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NEW COMPUTER ALGORITHM ENABLING SIMULATION OF
RECALL PROCESS IN SPARSELY ENCODED HOPFIELD-LIKE
NEURAL NETWORK OF EXTREMELY LARGE SIZE *

FROLOV A.A. T, HUSEK D. ¥, AND SNASEL V. §

Abstract. The algorithm which minimizes the required computer memory to simulate neuro-
dynamics in sparsely encoded Hopfield-like autoassociative memory is proposed. It does not require
to keep in memory both connection matrix and a set of stored prototypes. The algorithm allows
to simulate the recall process in the neural network of extremely large size and thus to calculate
its asymptotic informational and dynamic properties when the number of network’s nodes become
infinite. Giving great advantage in computer memory the algorithm leads to some advantages in pro-
cessing speed comparing with traditional algorithm when connection matrix and the set of learned
prototypes are stored in computer memory.
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1. Introduction. Hopfield-like neural network is a fully connected network which
acts as an autoassociative memory for statistically independent binary patterns on the
basis of correlational Hebbian learning rule. Encoding is called sparse if the number of
active neurons n in stored patterns (prototypes) is small compared with the total num-
ber of neurons in the network N. It was shown (Tsodyks & Feigel’man, 1988; Amari,
1989; Buhmann et al., 1989; Horner, 1989; Perez-Vicente & Amit, 1989, Frolov et al.,
1991; Frolov et al., 1997 and others) that sparseness results in an increase of network
capacity not only if it is measured by a number of stored prototypes (which would be
a weak result because the entropy of each prototype decreases when becoming sparse),
but it is valid even if informational capacity is considered which is measured by the
total entropy of the stored prototypes. For example in the limit case for p =n/N — 0
this entropy was estimated by Frolov et al. (1991) as (N?/2)log, e ~ 0.72N2, while
for the original Hopfield network with p = 0.5 this entropy amounts to only about
0.14N? (Hopfield, 1982; Amit et al., 1987). Thus sparsely encoded Hopfield-like net-
work can be interesting even from the practical point of view. On the other hand it
is useful as a model of some brain areas which are assumed to perform the functions
of associative memory. Particularly it concerns CA3 hippocampal field (Rolls and
Treves, 1997). Neural network activity in the brain is known to be rather sparse: p
amounts to about 0.01 (Abeles, 1991).

Unfortunately all existing analytical methods fail being applied to sparsely en-
coded network (Frolov et al., in press). Thus the most reliable results concerning
its informational and dynamic properties can be obtained only by computer simula-
tion. However asymptotic behaviour of the network dynamics for N — oo can be
achieved only when simulated network is of extremely large size. Kohring’s simula-
tions (1990a,b) for nonsparse encoding (p = 0.5) showed that it is achieved when N
is at least in the order of 10* — 10°. The same result has been obtained for sparse
encoding (Frolov et al., in press). To perform the simulation of such large network
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Kohring developed special algorithm which allows to avoid storing connection matrix
in the computer memory but which, however, requires to store the whole set of pro-
totypes. His algorithm is working only for nonsparse encoding. So we deduced new
algorithm based on Kohring ideas and extended it such a way, that there is not neces-
sary to store even larning prototypes. For sparse encoding this approach brings also
other advantages. First, for nonsparse encoding the number of prototypes is much
less then the network size and, second, components of prototypes are binary values
while coefficients of connection matrix are integer values, it results in large economy
of memory. On the basis of Kohring’s approach we deduced appropriate formula for
sparsely encoded network. Moreover we developed algorithm that allows for avoiding
even storing the set of prototypes. Thus to simulate the network of a very large size
one is restricted only by the computer time. Due to new algorithm we were able
perform computer simulation even on a PC Pentium. The size of the network reached
105 neurons i.e it was in the same order as in simulations performed by Kohring with
the use of Cray-YMP /832 computer.

2. Model description. As in (Frolov et al., 1997), we consider correlational
Hebbian rule known to be much more efficient for network learning than the usual
Hebbian rule (Buchmann at al., 1989; Tsodyks & Feigel’man, 1988). Hebbian rule is
called correlational if components of the connection matrix are determined by equation
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where X! € {0, 1} are components of the prototypes (1 for active, 0 for nonactive neu-
rons), p = n/N is the probability for a neuron to be active and L is the total number
of stored prototypes. In our model the prototypes are assumed to be uniformly and
independently distributed within the pool of all the patterns with n = p/N component
1 and N — n components 0 (i.e. the number of active neurons in each prototype is
fixed). We showed in (Frolov et al., 1997) that this type of encoding provides an
increase of informational capacity relative to the encoding when the number of active
neurons in the prototypes is random and only its mean value is equal to n.

