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A MONOTONE LINEAR APPROXIMATION OF A NONLINEAR
ELLIPTIC PROBLEM WITH A NON-STANDARD BOUNDARY
CONDITION*

MARIAN SLODICKAT

Abstract. We consider a 2nd order nonlinear elliptic boundary value problem (BVP) in a
bounded domain @ C RY, with nonlocal boundary condition. More precisely, at some boundary
part I'p,, we impose a Dirichlet BC containing an unknown additive constant, accompanied of a
nonlocal (integral) Neumann side condition. The rest of the boundary is equipped with Dirichlet or
nonlinear Robin type BC. The problem is solved in the variational framework by linearization. The
solution of the linearized problem converges to the exact weak solution in the H!()-norm.
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1. Introduction. Nonstandard boundary conditions (BCs) reflect sometimes
the reality better than the standard ones do. To explain this, we start with a sim-
ple example. Consider the movement of gas through a porous medium. Boundary
conditions reflect the behavior of a solution u (the squarred pressure) or the flux ¢
at the boundary. Gerke at. al. [2, §4.1] considered a nonlocal BC, where a Dirichlet
BC contains an unknown additive real constant and is accompanied of an integral
Neumann side condition describing the total flux through the boundary, i.e.,

u = ¢ € R (unknown) on T, / q-v =s (given).
r

This means, that the gas pressure along I' is supposed to be constant but unknown,
whereas the discharge (total flux through T') is prescribed. Let us note, that the
normal component of the flux cannot be measured point-wise.

Clearly, such a type of BC can be involved in various kinds of problem settings.
Slodicka and De Schepper [5] studied the following nonlinear elliptic BVP

—Au+g(u) =f in Q
B U = gDir on Ip
(1.1) Find uw € C*(Q) : uw =gn+const on T,

G(u)E/ —Vu-v =s€eR
Tn

in a bounded domain Q C RV, N > 2, with sufficiently smooth boundary consisting
of two complementary parts I'p and T',,, such that Tp NT,, = (). A typical example
of such € is a domain with a hole in it. The function g € C*(R) is supposed to be
monotonically increasing, Lipschitz continuous and its graph should vary within two
parallel increasing lines.
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The authors have shown the existence and uniqueness of a solution. The proofs
are based on the continuous dependence of the total flux function G(u,) on the real
parameter a, where u, solves the following auxiliary nonlinear BVP

. —Auq +9(ua) =f in
(1.2) Find u, € C*(Q) : Ua = gDir on Tp
Uy =¢gn+a on I,

The proof relies on the comparison principle — see Gilbarg-Trudinger [3, Theorem 9.2],
therefore the authors have dealt with classical solutions. The continuous dependence
of G(ug) on a implies, that the solution of (1.1) can be obtained in an iterative way
by solving a sequence of nonlinear problems of the type (1.2).

Slodi¢ka and Van Keer [6] extended the problem setting (1.1) by a linear Robin
type BC. Moreover, the authors have used the variational framework in the proofs,
so they have weakened the assumptions on the data, e.g, on the nonlinear function
g. More exactly, the assumption of the continuity of the first derivative of g has been
removed.

The purpose of this paper is to involve two new aspects into the problem setting
(1.1)

e by adding a linear convection term @,y

e by considering a nonlinear Robin type BC.
We find a solution of this more general nonlinear problem using a special linearization
method, cf. in [6]. Here, we start from a super- or sub-solution and in an iterative
way we approach the weak solution of the nonlinear BVP. The proof of convergence is
based on the monotonicity of the approximations. The approximate solution converges
in the H!(Q)-norm to the exact one.

In the last section we present a numerical experiment in order to show the effi-
ciency of the proposed linearization method.

