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SOLUTION OF AUGMENTED SYSTEMS FROM A MIXED-HYBRID
FINITE ELEMENT DISCRETIZATION OF THE POTENTIAL FLUID
FLOW PROBLEM: ASYMPTOTIC RATES OF CONVERGENCE

J. MARYSKA, M. ROZLOZNfK * AND M. TUMAT

Abstract. In the paper we consider several approaches for solving linear systems from a mixed-
hybrid finite element discretization of the Darcy’s law and the continuity equation describing the
potential fluid flow in porous media. Spectral properties of resulting symmetric but indefinite systems
in terms of a mesh size parameter are discussed and the asymptotic rate of convergence of iterative
solvers applied either to whole indefinite system, to successive Schur complement systems or to
systems projected onto certain null-spaces is estimated.
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1. Introduction. The potential fluid flow problem is one of the most important
and most frequently solved problems in such applications as underground water flow
modelling and hydraulics, oil reservoir engineering or modelling the environmental
impacts of pollution [13], [16]. The fluid flow in porous medium is usually described
by the Darcy’s law which gives a relation between the potential head (pressure) and the
fluid velocity which must also satisfy the continuity equation representing the mass
conservation law in the domain. Mixed-hybrid finite element discretization seems
to be very efficient and popular approximation technique for this type of problems,
especially when an accurate approximation of the fluid velocity is required [2]. The
lowest order Raviart-Thomas approximation on general prismatic elements [5] [6] with
five faces leads to a system of linear equations for components of the velocity vector
u, for components of the pressure vector p and for Lagrange multipliers A in the form

A B (C1 (Cy) (] a1
(1) BT Pl=1a
(C1 Cy)T A q3

Here the square matrix block A is a discrete form of Darcy’s law tensor; the matrix
block BT enforces the continuity equation on every element; the block C{ ensures the
continuity of the velocity vector across the interior inter-element faces and C stands
for the fullfilment of Neumann boundary conditions. For details we refer to [6] or [5].
The matrix block A is element-wise block-diagonal and symmetric positive definite.
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It was shown in [6], [7] that its eigenvalues are in the interval

C1 C2

Ea E])

where h is a discretization parameter (mesh size) and where ¢; and ¢y are positive
constants independent of the discretization and of the parameters of resulting linear
systems (like its dimension). However, they do depend on the properties and nu-
merical values of Darcy’s tensor and on the geometry of a considered domain. The
condition number k(A) = c2/c; is therefore not dependent on h. The block B is a
face-element incidence matrix (with weights equal -1), the block C; is an interior face
incidence matrix (with weights 1 and -1 in each column) and C> is a boundary con-
dition incidence matrix. The matrix blocks B and C' = (C; C5) are thus, up to some
normalization coefficients, orthogonal matrices with BTB = 5x I, CTC; = 2% I and
CT(Cy = I. Nevertheless, the whole off-diagonal block (B C) in the system (1) is no
longer orthogonal and its condition number depends on the discretization parameter
h. It was shown in [7] that assuming at least one Dirichlet condition imposed on a
boundary the singular values of (B C) satisfy the conditions

(2) o(A) C [

(3) sv(B C) C [esh,cal;

where again ¢3 and ¢4 = v/10 are positive constants independent of the system pa-
rameters and dependent on physical and geometrical properties of a given domain.
Using the result of Rusten and Winther [11] the eigenvalues of the whole indefinite
matrix in the system (1) can be related to the eigenvalues of the block A and to the
singular values of the block (B C).

LEMMA 1.1. Let 0 < pmin < ... < lmaz be the eigenvalues of the symmetric
positive definite matrixz block A, omaz > - - > Omin > 0 be the singular values of the
matriz block (B C). Then for the spectrum of the whole indefinite matrix

@ r=(wor )

it follows

1 1
U(A) C [i(umln - M121un + 4Uznaz)7 i(ﬂmaz - l”’gnaz + 4072711n)]
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Thus the inclusion set for the eigenvalues of the system matrix A in (1) has the form

C1 C2

(5) ot 2 H Ul 7

C1
We note here that since h — 0 in (5) we have omitted higher order terms. We will
use the same approach throughout the paper.

