:y(1), t > to, y(to) = o, f: [to,to +T] X R" — R"

Our prototype’s attempt to simulate the reasoning of an expert in writing a pro-
gram to solve and plot the ODE solution qualifies it as an expert system. Numerical
tests demonstrate the prototype capabilities to solve large IVPs using efficiently the
parallelism across method strategy. Note that only few experimental expert systems
have been recently developed to address the needs in IVP problem area. We mention
here Plod [1], Odexpert [5] and Godess [6] (all without capabilities to solve very large
systems of ODEs with sequential, parallel or distributed methods). Solving ODEs is
also an actual issue for computer algebra systems developers [10].

2. Software requirements. Non-scientific software for small computers raises
the standard by which scientific software is judged. Users expect a similar level in
technical applications.

2.1. Human versus automated expertise. In addition to knowledge of the
software options, the user of a mathematical software must have considerable mathe-
matical expertise in order to determine the category into a problem falls. The general
problem solving tools, like Mathematica or Maple, can solve very easy a common prob-
lem, but special problems require special methods which must be written in the tool
language or must be selected from a list (the user must have some knowledge in the
field to do that).

Using automatic analysis (including symbolic where necessary) is more costly
than solving the problem directly. It may itself involve trying to solve the problem
with a possibly inappropriate code solely to provide information for the purposes of
the analysis.

*Computer Science Department, Faculty of Mathematics, Western University of Timisoara, B-dul
Vasile Parvan 4, 1900 Timisoara, Romania (petcu@info.uvr.ro).

217

218 D. PETCU

2.2. Expert systems. The purpose of an expert system is to determine the op-
timal solving method that may be applied to solve an input problem submitted by the
user. An algorithm to determine the best method must evaluate all possibilities, which
is practically impossible. The expert can only recommend a set of appropriate solving
methods, selected by their suitability for the particular problem and the particular
user, i.e. a partially ordered subset of solving methods. The ordering of this subset is
based on heuristic estimate [2] of the relative suitability of each recommended method
for the given problem. A method suitability is a quantitative measure that may be
roughly defined as the degree of compatibility between the attributes of the module
with the properties of the input problem and the desires of the user. Modules with a
higher suitability value are determined to be better suited to solve the problem.

The algorithm that drives the recommendation must proceed in three stages:
conflict detection, knowledge acquisition and suitable analysis [2]. In the first stage
incompatibilities are sought between the method and either the properties of the input
or the constraints given by the user (for example, a memory inefficient code). In the
second stage information about the problem are obtained (relevant attributes affecting
the performance of the module, but not essential in order for the module to be used;
for example a preference for an easy-to-use-code). In the third stage computational
methods and heuristic guidelines for estimating the suitability function are under
investigation.

2.3. User interface and scientific visualization. Actual computer users are
not tolerant of poorly designed interfaces, nor are they highly motivated to spend
a large amount of time learning to use software. Instead they want interfaces that
let them get started immediately, preferably without a manual. Interfaces that frus-
trate the user by demanding an extremely high threshold of knowledge can ruin the
effectiveness of the software [1].

Critical ingredients of any software for exploring solutions of IVPs are flexibility,
interaction, and graphics. These must work together and be flexible enough to allow
a user to develop his own route to a solution.

An intelligent interface for ODEs supposes that their data may be entered in a
relatively natural mathematical language. Parsers must be used particularly for error
handling. A simple parser must be used to determine whether a user-input represents
a valid number, and another to parse the differential equation model. A model parser
must also identify independent variables, dependent variables, and supplementary
variables. The values of the primed variable can be obtained re-evaluating the right
hand side of the ODE system. Separating parsing from evaluation is appropriate if
the same expression is to be evaluated at many different times.

Numerical procedures for solving (1) require the translation of the equations
and initial conditions from their familiar mathematical form to a potentially com-
plex language needed by the program. Mathematical entities, such as Jacobians, are
nonessential from the users point of view; nevertheless they must be calculated for
many implicit methods. Once the problem is solved, software is needed to display the
data in a variety of ways. General plotting software is needed for use with almost
every type of scientific problem solving software. Unfortunately, plotting is hardware
dependent.