2. Assumptions and variational formulation. In this paper we study a non-
linear BVP in divergence form

V- (_Adifvu - aconu) + g(u) = f in Q
U = gDir on T'p
(2 1) (_Adifvu - aconu) V= gRob(u) = gNeu on Iy
' u =gn,+const on T,

Gu) = / (—AgifVu —aconu) - v =s€eR
r

n

in a bounded domain @ C RY, N > 2. The total boundary T is supposed to be
Lipschitz continuous and it is splited into three parts I'p, I'y and I';,, corresponding
to a Dirichlet, Neumann and nonlocal part, respectively. Throughout the whole paper
we assume

(2.2) Tp| >0, T,NTp=40, ITn| > 0.

The last inequality means that we are dealing with a nonlocal BC on T';,, otherwise
the problem is standard. The matrix Ag;y fulfills the inequality

(2.3) Co [wl} o < (AuifVw, Vw)g < Clult g,  VYw e HY(Q)
for some positive constants Co and C. Here, (w, 2),, stands for the usual Ls-inner

product of any real or vector-valued functions w, z on a set M, i.e., (w,2),, = / wz.
M
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The fact that [Tp| > 0 implies that the seminorm |-|, o represents a norm in H'(Q)
equivalent to the usual norm ||-[|; o.
We assume the following relations for the convection term @,

lacon| < C a.e. in Q
(2.4) Qeon -V > 0 a.e.on 'y UT,
V-acon = 0 a.e. in Q.

The functions g and gg,, are globally Lipschitz continuous and obey the following
growth conditions

lg(z) —g(y)| < Llz—yl, Vz,y € R,
l9Rob (%) — grab(y)| < Llz —1yl, Vz,y € R,
%Ikl,ql eER, : kis—q < g(s) < kis+ q1, Vs € R,
Jk2,q2 € Ry : kas —q2 < gro(s) < kas + qa, Vs € R
The boundary data f, gnew,9pir and g, fulfill the assumptions
(2.6) f€LQ),  gnew € L2 (T'n)
and there exists a function § € H*(f) such that
~ gn on Fn
2.7 =
@.7) { gpir on  Ip.

When dealing with such a general setting as (2.1), then one cannot expect that the
solution (if exists) will be classical. The lack of regularity can be caused by properties
of the data entering (2.1), even in the case when T',, = (). Therefore, we pass to a
variational framework. We give a reasonable definition of a weak solution in H1(f2).
Moreover, we obtain this solution by a suitable linearization, i.e., we define a sequence
of linear elliptic BVP which gives rise to a weak solution of (2.1).

Let us introduce the following subspace V of H!(Q)

(2.8) V={pe H(Q); ¢ =00nTp, ¢ = const on T},

which is clearly a Hilbert space with the induced innerproduct and norm of H!(f).
Now, we define the bilinear form a : H'(Q) x H(2) — R by

a(u, ) = (Adif Vu + acont, Vo) Yu,p € H' ()
and the linear functional F': V — R by

(2.9) (Fyp) = (f,0)q — (9New, ¥)py, —s¥Ir. Vo V.

The following simple inequality together with (2.6) yield the continuity of the func-
tional F'

S
(2.10) |01, | = _||r|| /F lel < Cllellor, < Clligllq-
n n

The appropriate variational formulation of (2.1) reads as:
Find u € H}(Q) such that u — g € V and

(2.11) a(u, ) + (9(u), ©)q + (grov(w), @), = (Fyp) VYo eV.
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3. Linearization. Now, we are going to prove the existence of a weak solution to
the BVP (2.11). To do this we use a linearization of the nonlinear problem exploiting
ordering properties for the solutions. We define recurrent sequences starting from a
sub-solution and a super-solution, respectively. In fact there will exist a solution to
the BVP (2.11) lying between the sub- and super-solution.

We denote by vy the weak solution of the following linear BVP:

Find vo € H*(Q2) such that vy — § € V and

(8o, @) + (k1vo, ) g + (k2vo, P)r, = (Fy9) — (q1,9)q — (82, P)ry Vo eV.

Further, v; for j =1,2,... are defined recursively as:
Find v; € H'(2) such that v; — § € V and

a(vja(p) + (ij7(p)g + (ij7(p)1“N = <F7 90) + (L’Ujflaso)g - (g('Ujfl);(P)Q
+ (ijf1;90)rN - (gRob('Ujfl);SD)rN VoeV.
(3.2)
We recall that the sequence {v;}52, is defined by means of linear BVPs. Our first
step is to prove the existence of this sequence.

