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MATHEMATICAL MODELLING OF THE UNDERGROUND WATER
FLOW AND TRANSPORT OF CONTAMINANTS

J. MARYSKA, J. MUZAK, M. ROZLOZNIK AND M. TUMA *

Abstract. Mathematical modelling of unsteady flow and transport in underground porous media
is discussed. Governing equations in a compact form are introduced. They are discretized by Rothe
method in time and by mixed-hybrid finite element method in space. We restrict our attention to
methods which provide an easy and robust way to solve both the flow and transport problems with
mixtures of reacting contaminants. In this paper, basic components of such approach are described.
An iterative scheme for solution of the resulting nonlinear problem is proposed and the strategy of
treating transport of contaminants is explained.
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1. Introduction. The groundwater fluid flow problem in regions with a phreatic
surface is sometimes tackled by dividing the domain into dry and saturated parts
detached by a free boundary. We often need to treat both steady and unsteady
filtration flow in different parts of the domain. In general, we may have four possible
situations as follows. The saturated and steady flow is the simplest case and the
nonsaturated unsteady flow is the most complicated one. In the following, we will
treat mostly the latter case which includes the other situations as special cases. The
unsteady flow plays an important role in processes with moving boundaries. Examples
of such applications are published in this volume by other members of our research
team.

A standard method of choice for solving the filtration flow in regions with both
saturated and non-saturated part is an iterative procedure with a moving grid. The
filtration flow is then defined only for a saturated part and the procedure with moving
grid is often used to determine position of the free boundary. Nevertheless, there are
good reasons for involving the unsaturated part into the model as well. It is desirable
to include possible existence of two phreatic surfaces in a vertical cut in some cases.
Another reason to avoid modelling only of the saturated part is faced in case of more
general models of the regions where chemical changes of rain waters must be taken into
account. These changes might be caused by slow water flow through a nonsaturated
part of the domain. The same situation we face in cases of more explicit transport of
chemicals through the domain.

In our case we discretize the whole domain using only one grid which covers both
saturated and non-saturated parts. The finite element and finite volume techniques
are then used for discretization in our generally unsteady saturated/non-saturated
flow/transport code. It is only natural that from the numerical point of view, we
meet troubles caused by grid deformations. One of the side effects of our method is
a highly non-uniform grid close to the boundary. In particular, very thin elements
should be used in these parts close to the free boundary. They increase conditioning
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of a system and oscillations in the iterative process are often observed. Therefore, the
implementation should be coupled with a clever use of damping parameters against
zigzagging effect similarly as it is done in the codes for solving constrained optimiza-
tion rules based on active set strategies.

We will use the following notation. Denote by €1 - saturated zone, by Qo -
unsaturated zone, by 23 - vadose water (intermediate) zone and, finally, by Q4 -
soil water zone. We will solve the filtration flow problem in Q; U Qs = Q,, where {25
is detached from 23 by the free boundary with the pressure level p = pmin; Pmin 18
a negative function providing the capillar pressure which depends on the geometry of
domain. The free boundary we will denote by I'y, = Q5 N Q.

2. Basic governing equations. The unsteady unsaturated porous media fluid
flow problem is governed by a generalized continuity equation in the following form

{Cy + cis(p)} o

+V-u=gq in Q,,
where Cy denotes the water content obtained by differentiating the retent curve of
moisture by pressure, ¢;5(p) determines the coeficient of solid matrix compresibility,
p is a pressure, u filtration velocity and ¢ is a density of source or sink of water in
domain (pumping and injection wells). Retent curve determines the dependence of
moisture € on negative capillar pressure. It is described by van Genuchten relation:
e—96
=0+ —— .
1+ Blp|™) "=