2.4. Implementation issues. The implemented software varies significantly
in the way the trade-off among efficiency, space, accuracy and convenience of use
are handled. Developing an expert system for mathematical problems poses some
technical problems. For example, a special component must be designed, respectively

ANATOMY OF AN AUTOMATIC SOLUTION GENERATOR 219

that which allows a learning process. This component must provide at least two
facilities: do not repeat the same mistake (i.e. an unsuccessful solving route for
similar problems) and to learn about new solving methods.

Method authors usually present only few properties of the proposed method, so
that the problem solvers (human or machine) often cannot decide if a method is good
or bad for a problem solving process. Therefore an automatic solver can not be relied
only on the theoretical results concerning particular methods and must provide a
mechanism for detecting the method properties.

Solving ordinary differential equations, another problem is the impact of structure
when using implicit methods. The cost of using different structures (full or sparse)
depends on the size of the problem, on the overhead of using sparse solvers and
on machine dependent factors such as availability of sufficient memory for the model
used. The problem size makes frequently symbolic analysis (and possibly even numeric
analysis) computationally infeasible. In such cases the user is very unlikely to be able
to provide the missing information (like classifying stiffness — see below — on a graded
scale), but the software must give reasonable recommendations.

2.4.1. Problem attributes. Problem attributes are the determining factors in
recommending numerical solving methods. A particular attribute like the problem
stiffness refers to a mathematical property of problems. Other attributes correspond
more closely to user concerns as the efficiency of a numerical method for high accuracy
computations or the memory requirements of the code. These attributes are relevant
if the user has some preferences regarding time and accuracy [2].

An IVP is said to be stiff if its solution has components with widely different time
scales and the solution is dominated by the slowly varying components [3]. A measure
of this property which is often recommended is the stiffness ratio, i.e. the ratio of the
real parts of the maximum and minimum eigenvalues of the Jacobian of f in (1). The
difficulty here is that this ratio does not inform us whether the components of interest
are the slowly varying ones, nor take account of the fact that the accuracy required
of the solution will play a large part in determining the integration code. Codes for
stiff problems generally use implicit methods and so will cost more to use them on the
same integration interval. A problem may be only mildly stiff, but sufficiently so to
make stiff software competitive, yet fall bellow a stiffness threshold where one would
be certain that it is correct to classify the problem as stiff.

2.4.2. Difference methods. The volume of difference methods for ordinary di-
fferential equations is tremendous. Each method author can find some IVPs for which
his method works better than others (with different meanings: convergence ratio to
the exact solution, time spent in solving process, solution accuracy, optimal imple-
mentation etc.). This is a consequence of the fact that there are no perfect numerical
recipes for solving ODEs. The most used methods can easy lead to unexpected crashes
into the solving processes if the IVPs have particular forms (like the default solving
method from Maple, which in case of a stiff problem, cannot be applied with a rea-
sonable step-size without causing overflows). Therefore an ODE solving tool cannot
have a database of methods for solving all possible IVPs. The possibility to extend
the database must be taken into account in designing the tool. The language in which
a new method is described must be similar to the mathematical language in which
the numerical methods are described in books.

Almost all current ODE solving tools implement only general linear methods.
In order to establish a pattern for any difference method, including also nonlinear
methods (efficient methods since they can be adapted to the problem), we propose a

220 D. PETCU

modification of the least known A-method form for an iterative method:

(2) YD) — AV 4 @ (8, Y, Y (04D p)
e =Y — Z(ty, hy), n>0, YO =¥(h)

where ¥ is a starting procedure, A is a matrix independent from the problem, the
first equation of (2) is an advance formula, e(™ is a global error estimation for the
approximate solution, Z(¢,,Y) is a procedure for approximate solution validation, ®
is a problem-dependent function, h, = t,4+1 — t, is the step-size used to the current
iteration step. Unfortunately, the studies concerning the mathematical conditions in
which particular properties are fulfilled do not work with the general form (2), but
with more particular cases, and generalizations are hard to be obtained.

A software for interpreting method of (2)-type must have at least the following
components: one for describing in mathematical language any pairs (A,®) (® must
refer to f from (1)), one for advancing to the next step, one for establishing the
method starting values (if the method is a multi-step one), one for solving implicit
equations (if the method is an implicit one, i.e. when Dy (nt+1, ® # 0), and one for
approximate solution validation and error control.