For practically feasible discretization parameters h in our application [7] more
realistic conditions are represented by ¢;/h < ¢4, ca/h < ¢4 and ¢y /h > c3h. Then
for the eigenvalues of the symmetric indefinite matrix in (1) (provided that above
stated conditions are valid for fairly small values of discretization parameter h) we
have

2
P B Y e d
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In our paper we will consider two diagonal scalings of the matrix in the system (1).
The first scaling in the form

(7 ) (b PN )

(7) - (h1/28§40)T W/2(B 0)> _ ((B% . (B C))

leads to the symmetric positive block A independent of h with o(A) € [c1, ¢2] and for
the off-diagonal block (B C) it follows sv(B C) C [¢3h®/?,¢4h'/?]. Using Lemma 1.1
the eigenvalues of the scaled symmetric indefinite matrix (7) are in the inclusion set

c2 c2
(8) [__4}7'7 __3h3] U [Cla CQ]'
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The second diagonal scaling

(" een) (o CO) (T )
©) (o ") (wer 7).

leads to the diagonal block A, while the off-diagonal block (B C) remains untouched.
The eigenvalues of the scaled matrix (9) are then in the set

1 c2 1 A
(10) [E(CI —1/c2 +4c2), —éhQ] Uler, 5(02 +1/c3 +4c3).].

From the form of inclusion sets (5) - (10) it is clear that the conditioning of the
resulting symmetric indefinite matrix in (1) may depend heavily on the scaling used
before actual solution of the system. Indeed, we can see from (5) that in the unscaled
case the condition number of the matrix A is of order O(h~*), the same is true for the
more realistic but still unscaled case of inclusion set (6), while for the first diagonal
scaling we see from (8) that the condition number of the matrix in (7) depends on h
as O(h™3). Finally, in the case of diagonal preconditioning (9) we obtain dependence
of order O(h™2).

In the case of large systems it is rather obvious that some iterative method must be
applied at certain step of a solution process (either to the whole system, to some Schur
complement system or to a system projected onto a null-space corresponding to some
off-diagonal block). Since the rate of convergence of iterative solvers depends heavily
on the eigenvalue distribution of a system matrix [3], it is very important to have a
good scaling which would guarantee a reasonable asymptotic rate of convergence. In
practical situations, it would be desirable to obtain the asymptotic rate of convergence
which is not dependent on the discretization parameter h. In subsequent sections we
will show that for our application the asymptotic rate of convergence of conjugate
gradient-type methods depends at least linearly on h (with a reasonable scaling) for
all approaches considered in this paper.

2. Minimal residual method applied to the whole system. The system
of linear algebraic equations (1) can be solved by several approaches. It is straight-
forward to apply an efficient iterative solver directly to the system resulting from the
discretization without any preprocessing or problem reduction technique. The system



SOLUTION OF AUGMENTED SYSTEMS FROM A MIXED-HYBRID ... 103

matrix in (1) is symmetric but due to the zero diagonal block necessarily indefinite.
Since for such systems the classical conjugate gradient (CG) method cannot be used
in its original form [4] the related minimal residual (MINRES) method [10] must be
applied. It is well known fact that the rate of convergence of MINRES depends on the
eigenvalue distribution of a system matrix [3]. In particular, its relative residual norm
can be estimated via the best minimal polynomial approximation on the spectrum
[3]. This discrete approximation problem is then relaxed to the polynomial approxi-
mation on a continuous inclusion set, which consists of two disjoint intervals, one in
the positive and one in the negative part of real axis (see [3] or [14]). If we denote by
Tn, n = 0,1,... the residual vectors generated by the MINRES method applied to (1)
its asymptotic rate of convergence can be satisfactorily described by the asymptotic
convergence factor

lral\ ™
(11) lim
n—too \ [[ro]

which can be bounded further by a solution of the following approximation problem

1/n
(12) im (1) o i [min max POV,
n—+oo ||’r‘0|| n—+oo P€Il,, AEG

where G is an inclusion set for the spectrum of the original system matrix (1) and
II,, is a set of polynomials of degree at most n with P(0) = 1. For details of this
analysis we refer to papers [15], [14] or [7]. Using the approach of Wathen, Fischer
and Silvester it was shown in [7] that if we assume our original problem (1) with the
inclusion set in the form