Here 8 and m depend on a geometrical structure of the porous medium. Darcy’s law
expressing dependence of filtration velocity on the gradient of pressure is linear for
saturated zone ; and it is given by

u = —K (Vp+Vz);

where K = pg % denotes the tensor of hydraulical conductivity. For unsaturated zone
Q5 is nonlinear and it is given by relation

u = —k(0)K (Vp+Vz),

where k,.(0) is a coeficient of relative conductivity depending on moisture . Empirical
relations were deduced for various rocks defining this dependence for which we have

[0—90

B O0) = | =g

3
] for Pmin S p< 0,

where p,,;n» determines capillary pressure created by structure of rock as introduced
above. Assume that

k(6(p))  for pmin <p <0
K-(p) =
1 forp>0
In general, we can use all the possible boundary conditions. We combine homoge-

nous Dirichlet condition on the level of lakes, tailings ponds and in areas with wells
p = 0onI'p, we treat the rain dotation as a nonhomogenous Neumann boundary
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condition n.u = —u, on 't on the terrain level. This condition is later transformed
to an appropriate part of the phreatic surface I', which divides unsaturated and in-
termediate zones. The nonhomogenous Dirichlet condition p = p,4, must be valid
on the phreatic surface. The function p,,;, is obtained by monitoring the layers.
Finally, on the rest part of boundary the general Newton condition is prescribed as
nu—o(p—pp) =0 on y. If there is a part of the boundary impermeable we set
there 0 = 0.

3. Mixed-hybrid nonsaturated flow model. The mixed-hybrid model is
based on the decomposition of domain €2, into collection of subdomains e;. We denote
this decomposition by &,. Structure of interelement faces and faces with Neumann
or Newton boundary conditions we denote by I'¢, .

Ea=EQ) ; Te = |J 0e—Tp.

e€€n

Darcy’s law in the domain (2, is expressed in the form
R.(p)Au = — (Vp+Vz) inQ,,

where A = K71, R.(p) = K,(p)~! for pmin < p < 0. A is a tensor of hydraulic
resistance of porous media and R..(p) is a relative hydraulic resistance in unsaturated
zone.

We express the continuity equation discretized in time in an n-th time step as
follows. Overlined symbols denote average values of the state variables in the n-th
step. These values are set during iterative process.

{C-(0) + Y + V-t =g, i Qg
Let us introduce the function space W(&,):
W (E,) = H(div, £,) x L*(Q) x H?(Tg,) .

This function space is a Cartesian product of three spaces: the space H(div,&,) of
vector valued function whose divergence belongs to Lebesgue space L2(),), Lebesgue
space L2(Q,) and Hz(T¢,) of the trace of the function from Sobolev space H(Qg)
of functions defined on the structure of faces I's, . Denote w, a triple of functions
(Wn, Pn, An) from the space W(&,) and similarly denote w a triple of test functions
(v, ¢, ). We then get Be, (prn; Wn, W) and nonlinear functional Qg, (pn; w) as follows:

Be,, (pn;VNVm Z{ pn Aun; ) (pna \ V) (V “Up, ¢)0,e

e€€a
+</\n7 A\ ne)aeﬂrea + (un ’ ne7 ﬂ)aeﬁrsa - 0.86 (’\na H)aeﬂFN -

_ CE[E(pn)] + c15(pn)
At

(pn7 ¢)0,e } 5

pna Z { Qna <un,Ra,u)Beﬂl"T + (z , V- V)O,e - (z , V- ne>8€
e€fa
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_0_86 <pD,n; N)BeﬂFN - CE[H(pn)]A:_ ClS(pn) (pn—l, ¢)0,e }

Since for the function p, the condition p > py,:» must hold in each time step we
introduce also the convex set of functions W, (&, ), where we seek for a solution:

W.(E,) = H(div, E) x L2(Q) x H3(Ts.) ,

Li(Qa) = {¢ € L2(Qa) 5 ¢ > pmin}-

The weak solution of mixed-hybrid formulation of the n-th step of time discretized
unsteady unsaturated flow problem given by continuity equation and Darcy’s law,
boundary conditions and by the decomposition &, of €2 introduced above is a triplet
of functions w,, = (U, Pn, An) € W.(&,) satisfying

(1) Bfa(pn;VNVmw) = Qe¢, (pmw)

for all w = (v, ¢, u) € W(E,).