LEMMA 3.1. Let the assumptions (2.2)-(2.7) be satisfied. Then the sequence
{v;}520 C HY(Q) is well defined.

Proof. Let w be any function from V. The relation (2.4) together with the
Friedrich’s inequality and Green’s theorem imply

1

Clwlig > (aconwavw)g = 5 (acon,VUJZ)Q
1 1
(33) = _5 (V *Qeon, W )Q + 5 (aconu,wQ)F
1
= 3 (aconua w )FNUFn
> 0
Hence, in view of (2.3) we have
(3.4) C lw|f g > a(w,w) > Co |w[{ g Yw € V.

Therefore the left-hand sides of (3.1) and (3.2) are V-elliptic continuous bilinear forms.
According to (2.6) and (2.10), the right-hand side of (3.1) is a bounded linear func-
tional on V. Thus, there exists a unique solution vy € H* () of (3.1). If v;_; belongs
to H'(€), then the right-hand side of (3.2) is also a bounded linear functional on V.
Hence, there exists a unique v; € H'(Q) satisfying (3.2). d

We intend to let j — oo in (3.2). As usual for this purpose we need some uniform
estimates for v;. First, we prove the monotonicity of the sequence {v;}22,.

LEMMA 3.2. Let the assumptions of Lemma 3.1 be fulfilled. Then v;—1(z) < v;i(x)
foralli=1,2,... a.e. in Q and a.e. on .

Proof. We use mathematical induction with respect to ¢. Let ¢ = 1. We subtract
(3.2) for j =1 from (3.1) and get

a(vo —v1,9) + (L(vo —v1),9)q + (L(vo —v1),9)p, = (9(vo) — k1vo — q1,9)q
+ (9rob(v0) — k2vo — @2, )p , -

Now, we choose ¢ = (vg — v1)T € V, where f* stands for the usual cut-off function

f+(8)={ f(s) if f(s) >0

0 elsewhere.
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Invoking the growth conditions for g and grey (see (2.5)) we have

a(vo -1, (’1)0 — U1 + (L Vo — 1)1 ’U(] — U1)+)Q + (L(Uo — 1)1), (’U(] — U1)+)FN
= (g(vo) kwo - a1, (vo —Ul)+)%
+ (gRob(v0) — kavo — ga, (Vo — v1) )FN
<0.

This and the ellipticity of the bilinear form a, see (3.4), imply

Q {C() |V('U(] - 'l]1)|2 + L('U(] — U1)2} + I'n L(’Uo — 1)1)2 S 0.

Vo>V vo>v1

From this we conclude that vg < v; a.e. in Q and a.e. on I'y.
Let us suppose that v;_1 < v; a.e. in . We subtract (3.2) for j =4+ 1 from the
same identity for j = ¢ and obtain

a(vi —vit1,)  + (L(vi —vit1),0)gq + (L(vi — viy1), @)p,
= ([g(vi) = Lvs] = [9(vi-1) = Lvi—1], 9)q
+ ([gRob (vi) — Lv;] — [gRob(vi-1) — Lvi—1], @)

The function g is globally Lipschitz continuous with the Lipschitz constant L. There-
fore, the function h(s) := g(s) — Ls is monotonically decreasing because of

h'(s)=4¢'(s) = L<O.