C1 C2

2 2
(13) G(h) = [=2th, =RV [ 3,

then estimating the optimal polynomial from (12) we get a bound for the asymptotic
convergence factor in the form

(14) lim (”T"”) " <1l- C5h2,

n—+oo \ |rol|

where c5 is a constant dependent on the coefficients ¢y, ¢, ¢3 and ¢4 and independent
of the mesh size parameter h. Considering the more realistic conditions (6) with the
inclusion set

3,3y, CL
(15) G(h) = [—ea, == R ]U [, cd],
Co h
we get the bound for the asymptotic convergence factor in the form

(16) lim (”“”) " <1 cgh.
n—+oo \ ||rol|

The first diagonal scaling of indefinite system (7) with the inclusion set

0421 c§ 3
(17) G(h) = [—aha —ah JU [e1, e2].
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leads to the bound for the asymptotic convergence factor in the form

1
(18) lim (”“‘”) <1 —crh?/?
n—+oo \ ||rol|

while the second diagonal scaling (9) with the inclusion set

(19) G(h) = [%(cl —\/& +4c}), —%hQ] U e, %(02 +1/c3 +4c3)]

gives the bound for the asymptotic convergence factor in the form

(20) lim (”“”) " <1-ch.

n—r+oo \ [|roll

The constants c¢g, ¢; and cg are positive and depend only on the coefficients ¢y, ¢s,
c3 and ¢4. Again, in all our bounds we have omitted higher order terms with the
parameter h. The bound (14) indicates that the asymptotic rate of convergence
of MINRES can be very slow for the original problem without scaling and it may
depend quadratically on the discretization parameter h. It is also clear from (18) and
(20) that the convergence of the method can be improved significantly by a diagonal
preconditioning of the system (1). Then the asymptotic convergence factor depends
at most linearly on h. This is the case also for realistic problems in our application
with the inclusion set (15). The detailed analysis of the asymptotic convergence factor
in MINRES applied to several types of inclusion sets in various application fields can
be found in [14] and [15].

3. Iterative solution of Schur complement systems. Since the matrix blo-
cks in the system (1) are rather sparse the approach based on a partial elimination
of certain unknowns may be a very efficient alternative. The elimination of some
matrix blocks can be followed by iterative solution of resulting Schur complement
systems. In particular, for our system (1) a successive reduction to three symmetric
and positive definite Schur complement systems is considered and iterative conjugate
residual (CR) method is applied [12]. The first and second Schur complement matrices
are formed by elimination of the velocity and pressure unknowns, respectively. It was
shown in [8] that they remain reasonably sparse and they can be easily assembled.
This approach is known as a process of static condensation (see e.g. [2]). In addition,
the third Schur complement system can be obtained without an additional fill-in
by elimination of a part of Lagrange multipliers. The rate of convergence of CR
applied to the symmetric positive definite Schur complement systems depends on the
eigenvalue distribution of corresponding Schur complement matrices [3]. From the
spectral analysis in [8] it follows that due to particular block structure of the system
(1) the spectral properties of successive Schur complement matrices do not deteriorate
and their condition numbers can be bounded in terms of extremal eigenvalues of A
and of extremal singular values of (B C). In the following we denote by A/A the
(first) Schur complement matrix obtained after elimination of the velocity unknowns
u, the second Schur complement after elimination of the unknowns p will be denoted
by (—A/A)/A11 and ((—A/A)/A11)/ B2 will stand for the third Schur complement
system which corresponds also to elimination of unknowns related to the block Cs.
We can give the following proposition.

LEMMA 3.1. Let 0 < pmin < ... < lmaz be the eigenvalues of the symmetric
positive definite matrix block A, let Omar > ... > Omin > 0 be the singular values of
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the matriz (B C). Then for the eigenvalues of the Schur complement matriz —AJA =
(B C)TA=Y(B C) it follows

UZ 0.2

(21) o(—-A/4) C [, —maz],

Hmaz HMmin
Moreover, for the condition numbers of Schur complement matrices (—A/A)/A11 and
((=A/A)/A11)/B22 we have
(22) R(((=A/A)/A11)/Baz) < K((=A/A) /A1) < K(~A/A).