A starting procedure, ¥, for multi-step methods is based on an advancing for-
mula similar with that from (2). The main difference is that it is applied once and
Dyi1n® = 0, i.e. the method must be explicit. Other restrictions are related to
some method properties like order and stability.

The selection of the implicit equation solver strongly influences the method prop-
erties. For example, using the simple iteration method combined with an implicit
method, the property of A-stability of the difference method is surely lost (see Table
2). This fact is not underlined in the literature and can raise a lot of problems for
the software user. Different implicit equation solvers must be provided in an ODE
solving tool in order to preserve the properties of the ODE solving method.

The particular class in which a given method must be included can be found using
some patterns. Our prototype analyzes the dependency graph between estimated
values (components of Y("t1)) and the preceding estimated values (components of
Y (™) in order to establish if the method is an explicit or implicit one, one-step or
multi-step one, one-derivative or multi-derivative one etc.

The most important property of a difference method is the convergence to the
exact solution if the step-size goes to zero. This supposes a method order greater
than one and method stability.

Many formulae have been developed to mathematically describe the order of a
formula (see for example [3]), but these formulae are method-class dependent. A
general tool for evaluating difference method must identify each case and apply the
known order formulae or can interpret the definition of the method order, i.e. to find
the value of p from the following equality:

3) In(hn) := Y(tns1) — 2np1 = c*BEFT + O(REF?)

where 2,1 is the component of Y ("t1) which approximates y(t,41) (using step-size
hy) when the values of Y (" are the exact solution values. For our prototype we have
select the second variant in the idea to allow any difference method to be described
and analyzed although if it does not follows any classic pattern. The second reason
for do so is that the starting procedure has a great influence on the scheme order. A
big gap between the starting procedure order and the advance formula order can lead

ANATOMY OF AN AUTOMATIC SOLUTION GENERATOR 221

to a smaller order than the theoretical reported one for the solving method (studies
in which the starting procedure has been neglected appear often).

Equation ' = Ay, A €IR can be used as problem with known solution and 1,
defined in (3) can be approximated:

(4) In(hn) = co + crhy + c2h2 + -+ + ch™, m > 15.

Our solution is to vary h,, so that a system in ¢; is formed and can be solved. Note
that ¢, =~ c¢*, the error constant.

The error control mechanism is the most difficult component to be designed since
a general error formula for any kind of difference method cannot be established. There
are some formulae for general linear methods [3] which estimate the method error at
each integration step and rules how this will be propagated. In a particular implemen-
tation, the method error is only one component of the global error. In order to control
the global error some heuristic methods have been considered in our prototype, based
especially on experiments and numerical tests.

An solving method is stable for any stable ODE if there are K, ng, hg so that:

(5) Iy -7 < Ky © — T, ¥h € (0, ho),n > no

where Y (™ is produced starting from Y(® and v starting from Y9, There are
several possibilities to describe stability: by absolute stability region, by stiff sta-
bility region, by stability function, by mathematical rules for being zero-stable, etc.
Unfortunately the mathematical rules for being stable in some particular senses are
restricted to different classes of methods and cannot be very easy generalized to any
method written in (2) form. Moreover, in implementations, the stability properties
of an implicit method are strongly influenced by the implicit equation solver. In this
case theoretical results concerning only the ODE solving method can not be of great
help for the stability of the entire solving scheme.

Our proposal is to establish the extent of the set S = {A €R|\ < 0, (5) is true
for y' = Ay}. If S # 0 we have a stable method at least for some linear problems.
By numerical tests and looking to the absolute stability regions of the most known
methods we state that the half ellipse, constructed in the negative complex half-plane
hA with 0 as origin, S as big (real) half-axis and (0,7 max S/2) as smallest (non-real)
axis, is included in the (linear) absolute stability region of the method.

2.4.3. Parallelism. The means of archiving parallelism in IVP solvers can be
classified into the following categories [4]: parallelism across the system (problem or
space), parallelism across the method, and parallelism across the steps (time). Paral-
lelism across space is the possibility of partitioning the system of ODEs by assigning
one single equation or block of them to a processor for concurrent integration. Par-
allelism across the method is the possibility of distributing the computational effort
of each single integration step among distinct processors. It has the benefit of not re-
quiring special properties of the given ODE, but it has also the disadvantage of giving
a limited speedup. Parallelism across steps is the possibility of concurrently execut-
ing the integration over a certain number of successive time steps, yielding numerical
approximations in many points of the ¢t-axis in parallel.