The same argumentation can be applied to the function h(s) := gros(s) — Ls which
is also monotonically decreasing. Now, we put ¢ = (v; —v;11)T € V and deduce

a (Ui — Vig1, (v; — Uz‘+1 — Viy1), Ui+1)+)9 + (L(Uz’ — Vi), (Vi — Ui+1)+)FN

— Lv;] — [g(vi—1) — Lvi—1l, (v; — vig1)"

~~

<0 Q

gRob v;) — Lwi] — [gRop (vi—1) — Lv;— 1] (v; — vip1) T
<0 I'n
<0
The ellipticity of the bilinear form a (cf. (3.4)) yields
o {GN@-w rLe— v} [ Lei- ) <o,
Vi >Vit1 Vi 2Vi41

which gives v; < v;y1 a.e. in Q and a.e. on I'y. O

Further, we inductively define an another sequence {2;}$2,. First, 2o is the
solution to the following linear BVP:
Find zg € H*() such that zp — g € V and

(3-8)(20, ) + (k120,90)q + (K220, 9)r, = (F, ) + (q1,9)q + (92, 9)r YpeV.
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Next, for a given z;_1 (j = 1,2,...) subsequently define z; as:
Find z; € H*(Q) such that z; — § € V and

a(zja 30) + (sza QD)Q + (sz7 (p)I‘N =

+(Lzj1,9)q — (9(zj-1), 0)q

+ (szfla(P)rN - (gRob(zjfl)a(P)rN V(p eV
(3.6)

Analogously as before we can prove the existence, uniqueness and the monotonicity
of {2;}52¢- We omit the proof for short.

LEMMA 3.3. Let the assumptions of Lemma 3.1 be satisfied. Then the sequence
{z}520 € HY(Q) is well defined and z;_1(x) > zi(x) for all i = 1,2,... a.e. in Q
and a.e. onT'y.

The functions v; and z; for j = 0,1,... can also be ordered. The arguments for
this rely on the same procedure as in Lemma 3.2, therefore we state the following
lemma, without proof.

LEMMA 3.4. Let the assumptions of Lemma 3.1 be fulfilled. Then z;(x) > v;(x)
for alli=0,1,2,... a.e. in Q and a.e. in [y.

3.1. Energy estimates. The previous section was devoted to the study of the
sequences {v;}52, and {z;}32,. The results can be summarized as follows

B Nwvw<v <vy<... <20 <2 < 2, a.e. in Q and a.e. in I'y.

According to this we are able to prove the uniform stability of {v;}72, and {2;}32,
in the space H'(Q).

LeMMA 3.5. Let the assumptions of Lemma 3.1 be fulfilled. Then, there exists a
positive constant C' such that

oll, 0 + 12l 0 < ©

forallj =0,1,....
Proof. We start from the relation (3.1). Choose ¢ = v9 — § € V into (3.1) and
get

a(vo,vo) + (k1vo,v0)q + (kavo,vo)r, = (F,vo —§) + a(vo, )
(3.8) = (q1,v0 — 9)g — (22,v0 — J)r,
+ (klv():g)ﬂ + (kQU()ag)FN .

The terms on the right-hand side can be estimated as follows. For the first one we
deduce

[(Fyvo —9) < [(f,v0)ql + |(f,§){z| + (9w Vo), |
+ |(gNeua§)I‘N| + m (|(37v0)1‘N| + |(s:§)I‘N |) .

Let € be any positive real number. Applying successively the well known
e Cauchy Schwarz inequality
e Young inequality: |ab| < ea® + C.b?, with C. = C' (1)
e trace inequality [[ull,r < C'llull; o

we readily obtain

|(F,v0 = §)| < ellwoll7 o + C-.
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The other terms in the right-hand side of (3.8) can be estimated analogously with the
same upper bound € ||1)0||f,Q + C.. In view of the ellipticity of the bilinear form a (see
(3.4)), the left-hand side of (3.8) can be estimated from below by

Clwllig,  C>0.
Now, choosing a sufficiently small positive € we conclude
l[volly,@ < C.
Exactly in the same way we get
lIzoll1,0 < C.
According to the relation (3.7) we immediately get
lvillg.o + 1zjillgo <€ J=0,1,....

The rest of the proof can be easily obtained from the recursion formulas (3.2) and
(3.6). O

3.2. Existence and uniqueness. We now let tent j to infinity. We show that a
subsequence of the solution u; (resp. z;) of the linearized problem (3.2) (resp. (3.6))
converges to a weak solution of (2.11). To this end, we apply more or less standard
results from functional analysis to build up a weak solution.