Considering the previous lemma (for its proof and other details see [8]) the inclusion
set for the spectrum of the matrix —A/A in the case of the original system (1) is

2 .2
(23) o(=AJA) C [2h3 2h).
C2 C1
The first diagonal scaling (7) leads to the same inclusion set, while in the case of the
diagonal scaling (9) we have for its spectrum
3 ,
(24) o(~A/4) C [212, 4,
C2 C1

The bound for its condition number is, however, for all three cases (the unscaled
system and two scaled systems) of order O(h~2) and it has the form

(25) K(—A/A) < e
= Ao h?’

All three resulting Schur complement matrices —A/A, (—A/A)/A;; and
((—A/A)/A11)/Bas are symmetric positive definite and the conjugate gradient method
[4] or the conjugate residual method [12] can be applied. For the CR method applied
to the first Schur complement system it follows from [3] that relative residual norm
satisfies the bound

(26)

Irall o (L= 1/V/ACAID "
lIroll = "\ 1+ 1//6(-AJA) ) ~

Using the second statement of Lemma 3.1 the same bound can be given also for CR
applied to the second and third Schur complement systems. Consequently, taking into
account the bound (25) it follows for the relative residual norm of the CR method

n

1-¢ Ja
[l ca '\ ez

lIroll =\ 1+ @ fap

The asymptotic convergence factor of CR, can be thus bounded as follows

(27)

1
(28) lim (”r"”) <1-coh,
n—+oo \ ||rol|

where ¢g is a positive constant depending only on the constants c¢i, ca, c3 and c4. For
the Schur complement approach we have obtained again the bounds which depend
linearly on the discretization parameter h. We note here that while for the MINRES
method applied to the whole system the asymptotic rate of convergence depends
significantly on the scaling of the system (1), for the Schur complement approach we
obtain the same asymptotic bounds for the unscaled case and both diagonal scalings.
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4. Tterative solution of systems projected onto a null space. Another
possible approach is to construct a null-space basis of a certain off-diagonal block in
the system matrix (1) first and then to solve a system projected onto this null-space
using an iterative solver. First, assuming we have a null-space basis Z of the whole off-
diagonal block (B C)7T satisfying (B C)T Z = 0 and a solution of the underdetermined
system (B C)Tu; = (¢€¢F)T, then the unknown velocity vector u can be written as
u = uy + Zus, where u, is a solution of the projected system Z7 AZuy = Z7 (q1 — Auy).
The projected system with matrix Z7 AZ is symmetric positive definite and so the CR
or CG method can be applied. Their rate of convergence depends on the eigenvalue
distribution of the projected matrix ZTAZ [3].

LEMMA 4.1. Let 0 < pmin < ... < lmaz be the eigenvalues of the symmetric
positive definite matriz block A, Omaz > -.- > Omin > 0 the singular values of the
matriz Z such that (B C)TZ = 0. Then for the eigenvalues of the projected matriz
ZTAZ it follows

(29) U(ZTAZ) C [Ugm'mumin: U?naxl‘maw]-

There exist several approaches how to compute a null-space basis Z. One of them
is based on construction of cycles in a certain graph associated with our particular
off-diagonal block (B C)T. In [1] the fundamental null-space basis using a spanning
tree of this graph was constructed. It was also shown that singular values of the
matrix Z satisfy

€10
(30) su(2) € [1,%%)
where cj9 is a positive constant independent of h. Using the statement of Lemma

4.1 and (30) the spectrum of the projected matrix Z7 AZ (for the original unscaled
problem) is a subset of the interval

o ady,

h’ A5

Similarly, since we have o(A) C [c1,¢2] the scalings (7) and (9) lead to the inclusion
set in the form

(31) o(ZVAZ) C

263,

ht I

It is clear from (31) and (32) that the ultimate bound for the condition number of
the projected matrices ZTAZ and ZT AZ is of order O(h~*) and it has a form

(32) 0(ZTAZ) C [ey,

2
C2Cqg
C1 h4

The relative residual norm of the CR method applied to the projected system can be
bounded (see [3]) by