In this paper we are concerned with the potential for parallelism across method,
which seems to have the greatest potential for successful on a general-purpose ODE
solving environment using the distributed computing power of a small number of
processors connected into a local network. The degree of parallelism of a particular

222 D. PETCU

method can be establish from a convenient representation of the oriented graph of
dependencies between the Y("*+1) and Y components. More details about this
technique can be found in [8]. Note that the generation of code for parallel computers
involves several nontrivial operations which have no analog in code generation for
one-processor architecture.

2.4.4. Solving process. The problem solving process for a given problem and
a given method can be successfully only if the problem and method properties are
correlated. The following correlations which must be done before the solving process
will start. First the method step-size ho must be selected so that a given global error
level will be respected by the approximate solution at each integration step. Moreover
the method step-size ho must be selected so that ho);(tp) are inside the method
stability region, where \;(t9) are the eigenvalues of the matrix Jo = fy(to,y(to)). The
total solution computation time must be reasonable and, finally, ineffective method
for particular problems must be excluded. If the problem to be solved is nonlinear
or it is used a variable step-size or variable-method scheme, different re-correlations
must be take into account when the solving process runs.

3. Prototype presentation. Prototype’s name, EpODE, first presented in [7],
is an acronym for ExPert system for Ordinary Differential Equations.

3.1. Goals. One prototype’s goal is to automate many decisions associated with
computer solutions of ODE systems. It is interactive, it requires little programming
effort and it satisfies the usual requirements for an expert system: eliminates routine
decisions by inexperienced users, and incorporate knowledge in the form of program
flow and access to a high quality integration engine. We wrote also a small set of
screen plotting subroutines to be used in the visualization of the approximate solution.
Code for functions, Jacobians that are required by the appropriate numerical method
is generated automatically. EpODE solves the model equations by parsing the input
equations, classifying them, and choosing an appropriate numerical solution method
and adequate solving parameters.

EpODE has been designed the respect the following criteria: to be easy to use,
to solve large ODEs (on one-processor or multi-processor systems), to use current
numerical methods (one-step or multistep methods, explicit or implicit ones), to be
in the public domain (available at http://www.info.uvt.ro/” petcu/epode), to be a
stand-alone software (program independence), to correlate automatic detected prob-
lem properties, method properties and user options.

One of the main objectives of this system is also the creation of a uniform pro-
gramming environment in which sequential and parallel numeric ODE solvers can be
easily implemented and executed.

3.2. Components and user interface. EpODE has a built-in, easy-to-use
screen editor for creating and editing the ODE model. When parser detects a problem
a panel will be displayed explaining the nature of the problem. After the integration
the user can change initial conditions, equations, integration interval, integration pa-
rameters like iteration methods, error tolerance etc. Although far from complete, our
symbolic interface and adaptive procedures offer several advantages to scientist and
engineers. Using EpODE, equations are entered in a relatively natural language and
code for appropriate functions (and Jacobian) is automatically generated.

Figure 1 presents some parts of the tool panels and Table 1 shortly describes the
system capabilities. More details about EpODE design principles can be found in [9].

ANATOMY OF AN AUTOMATIC SOLUTION GENERATOR

4% EFODE Mew method
Session Problem Method Solve Load method

Save method

Mew session |&|7] | &=

Load session Hew problem

Save gession Load problem Add method
. Save problem Belete all ne

Dimension and vanables
Spstem of equations

Help

Bult & |==I J v Human expert
Methad wariables

Method equations

Computer gxpert

. bAualt d
Start for multistep method uliprocessor coas

Start for implicit equations

Einal valuesz

Belationships Method-Ode

Show table of values

223

Froblem .
P Method properties Save table of values
ILDtka-\-"oIterra equation iyt iftiznse] =
= ; Initial walues
Limension:

PBroblem properties

Show active orocedure F.