4. Mixed-hybrid finite elements for the flow problem. The flooding prob-
lem will be solved in the time period (0,T). This period will be partitioned into N
subperiods of the length At = % Values of the state variables in the individual time
steps will be denoted by subscripts. The Rothe method is used for time discretization
and MH FEM for the space discretization.

The solution of ground water flow problem in the real conditions must reflect
complex geological structure of sedimented minerals. Layers of the stratified rocks
with substantially different physical properties must be modelled using the appro-
priate discretization of the geological region. These geological characteristics can be
described by the mixed finite element method using trilateral prismatic elements with
vertical faces and generally nonparallel bases. Let index h is a discrete parameter of
horizontal plane. Due to the characteristics of the problem, the vertical discretization
parameter h' satisfies h' < h since the flow domain is usually fairly large (several
squared kilometers) in comparison to the vertical thickness of the sedimented layers
(several meters).

On these prismatic elements we define the Raviart-Thomas space of vector valued
functions. Parameters of these functions are determined so that each function defines
unit flow through one face and zero flow through the remaining faces. For a prismatic
element with nonparallel bases these functions have the following form:

0 T —af
e __ e e __ e e
vi =k; 0 , Vi=k; To — Ay ,
T3 — Qg3 Bizs — ajs
i =1,2, i = 3,4,5.

The parameters of these functions are determined from equations

/ l'l;'Vde = 5ij,i,j:1,...,5.
i



MATHEMATICAL MODELLING OF TRANSPORT 89

Now we introduce the space RT?(e) as a linear cover of the set of the introduced
functions:

5
RT (e) = {v; v*(x) = ZVjvj(x) , X€el

And finally we define also the Raviart-Thomas space of functions defined on whole
decomposition £,

RT?, (&) = {v e L%(Q); v|. € RT%e), Ve € &,}.

We introduce also spaces M, (£,) and M, (T') of piecewise constant trace function
on each element or face, respectively, from I'j, to aproximate pressure in the elements
and on the faces.

If we introduce the base functions

(Vi 5, pe) € RT® (&) x MO (&) x MO (Ty)

to the formulation of the problem (1) introducing above we get the following system
of nonlinear equations
Rn,k A Un,k + B Pn,k + C An,k = di,n
(2) BTun,k + Cn,k H Pn,k = d2,n,k
CTlln,k; + S )\n,k qs,n

This system is then solved iteratively by linearization. Then, e.g., a Schur com-
plement transformation or a dual variable method coupled with conjugate residual
solvers might be applied. Nevertheless, first we need to show, how to treat the non-
linearity which is inherently embedded into the system. The iterative procedure for
a n—th time step we will show below. The initial conditions are given for real-world
problems by a steady-state pressure field determined by a premature hydrogeological
treatment.

In each iteration step, the computed and set variables are compared. Further,
capillar pressure bounds are checked. In case that the current linear model do not
provide acceptable results, new step of the nonlinear loop is started. Pressure values
are combined with those from previous steps. The solvers are coupled with damping
parameters to prevent oscillations.

5. General iterative procedure for unsteady non-saturated flow. In this
section we will briefly summarize the iterative procedure to solve the nonlinear system
(2) which we used in our implementations and which corresponds to the previous
description.