THEOREM 3.6 (existence of weak solution). Let the assumptions of Lemma 3.1
be fulfilled. Then, there exists a weak solution u of (2.11). Moreover,

25,0 = u in H(Q)
2j,V5 = U in Ly (T)
25,V = U in L2(Q)
Zj,V = U a.e. in

hold in the sense of subsequences.
Proof. According to the energy estimates from Lemma 3.5, there exists a subse-
quence of {v;}%2, (denoted by the same symbol again), such that

v; > u in H(Q)
(3.9) v = U in Ly(Q)
vj = U a.e. in ).

To prove the strong convergence (for a subsequence) v; — u in Ly (I') we apply the
well known inequality (see Necas [4])

1

2 2 2

ol < e llollt g + C oll3 c.=c(2).
for small positive €. Therefore, for small but fixed £ we deduce that

2 2 2
llvj —ullor <ellv;—ulli g+ C; llv; — ully o
< Ce+Celvj —ull2q -
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Thus

li i — )|} < Ce.
Jim {lv; —ulfo,r < Ce

This holds for arbitrary small positive ¢, therefore

. 2
(3.10) Jlggo |[v; — u||07F =0.

Now, we would like passing to the limit in (3.2) (for a subsequence) as j — co. On
account of (3.9), (3.10) and the assumptions on the data functions, we arrive at

au, )+ (Lu, p)o+(Lu, @)r, = (Lu — g(u), )+ (Lu = grov (u), ©)r  +H(F, @), Vo €eV.

Canceling the terms involving L, we get

a(u, ) + (9(u), p)g + (grRov (W), ), = (F ), VoeV

which means, that u is the weak solution of (2.11).
Analogous considerations can be made for the sequence {z;}5%,. O

To prove the uniqueness of the solution to the BVP (2.11) we need the following
strict monotonicity assumption

aaffe—wlia < alv—wu—w)+(9v) - gw),v - w)
' +  (9Rob (v) = gRob (W), v — W), Yv,w €V,

where 6 is some positive constant.

THEOREM 3.7 (uniqueness of weak solution). Let the assumptions of Lemma
3.1 be fulfilled. Moreover, assume that the strict monotonicity property (3.11) holds.
Then there exists at most one weak solution of (2.11).

Proof. The assertion immediately follows from (3.11). O

Note that the just proved uniqueness of a weak solution to the BVP (2.11) implies
that the convergence statement valid for subsequences of {v;}92, and {z;}32, in
Theorem 3.6 holds for the whole sequences.

4. Numerical experiment. Let Q be the unit square in R?. Its boundary is
splited into three parts: I'p (right), I'ny (top and bottom) and T',, (left part of T'), see
Fig. 4.1.

For simplicity we consider the same nonlinear function in the domain and on T,
i.e., § = gRop, and this is defined by

s for s >4
g(s) =4 (s—2)[s—2| for s € [0,4]
s—4 for s <0.

One can easily verify the inequality
s—4<g(s)<s+4 Vs € R

Hence, the relation (2.5) is satisfied.
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Gcon

I_N

F1G. 4.1. Domain Q with the convection @con
We have chosen the convection term a.o,, = (—1,0), which clearly fulfills the

assumption (2.4). We consider the following nonlinear elliptic BVP:
Find (u,a) € (H'(Q),R) such that

V- (=Vu—acomnu) +gu) =f in Q
U = gDir on I'p
(=Vu — acontt) - v —g(u) = gNeu on I'y

uw(@,y) =y’ +a on T,
/1" (_vu_aconu) voo= _%a

where the data functions f, gp;- and gne, are defined in such a way that the exact
solution of the BVP is

w(z,y) =1+2°+y> +2
a =1.

The linearization process has already been described in Section 3. We start from
the super-solution zg — see (3.5), where the coefficients k; = ks =1 and ¢ = ¢ = 4
have been used for the computation. Next, z; for j = 1,...,30 are defined by (3.6),
with L = 4. Thus, we have to solve a linear BVP with a nonlocal BC at T, at each
iteration. The choice of the space V, of all admissible test functions with constant
traces on I',, is not standard. Therefore, an application of a standard FE package
for the numerical solution of such a problem is not straightforward. Here, we have
followed the ideas from [5] and [6] to avoid this difficulty. We briefly explain the main
idea.