o

Table of values

Independent wariable: t= u= y= 3
It I
0.000000 0.825000 0.550000
- . 0.200000 1.124548 0.365781
Dependent +ariables: 0400000 1576770 0262075
i j‘ 0600000 2244829 0.209831 J
¥ LI hd
: J| [*]
E quations 5.00
2 ethod Equations of the iterative procedure:
B Ty 2 IHadau's rle of 3th order = whr 3k i
y'= ERIBCH T Expert selections Inpuit variables = fetx+F(57k-1)112)
Admitted relative enor:

— fet[xeh 37k +)/4]
Integration interval

I 0.000000
I 24.000000

Initial *alues
0.525000 =
0.550000 "

Frablem properties

I 0000010

b aximurmn computation tirme:
300

L

I;\'_|

Dutput variables Relationships final values and the new

I

¥

L

Ledl»

Recommended methods:
————————————— |ntermediate vanables

=

Ewplicit Euler rule

Starting pracedure for implicit eauatio

=
=

Runge-F.utta, 2th order —
Adamsz-B ashborth, 2 stey™
Runge-F.utta, 3th order

Adamsz-B ashforth, 3 step ¥

y=

=

fetimh 3 Tfetw)+ 3 fotlx+2% 2

fetimeh(fot{x]+3Fct{x+2h /|

-

Implicit equation solver:

7

e JNewtondacobi iterations
el Mo Solution computation requirements: Method properties

Relative errar
admitted for

ID. oooio
approx. solubion:
Initial step bound ID' 2Etsi
-stahility restiction: I‘I'-I55842
-aceuracy restricti IU- 238327
Initial stepzize: ID' 20000

I 502641182
Computation time: ID'BEBUU

E xplicit/mplicit:

[oreses
[uistage
OnederivativeMultidernivative W
Order: |3—
[z

I 0.000500

Independent subsystems:
Onestep/Multistep:

=

HeddT]

Sparge Jacobian matri: ©

Onestage/Multiztage:

Max leigenvaluel: 23175000

Min |eigenvaluel: 1450000

Stiffness ratio: Errar constant:

Boundness of stability region

Stiff elassification: . S
negative real semiauis:

Step number:

0.000000 Run-time/ane step for the

test equations:

Function ewaluation tirme:

]

F1G. 1. Images from EpODE user inteface

3.3. Numerical tests. The results of the numerical experiments presented here
refer to the functionality of the method property mechanism, the computer require-
ments when solving large IVPs and the distributed solution computations.

Table 2 presents three simple methods for which the method property mecha-
nism was applied. In the second method case, the difference between the theoretical
reported stability and the practical one is due to the used implicit equation solver.

224

D. PETCU

TABLE 1
Prototype’s components and capabilities

Component Facilities

problem parser, difference method parser, solution visualization,
Interface . Lo .

menu-driven application, on-line help
Expert problem and method properties detection, method and parameters

p selection, distributed task scheduler, efficiency measurements

model equations, integration interval, Initial values, max. computa-

Inputs tion time, solution accuracy level, options for visualization and dis-

tributed computations

Problem attribute
detector

linearity, separability, sparsity, Jacobian matrix, Jacobian eigenvalues,
stiff ratio, function evaluation time

Method attribute
detector

explicit or implicit, one or multi-step, one or multi-stage, one or multi-
derivative, order, error constant, absolute stability, parallelism degree,
time per one-step for the test equation

TABLE 2

Method properties: theoretical established or reported by EpODE

Exact Reported Exact | Reported Exact | Reported
Method Euler implicit rule Obrechkoff implicit rule Runge-Kutta stagdard
Yn+1 = Yn + Tn
hn -(k k k k
Yost = gn + 22 [flya)+ | (Br TR kst k),
= h2 kv = f(yn),
Eqs. Yntt =Yn + hn f(Yni1) +f(yn+1)] + 13- k2 = flyn + 2 k1),
[Dyf(yn) - Dyf(yrH—l)] ks = f(yn + thk-Z)’
ke = f(z + hnks)
Impl.egs. Newton iterations simple iterations -
. h2
Start.it. Yn + hnf(yn) Yn + haf(yn) + 3+ Dy f(yn) -
Order 1 1 3 3 4 4
Er.const. % 1.02(}01 % 2.(3301 ﬁ 1.%(?00
Stab.|R— | (—c0,0) (—00,0) (—o0,0) (-2,0) (—2.78,0) | (~2.78,0)
Type Implicit Implicit Implicit Implicit Explicit Explicit
Derivat. One One Multi Multi One One
Steps One One One One One One
Stages One One One One Multi Multi