We restricted analysis on the case of parallel dynamics. Thus, the pattern of the
network activity X at each time step ¢ is calculated as

(2.2) Xi(t+1)=0(n(t) -T(t), i=1,..,N
where
(2.3) mi(t) = Z Jij X;(t)

is synaptic excitation, © is the step function and T is the activation threshold. The
threshold T'(t) is chosen at each time step in such a way that the number of active
neurons is equal to n = pNN. So at each time step only n winners are firing. If several
neurons have synaptic excitations equal to the activation threshold, then winners
are the neurons with smaller index i. Since the number of active neurons in each
prototype are fixed and also equal to n, this choice of activation threshold allows for
a stabilization of network activity in the vicinity of one of the prototypes. Thus, the
type of prototypes’ encoding is fitted to the used simple recall procedure which allows
to avoid explicit control of the activation threshold. This is the second advantage of
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the coding with fixed number of active neurons in prototypes. Our recall procedure
also ensures that as in the case when activation threshold is fixed (Goles-Chacc et al.,
1985) only two types of attractors (point or cyclic of the length two) are present in
the network dynamics (Frolov et al., in press).

As a relative informational loading we use @ = Lh(p)/N where h(p) = —plog, p—
(1 — p)logy(1 — p) is the Shannon function. This measure of informational loading
takes into account that an increase of sparseness results in a decrease of patterns’
entropy, in contrast to the parameter a, defined as L/N, which has often been used
as a measure of the network loading, since Hopfield’s paper appeared (Hopfield, 1982).
In the case of nonsparse encoding these two measures coincide because h(0.5) = 1.
For sparse encoding we prefer to take into account patterns’ entropy because the
information capacity measured in this way approaches the finite value log, e/2 when
sparseness increases while information capacity defined as L/N diverges as 1/|plogp|.

3. Recall algorithm. To simulate the networks of a large size under the restric-
tion of computer memory, we adjusted to the case of sparse encoding the procedure
which has been suggested in Kohring (1990a) for nonsparse encoding. This proce-
dure allows to simulate neurodynamics without storing the connection matrix and to
express neurons’ synaptic excitations through overlaps between the current pattern
of the network activity and all stored prototypes. The overlap between the current
pattern X(¢) and one of the stored prototype X' is defined as

(3.1) m(X,X(1) = Y (X] - p)X:(t)/(Np(1 - p))

i=1,N
With the use of (2.1) and (2.3) one can easily obtain:
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For sparse encoding it is more efficient to present stored prototypes as vectors of
the length n whose components are indices of active neurons instead of vectors of
the length N whose components are states (0 or 1) of all neurons. Then it is more
convenient to represent the overlap between the current pattern of network activity
and the stored prototype in the form

m(Xl,X(t)) Np 1 — Z X X ) Np 1 — Z Xz(l,]) )
i=1,N j=1n

where i(l, j),j = 1...n are indices of active neurons in I-th prototypes, i.e. components
of the vector which represents this prototype. Thus only n additions are required to
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calculate each overlap and Ln additions to calculate all overlaps. Similarly for calcu-
lation of all N values A; and B; only 2Ln additions are required and approximately
3Ln additions are required to calculate all IV values of synaptic excitations 7; in total.
Note that for usual procedure based on the direct calculation of n; by (2.3) nN addi-
tions are required. Thus for small loading the modified procedure has an advantage
over the usual one even in the processing rate. Note also that for both procedures
processing rate increases when sparseness increases.

The described procedure allows to avoid storing of the connection matrix but it
requires to store the whole set of prototypes. However, the computer memory for
storing the whole set of prototypes is rather large when N is large. In fact, to store
about N2/2 independent coefficients of the connection matrix as single-type variables,
2N? memory bytes are required, while to store Ln indices of active neurons in pro-
totypes as word-type variables, 2Ln bytes are required. For sparse coding we have
L ~ aN/|plog, p|. Thus, the memory which is required to store the set of prototypes
is smaller only |logp|/a times than that required to store the connection matrix.
Computer simulation of the sparsely encoded Hopfield-like network is reasonable to
perform for a ~ 0.2 — 0.3. Then the memory which is required to store the set of
prototypes encoded with p ~ 1072 is approximately equal to about 0.05N2 bytes.

To avoid storing of prototypes we generated them at each recall step using the
same sequence of pseudorandom values. These sequences are generated by pseudo-
random generator (Sedgevick 1989) starting from the initial value characteristic for
given sequence. To generate L patterns Ln pseudorandom values are required. To
produce them approximately the same computer time is required as for calculation of
synaptic excitations by eqn (3.2). Thus, we could avoid also the storing of the set of
prototypes paying by the loss of processing rate in about only two times.