1. Set n=n+1, k=0 and ppp_1;
2. Assemble the system (2) for R, computed from R,(A, ) and Cp j com-

puted from C. (pn.i) + c1s(Pn,k);
3. Find Uy 41, Prkr1, Ankyis

4 ST |P .y —Pul< C‘Ig\l & Pl 41 = Pruin,

where |e;| is the volume of element e; and || is the volume of domain

. . 8 J
QI AS, jyr = Al < Cﬁ’
where |Je;| is the area of face de; and |T'y| is the area of the all faces

from decomposition I'y,, stop the computation;
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e If there exists such ¢ that sz,k 41 < Pmin then the i-th element leaves

o If exists i such that [P} .., — P} | > <||§5'|‘

or if there exists j such that [Af .., — A% .| > Clgeljl‘
then set

Bl =w'Pi+ (1 - WPy ;

Af 1 = WAL+ (L= w)AT s
5. Setk=k+1;ppi = Zﬁé,k@, Ank = in,kﬂj and continue by step 2.
- -

J
The weights wi(P},Pi_,,...) are adjusted with a hysteresis simulated in imple-
mentation to prevent oscillations in the iterative process.

6. Transport of chemical substances. Complex task of transport of chemical
substances is defined by balance equations for each substance in the mixture and its
general form for a [-th substance is:

oc . .
(3) YT V.(ud) = V- (DV) + g +rb7(d,cy..) =*gt +rtF(ck, e,
where D is tensor of diffusivity and dispersivity, which depends on molecular diffusivity
of the [-th substance, longitudal and transversal dispersivity and filtration velocity
according to following formula:

Ui;Uj
uf ’

D,, is molecular diffusion coeflicient, u is filtration velocity, ay and ar transver-
sal dispersivity coefficients (see [4]). Homogenous boundary conditions are typically
prescribed. Let us denote by 001 the sum of inflow border faces. We will describe
explicitly typical boundary conditions. If we assume uncontaminated water flows into
the model area through inflow border faces, then a homogenous Dirichlet boundary
condition ¢! = 0 is prescribed. If the chemical composition is known, then a non-
homogenous condition is given. Let us denote by 0Q~ the sum of outflow border
faces. Homogenous Neumann condition

(4) D = Dy,6;; + ar|uld;; + (ar — ar)

(5) DVd -n=0

characterizes the case in which chemical components are taken out of model area only
by convection (impact of diffusion is then neglected due to low concentrations) and
this is applied to outflow border faces.

7. Time decomposition of transport operator. In this section we express
the fact that different processes given in the summary equation in the previous section
and different outcomes should be compared on basis of different time steps. They are
also different from time steps of the previously mentioned Rothe method. Let us
mention more in detail individual parts of the transport operator.
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Dominant influence on transport progress in substance migration in tailings pond
surrounds problem is caused by convection expressed in the following equation:

!

(6) 63_(; +V-(ud) + g =gt

In this equation ¢~ denotes the output and ¢t injection output of misture with
concentration ¢'* of the I-th substance. This equation is explicitly discretized in time
and solved in each time step. Chemical changes provide another important influence
on the transport. There are two basic types of chemical changes which we consider
in our models: 1. Chemical changes caused by a new balance of substances in the
chemical solution. The following system of non-linear equations for separate solution
components mathematically describes these changes:

G™(d,c,ck,..) =0,

for l,i,k € Ls, where L, denotes aggregate index of solution components. If there are
major chemical changes within the current time step, multiple recalculation of the
system is necessary due to the non-linearity in chemical balance expressions within
this time interval. 2. Chemical changes caused by dissolve and precipitation reactions.
These changes are much slower compared to previous case of reactions in solution.
They are calculated from a kinetic model and described by following differential equa-
tions:

ac L= i Lok i

(7 W+r’ (¢, c,...)=r""(c"¢,...),

Function r5>~ defines changes in concentration of the I-th substance as a result of
precipitation reactions. Function 5% defines input of the I-th substance caused by
dissolving of substances from solid rock. Both functions include velocity coefficients
set according to current chemical situation. Influence of diffusion and dispersion can
be also taken into account in the model. It is mathematically described by following
parabolic partial differential equation:

oc! ;
8) S - V- (V) =0l€L,

The influence of diffusion and dispersion is often typically equal to the numerical
diffusion of model and thus we can sometimes omit its consequences.