By semi-discretization of one or more time-dependent nonlinear partial differential
equations (PDEs) of the following form:

(6) ur = g(z,t, uy Uy, Ugy, . ..), u(z,to) = h(x), b(zp,t, u(z,t), us(2p,t),...) =0

is obtained a particular class of nonlinear ordinary differential equation systems. In
the method of lines (MOL), ¢ is treated as a continuous variable and the partial
derivatives ug, ugq, ... are replaced with algebraic approximation evaluated at differ-
ent space-points. This procedure lead to an ODE system with independent variable
t. A lot of real time-dependent phenomena are modeled in terms of PDEs like (6).
We mention here the models of chemical reaction-diffusion processes, penetrations of
radio-labeled antibodies into tumorous tissue, turbulences etc. The movement of a

rectangular plate under the load of a car passing across can be modeled by
Ut + wug + cAAuy = f(.fL',y,t), u|aQ = 07 Au|(-)9 = 07 te [O,T], ut($7y70) = 07

_ J 200(e=5(t=2=2)° 4 ¢=5(t=2=5)*) if y = 4/9 or y = 8/9,
f(z,y,1)
0 otherwise.

ANATOMY OF AN AUTOMATIC SOLUTION GENERATOR 225

where Q = [0, 2]x[0,4/3], w = 1000, o = 100, ¢ € [0, 7]. The number of ODEs depends
on the number of space grid points, which follows the accuracy requirements in the
PDE solution. In the above described example, if we take the step size Az = Ay =1/9
we have 17 x 11 grid points and 374 stiff ODEs. As the accuracy requirement increases
the spatial grid needs to be refined and this leads to a larger ODE system. Table 3
shows the different time scales in plate problem solving process.

TABLE 3
Time and storing requests in computing u(3,z,y) on a Pentium III 450 MHz

Method Grid points At Iterations | Total time Results
Euler explicit rule 8 x5 0.00001 300000 1.431 h | 251 Mb
Euler implicit rule 8 x5 0.00050 6000 0.116 h | 5.2 Mb
Euler implicit rule 17 x 11 0.00010 30000 45.23 h | 126 Mb

Using a computer expert system for ODEs, like EpODE, we can select the correct
time-step in order to obtain the solution with the desired accuracy. The resulted ODE
system is classified as a stiff one, i.e. the Euler explicit rule will suffer from step size
restrictions due to the stability requirements.

If we want an approximate solution on a finer grid than those above used, we
must think to appeal to a more powerful computational system. A natural approach
for giving a positive answer to the need of faster ODE solvers is the use of parallel
computers or distributed systems. The following results have been obtained using a
network of 4 SUN Sparc stations connected into a virtual parallel machine.

Table 4 explains how the time is spent in one iteration step. The big gap between
the time spent by an explicit method and an implicit one is due to the implicit
equation solver. The third column indicates the time necessary to send the data
between two computers of an network (three tests at different moments of the day).
The different scales of time can explain why explicit methods are not efficient in a
distributed computation environment.

TABLE 4
Details about one integration step applying the first method from the above table

No. | Sequential | One function | One Newton Send-receive times (s)

egs. | times (s) | evaluation (s) | iteration (s) | Test 1 | Test 2 | Test 3

16 0.87 0.44%10~3 0.37x10~3 0.06 0.15 0.15
32 2.82 0.90x10~5 0.16x10~2 0.16 0.08 0.18
80 11.6 0.18x10~4 0.93x10~2 0.09 0.15 0.09

Table 5 presents the time reduction in a solution computation process when two
different parallel methods were applied. We see that the implicit method can signifi-
cantly reduce the solution computation time. More results and comments concerning
other parallel methods for IVPs are presented in [8].

4. Conclusions. We have described the design principles of a software tool for
numerical solving ordinary differential equations which recommends a set of appropri-
ate solving methods, selected by their suitability for the particular problem and the
particular user. Its distributed computing facilities using parallelism across method
can improve the time costs of the problem solving process. Large initial value prob-
lems for ordinary differential equations can be solved not only on parallel computers
but also using network of workstations.