4. Results of computer simulation. To estimate the computation rate more
accurately we performed computer simulation of the recall procedure with different
values p, N and a on PC powered by Pentium processor. The program was written
in Visual C++. The network size varied from 10000 to 50000 neurons and « varied
from 0.001 to 0.1.

In agreement with the previous consideration the total time for computation of
all N values of synaptic excitations 7; by eqn (3.2) (including computation of all
overlaps and generation of all prototypes) was proportional to nL. The coefficient
of proportionality T,.q happened to be equal to about 2 - 107 sec. The times for
computation of one overlap and generation of one prototype were proportional to n.
The corresponding coeflicients of proportionality 7,, and 7, happened to be equal to
0.5-107% sec and 0.8 - 107% sec respectively. Thus the time required to generate one
prototype is only slightly larger than to compute one overlap.

Computer simulation of Hopfield network with the use of standard recall proce-
dure given by eqn (2.3) has shown that in agreement with the previous consideration
the time required to compute all N values of synaptic excitation is proportional to Nn.
The coefficient of proportionality happened to be equal to 75 ~ 0.5-107% sec. Thus to
compute all synaptic excitations by standard algorithm one needs about 0.5Nn - 1076
sec. While to do the same by modified algorithm he needs about 2Ln - 10~ sec. For
L < N/4 the modified algorithm has an advantage even in computing rate. Unfortu-
nately this condition is reasonable only for computer simulation of densely encoded
Hopfield network. For sparse encoding L ~ Nm, iefora~02—-03L>>N
and the modified algorithm loses to standard one in computer rate.

It must be noted that for estimation of the rate of the standard algorithm we have
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not taken into account the time which is required for connection matrix computation.
In the modified algorithm it is not necessary to compute the matrix at all. For
standard algorithm this time is evidently proportional to N2L. Computer simulation
has shown that the coefficient of proportionality is equal to 7., ~ 0.3 - 10~¢ sec. To
estimate the properties of the recall procedure many testing trials are required for
averaging. Usually the number of testing trials amounts to about K = 100 (Frolov
et all, 1997). Thus to compute the connection matrix and then to estimate recall
properties the total required time is equal to

(4.1) Tyt = Tem * N2L + 75, KSnN
where S is the mean number of time steps in the recall procedure. For

> Tot K Sph (p)

Tem

(4.2) N

the first term in eqn (4.1) dominates and the total testing time is mainly defined by
the time for computing the connection matrix. The number of recall steps usually
increases when N increases. However even for N = 10% it does not exceed 100
(Kohring, 1990b). For sparse encoding (p << 1,a ~ 0.2 — 0.3) condition (4.2) is
valid under N ~ 10°p?log, p. Even for p = 0.1 it is valid under N ~ 10%. Thus in
fact for high sparseness the testing time for standard algorithm is completely defined
by the time of connection matrix computation. Thus to compare the processing
rates of modified and standard algorithms one must compare the total testing time
Tst = TemN2L in standard algorithm with the total testing time Trnoq = Tmoq K SnL
in modified algorithm. The processing rate of modified algorithm is higher if N >
18 K Sp. Even for p = 0.1 this condition is valid for N > 1.8-10%. To reveal asymptotic
behaviour of the network dynamics larger network sizes are required. Thus for high
sparseness the suggested algorithm has an advantage over standard algorithm both
in computer memory requirements and processing rate.

5. Conclusions. To reveal asymptotic behaviour of the network dynamics large
network sizes are required. Straightforward implementation of simulation model is
very memory demanding. Due to this fact there was no possibility to simulate large
networks even on computers with relatively large operational memory. To solve this
problem we developed the algorithm which minimizes the required computer memory
to simulate neurodynamics in sparsely encoded Hopfield-like autoassociative memory.
It does not require to keep in memory both connection matrix and a set of stored
prototypes. The algorithm allows to simulate the recall process in the neural network
of extremely large size and thus to calculate its asymptotic informational and dynamic
properties when the number of network’s nodes become infinite.

We have shown that proposed algorithm has not only great advantage regarding
small memory footprint but it also has some advantages in processing speed comparing
to traditional algorithm when connection matrix and the set of learned prototypes are
stored in computer memory.

It must be noted that in spite of the relative advantage in computer rate the
suggested algorithm requires a lot of computer time when the network size is actually
extremely large. For example for N = 10°,p = 0.01,a = 0.2 the time required to
compute all synaptic excitations (in fact to execute one step of the recall procedure)
on PC Pentium-400 is equal t0 Tyoqln = TmogN2ap/h(p) ~ 5 minute i.e. several
hours are required until one recall process converges.
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