8. Solution of transport problem based on computed flow. The transport
is solved in time steps using an inter-element transfer of the solution with dissolved
solids. After the transfer, the balance of solids as well as the calculation of concentra-
tions of the solution components are performed (see [3], [7]). The three-dimensional
element of the shape of pentahedron, which is used in the mixed-hybrid formulation
of the FEM (finite element method), has the total volume V. Part V;. of the total
volume is filled with rock and part V; is filled with solution. If € is porosity, then:

Vi = Vo,V = (1—¢) - Vi,

The result of the calculation of mixed-hybrid formulation is the flow through all faces
of the mesh elements. Let Uy, j=1,2,3,4,5 be flows (transfers through the element
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faces) of selected element e. Positive value of Uf represents a flow into the element
and negative value a flow out of the element. The dimension of quantity Uy is a
volume transferred per time unit (e.g.m?3/day). Transferring volume of the solution
meets the condition on elements

U =@,

5
=1

J

where Q¢ is an intensity of the source (sink) residing in the element. The transport
of substances is implemented with selected time step dt. Quantity of fluid flowing in
the time step through the specific face is §tU;. For all elements it must comply with
the condition

5
1 € e
at 52 U7 +1[Q°| ) <Vj.
=1

The mentioned condition guarantees that in one time step there is no transfer through
the element of a bigger quantity of fluid then the one represented by a volume of the
element. The condition is an analogy of the control using a permissible value of the
Péclet number in other models. It expresses connection of the model mesh geometry
(size of elements), velocity of flow and size of time step. It is necessary to keep this in
mind when preparing the conceptual model for solving a specific problem. Dissolved
substances are transferred through the element faces with the fluid. It is assumed in
the model that the substances concentrations are constant in the whole volume of the
element. The quantity of every substance transferring through the element face is a
product of the transferring volume and the concentration of the I-th substance in the
element where the solution is coming from:

Mie,l — Uze . Ce,l,

Mf’l is a quantity of substance being transferred through a face, e is index of the
input element (there are 2 possibilities for every internal face of a chosen element).
The quantity of substance which inputs/outputs into/out of the element from the
source or through the boundary face of the model is a product of the fluid volume
and concentration of the substance.

MG =Q-ot-C*.

For the inflow into element the concentration C®* is defined in the form of boundary
condition. For the outflow the concentration is variable in time and corresponds to
the current concentration in the element. For every observed substance the balance
calculation is carried out in the beginning of time step

5
Mpt =M 4y M+ Mg
i=1
where e is index of element, t is index of time step. New concentrations of the
substances are

M

Cf’l = Ve
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If only transport is modelled then the time step for the element is finished after this
calculation. After processing of all the elements it is possible to continue with the next
step. In the case of transport-reactive model the calculated concentrations represent
input values for chemical reactions. The numerical model of the systems of chemical
reactions which we use in this case is described in [9], [8] .

9. Numerical solution of linearized equations. Mixed-hybrid formulation
leads, in its ultimate step, to a solution of symmetric but indefinite systems of large
sparse linear equations with a lower right zero diagonal block. This structure allows
flexible choice from more algorithmic options as mentioned above. A separate paper
in this volume is devoted to different algoritms and their asymptotic complexity.
Therefore, we will not treat this task in this overview.

10. Conclusion. In this paper we explained our scheme for generally non-
saturated and generally unsteady flow and transport. The main advantage of the
approach taking into account the saturation is the use of a fixed grid. The computa-
tional cost of one iteration is relatively low in comparison with adaptive grid approach
in phreatic-surface models. The mixed-hybrid formulation gives the flow field approx-
imation suitable for finite-volume reaction-transport models. This model was used in
the real-world application for the simulation of the mines’ flooding as it is shown in
subsequent contributions from Liberec flow and transport modelling group from their
Laboratory devoted to modelling of ecological processes.
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