226

D. PETCU

TABLE 5

Time per one step, speedups and efficiency results (plate model and two parallel methods)

Diagonally implicit Runge-Kutta, ~A- T Biock predictor-corrector method
stable, fourth-order, a 5-value, 3-level, 2- Yni3/2 Yni1/2 hr/7 0O
processor method: k1 = f(tn + %h,yn + (ZnJr{) = (nyn/) + 1z [(0 3)'
e Bk1), ks = f(tn + 2h,yn + 2(k1 + ko)), (fn;s/z) + (1 74) (fn+1/2)],
thod ks = f(tn + %h,yn + %hk&), {gz+1 12 3) In
ka = f(tn+ 25 b,y + (R g+ | (Yre2) = 1(D0 L) (Vi) 4
Ynt1 - n
21-;;/5_194)); Yn+l = Yn + h[9+?%/ﬁ (k1 + +EZ‘1L5 —6) (fnJrl/Z)
ko) — LEBYET (ks 4 y)] T\14 7 fn
No. Seq. Distr. Speedup Method Seq. Distr. Speedup Method
eqs. times times Ts /Ty efficiency times times Ts /Ty efficiency
Ts (s) Ta (s) Ts/wTa) | Ts(s) Ta(s) Ts/(pTa)
16 0.88 0.63 1.40 70% 0.01 0.61 0.02 0.8%
32 2.82 1.81 1.55 78% 0.02 0.63 0.03 1.7%
80 11.7 6.92 1.69 84% 0.05 0.65 0.08 4.1%
176 117 64.4 1.82 91% 0.25 0.78 0.32 16%
374 702 379 1.84 92% 0.85 1.02 0.84 42%
REFERENCES

[1] D. BARNETT, AND D. KAHANER, , Ezperiences with an ezpert system for ODEs, in Intelligent
Mathematical Software Systems, E.N. Houstis, J.R. Rice and R. Vichnevetsky, eds. North-

[2] 1. GLADWEEL, AND M. LUCKS, An automated consultation system for the selection of mathemat-
ical software, in Intelligent Mathematical Software Systems, E.N. Houstis, J.R. Rice and

[3] E. HAIRER, AND G. WANNER, Solving ordinary differential equations II. Stiff and differential-
[4] P.J. vAN HOUWEN, Parallel step-by-step methods, Applied Numerical Mathematics, 11 (1993),
[5] M.S. KAMEL, AND K.S. MA, An ezpert system to select numerical solvers for initial value ODE

[6] H. OLSSON, Object-oriented solvers for initial value problems, in Modern Software Tools for
Scientific Computing, E. Arge, A.M. Bruaset and H.P. Langtangen, eds., Birkhiduser, 1997,

. PETCU, Implementation of some multiprocessor algorithms for s using , in Recent
71 D.P Impl tats f It lgorithms for ODE ing PVM, in R
Advances in Parallel Virtual Machine and Message Passing Interface, M. Bubak, J. Dongarra

and J. Wasniewski, eds., Lectures Notes in Computer Science, Vol. 1332 Springer Verlag,

[8] D. PETCU, Solving Initial Value Problems with a Multiprocessor Code, in Parallel Computing
Technologies, V. Malyshkin, ed., Lectures Notes in Computer Science, Vol. 1662, Springer,

[9] D. PETCcU, AND M. DRAGAN, Designing an ODE solving environment, in Advances in Software
Tools for Scientific Computing, H.P. Langtangen, A.M. Bruaset and E. Quak, eds., Lecture

[10] L.F. SHAMPINE, AND M.W. REICHELT, The Matlab ODE Suite, SIAM Journal on Scientific

Holland, Amsterdam, 1990, pp. 5-13.

R. Vichnevetsky, eds., North-Holland, Amsterdam, 1990, pp. 179-186.

algebraic problems, Springer, Berlin, 1991.

pp. 69-81.

systems, ACM Transactions on Mathematical Software, Vol. 19, No. 1 (1993), pp. 44-61.

pp. 270-301.

Berlin, 1997, pp. 375-383.

Berlin, 1999, pp. 452-466.

Notes in Computational Science and Engineering, Vol. 10, Springer, 2000, pp. 319-338.

Computing, Vol. 18, No. 1 (1997), pp. 1-22.