Let us consider the following linear elliptic BVP:
Find (u,a) € (H'(Q),R) such that

V. (_Adifvu - &conU) +asoutt = f in O
U = gpir on Tp
(4.1) $ (_“idzfvu - 6conu) V — JRob¥ = JNeu on Ty
U =g+ o on T,
G(u) = / (—Adszu aconu) v =3.
L I
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The solution will be constructed in three steps. We introduce two auxiliary problems
(4.2) and (4.3), the solutions of which will give rise to a solution of (4.1) by the
principle of superposition. First, we solve the BVP

V- (_fidifvv - &conv) + Gsouv = f in Q
(42) _ ) i v = .?Dir on Ip
<_Adifvv - aconU) UV — gRobV = gNeu on Iy
v =gy on T,

The second BVP to be solved is

V- (—fidisz - &Conz) + 8s0uz =0 in Q
(4.3) 3 z =0 on I'p
(—Adisz — &Conz) B 2 gRobZ =0 on FN
z =1 on I,

In the third step we choose the appropriate value of a real parameter «, for which the
total flux through T',, fulfills the condition

G(ua) = G + az) = G(v) + aG(z) = s,
ie.,

s — G(v)
(4.4) a=—Fz Ol
Here, G(z) # 0 — see [6]. One can easily see that the function u,, for a given by (4.4),
solves the BVP (4.1).

We have used the mixed non-conforming finite element formulation for the nu-
merical solution of each linear elliptic BVP. This is equivalent to the mixed-hybrid
method (see [1]). We explain briefly the main idea of this approximation.

Consider a regular triangulation 7j (h denotes the mesh diameter) of the domain
Q. On each element 7 € 7, we define three linear basis functions associated with
the edges of T, i.e., a basis function has the value 1 at the midpoint of one edge and
vanishes at the midpoints of the other edges of the triangle. Further, we define a
bubble function on 7, which is a polynomial function of third order vanishing on the
boundary 97, such that its integral average value on 7 is 1. In this way we have
enriched the standard linear non-conforming space by bubbles. We solve a linear
elliptic problem in this space replacing the velocity field q by its projection on the
Raviart-Thomas space RTy. For more details see [1].

We have chosen a fixed uniform mesh consisting of 5 000 triangles, which corre-
sponds to Az = Ay = 0.02. The logarithms of absolute and relative L (Q2)-errors of
uy, versus the iteration number k£ = 1,...,30 are plotted in Fig. 4.2. The logarithm
of the Ly(2)-error for flux the q, = —Vuy — aconur and the logarithm of the ay-error
are depicted in Fig. 4.3. Note that one can see the convergence rate on the y-axes in
each picture. The behavior of all graphs is similar. First, we observe a monotonically
decreasing part of the curve for kK = 1,...,11. Then the curve turns up and later
becomes more and less constant. This can be easily explained. The resulting error
consists of two parts: the linearization and the discretization error. At the beginning
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iteration 15
- 05 5 10 15 20 25 30 1
-1 05
-15 iteration
.2 .05 5 0 15 20 25
-25 -1
-3 -15
Ly()-error Relative Lo (€2)-error
F1G. 4.2. Logarithms of errors for uy versus iterations
iteration
iteration 5 10 15 20 25 30
5 10 15 20 25 30 - 05
-05 -1
-1 -15
-2
-15 .25
) -3
Ly(9Q)-error of flux Error of «

Fi1G. 4.3. Logarithms of flux q;- and oy-errors versus iterations

of the iteration process (for k = 1,...,11), the linearization error is dominant. There-
fore, it makes no sense to iterate after the turning point (in our case it is k = 11).
Let us note that the discretization error can be diminished by taking a smaller mesh
diameter h.

Acknowledgement. The author thanks R. Van Keer for stimulating discussions
and for his critical reading of the text.
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