(34) Irall o (1=1/v/w(Z74Z)\"
lIroll = " \14+1/\/s(ZTAZ) )

Considering our bound (32) we have

(33) k(ZTAZ) <

1— L [fap?
(35) ||’f’n|| S 9 10 2 ’
roll ="\ 14 L Jeape

c10
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which leads to the asymptotic convergence factor

1
(36) lim (”Tnll) " <1 ekl
n=Foo \ |[|rol|

The positive constant ¢1; depends only on the constants ¢;, ce and ¢jp9. Note that
due to the potential ill-conditioning of the fundamental cycle null-space basis Z, the
bound (36) depends quadratically on the discretization parameter h. Indeed, it is
clear that the conditioning of the matrix Z depends on the conditioning of the matrix
block (B C)* which, due to (3), depends linearly on h.

The off-diagonal matrix block C' in (1) is, however, orthogonal up to normal-
ization constants. We can thus easily construct a null-space of the matrix CT only,
and consider a different variant of null-space method. Due to a special structure of
nonzeros in the matrix block C' the basis matrix Z can be given explicitly and it will
remain very sparse. The velocity unknown w can be then written as u = u; + Zua,
where u; is a solution of the underdetermined system CTu; = g3 and the vectors us
and p are obtained from an associated projected system

o () () ()

with a symmetric indefinite matrix which can be written as follows

o () ) )-(5 )

Note that in order to avoid the direct dependence on h also in the positive definite
block A the second diagonal scaling (9) is considered here. For details we refer to
paper [1]. Moreover, the matrix Z is due to its construction an orthogonal matrix
and the projected matrix (38) is therefore an orthogonal transformation of the first
two by two leading block submatrix in the system (1). It was shown in [1] that there
exist positive constants c;» and ci3 such that for the singular values of the matrix
block ZT B it follows

(39) sv(ZT B) C [c12h, c13).

Using the fact 0(A) C [c1,¢2], the relation (39) and the statement of Lemma 1.1 we
can for the spectrum of the projected matrix (38) write

1 c? 1 .
(40) [5(01 — /i +4cts, —fjfﬁ] U [er, 5(02 +4/c3 +4cfy)]-

We have obtained the result which is completely analogous to the case of the inclusion
set (19). If we apply now the MINRES method to the projected symmetric indefinite
system (37), the bound for its asymptotic convergence factor will be be analogous to
(20) and it will be in the form

(41) lim (”T””) " <1-cuh,

n=eo \ [|roll

where the positive constant c14 depends only on the constants ci, ca, c12 and ci3.
Indeed, if the diagonal scaling (9) together with this variant of the null-space method
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is considered, the asymptotic rate of convergence of the MINRES method depends at
most linearly on the parameter h. For details we refer to [1]. The case of unscaled
problem, the problem with more realistic conditions and the problem with the first
scaling (7) can be examined using the same approach as done in Section 2 and results
analogous to (14), (16) and (18) can be derived.

5. Conclusions. We have considered several approaches for solving the symmet-
ric indefinite systems (1) that arise from mixed-hybrid finite element discretization
of the potential fluid problem. We analyzed the fully iterative approach using the
indefinite MINRES solver, the approach based on the successive Schur complement
reductions with subsequent iterative solution and the null-space (dual variable) ap-
proach based on iterative solution of the system projected onto a certain null-space.
We presented an analysis of convergence of the iterative solvers used in the algo-
rithms and gave bounds for their asymptotic convergence factor. We have analyzed
this quantity in terms of the discretization parameter h. We have shown that scaling
of the system may affect the asymptotic rate of convergence in the case of iterative
solution of the whole indefinite system, while for the Schur complement approach we
obtained the same bounds for all scalings considered in this paper. The diagonal
scaling (9) leads in all approaches to bounds with linear dependence on h.

Although the best asymptotic convergence factor of approaches considered in the
paper is the same, one must take into account total algorithmic cost when attempt-
ing to compare their computational efficiency. This includes not only the cost of
the iterative part but also the initial overheads of the Schur complement reduction,
computation of a null space-basis and of the back-substitution processes and other
transformations. Thorough computational experiments and comparison of results are
out of the scope of this paper and they will be published elsewhere.
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