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GATEAUX DIFFERENTIABILITY FOR FUNCTIONALS
OF TYPE ORLICZ-LORENTZ

F. E. LEVIS and H. H. CUENYA

Abstract. Let (Ω,A, µ) be a σ-finite nonatomic measure space and let Λw,φ be the Orlicz-Lorentz space. We study

the Gateaux differentiability of the functional Ψw,φ(f) =
∞
∫
0

φ(f∗)w. More precisely we give an exact characterization

of those points in the Orlicz-Lorentz space Λw,φ where the Gateaux derivative exists. This paper extends known results

already on Lorent spaces, Lw,q , 1 < q < ∞. The case q = 1, it has been considered.

1. Introduction

Let (Ω,A, µ) be a σ-finite nonatomic measure space, M0 = M0(Ω,A, µ) the class of µ-measurable functions on
Ω that are finite µ-a.e..

As usual, for f ∈M0 we denote by µf its distribution function and by f∗ its decreasing rearrangement. If two
functions f and g have the same distribution function we say that they are equimeasurable and we put f ∼ g.
The reader can see [1] for definitions and properties.

Now recall some basic notations and definitions. Let φ : R+ → R+, be differentiable, convex, φ(0) = 0, φ(t) > 0
for t > 0 and a weight function w : (0, γ) → R+, for γ ≤ ∞, be nonincreasing and locally integrable with respect
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to the Lebesgue measure m. For f ∈M0 let

Ψw,φ(f) =
∫ ∞

0

φ(f∗(t))w(t)dm(t).

We consider the Orlicz-Lorentz space

Λw,φ := {f ∈M0 : Ψw,φ(λf) < ∞ for all λ > 0}.

It is clear that w = const, Λw,φ becomes an ordinary Orlicz space Lφ. On the other hand setting φ(t) = tq,
w(t) = t

q
p−1 we obtain the Lorentz space Lp,q in the case 1 ≤ q ≤ p < ∞ and Ψw,φ(f) = ‖f‖q

pq.
It is well known that the functional Ψw,φ : M0 → [0,∞] is an orthogonally subadditive convex modular and

Ψw,φ(f) = supv∼w

∫∞
0

φ(|f |)v, (see [7]). In [2] the authors make the following assertion: If 1 < q < ∞ and
the weight w is strictly decreasing, it is known that Lw,q has a Gateaux differentiable norm at f if and only if
µ{|f | = s} = 0 for any s > 0. However we observe that the Corollary 3 in [2] does not hold when q = 1. In
section 4, we give an example which shows that the Corollary 3 in [2] is not true. So, we can not get in this case
the set of points where the Gateaux derivative exists.

Our main purpose in this paper it will be to give an exact characterization of those points in Λw,φ where there
is the Gateaux derivative of the functional Ψw,φ, when φ is differentiable and w is a stritly decreasing function.
We remark that this work generalizes the known results over differentibility in Lorentz spaces for 1 < q < ∞.

For f, h ∈ Λw,φ, we will use in this work the one-sided Gateaux derivatives γ+(f, h) = lims→0+
Ψw,φ(f+sh)−Ψw,φ(f)

s ,
γ−(f, h) = lims→0−

Ψw,φ(f+sh)−Ψw,φ(f)
s .

Definition 1.1. We say that a function f ∈ Λw,φ is a smooth point if there exists the Gateaux derivative of
the functional Ψw,φ in f , i.e., if γ+(f, h) = γ−(f, h) for all h ∈ Λw,φ.We denote it by γ(f, h).

Let f ∈ Λw,φ. By redefining f , if necessary, on a set of µ-measure zero, we may assume that |f | and f∗ have
the same non-null range, say R(f). Since f∗ is decreasing, if λ ∈ R(f), each If (λ) = {t > 0 : f∗(t) = λ} is either
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a singleton or an interval. The case where If (λ) is an interval, can occur for at most countably many values of
λ, say W (f). We introduce the following sets, which will play an important role later,

E(f) = Ω−
⋃

λ∈W (f)

Cf (λ) where Cf (λ) = {x ∈ Ω:|f(x)| = λ},

Ew,φ = {f ∈ Λw,φ − {0} : µ(supp(f)− E(f)) = 0}
and

∆w,φ = Ew,φ ∩ {f ∈ Λw,φ : µ(Ω− supp(f)) = 0 or m(supp(f∗)) = ∞}
where m is the Lebesgue measure and supp(f) is the support of the function f .

Let us now agree on some terminology. A function σ : (Ω, µ) → (S, ν) is called a measure preserving transforma-
tion (m.p.t) if for each ν-measurable set I ⊂ S, σ−1(I) is µ-measurable and µ(σ−1(I)) = ν(I). It is very important
to emphasize that any m.p.t. induce equimeasurability, that is, if g ∈ M0(S, ν) then |g| ◦ σ is a µ-measurable
function on Ω and |g| ◦ σ ∼ |g|.

If f ∈ Λw,φ, then limt→∞ f∗(t) = 0. In consequence, by Ryff Theorem (see [1]) there is a m.p.t. σ : supp(f) →
supp(f∗) such that |f | = f∗ ◦ σ µ-a.e. on supp(f). We denote such a σ by σf and we observe that σf satisfies
µf (|f |) ≤ σf on supp(f).

2. A characterization of the smooth points in Λw,φ when φ′+(0) = 0

In this section, we obtain a characterization of smooth points in the Orlicz-Lorentz space Λw,φ, when φ′+(0) = 0.
More precisely, we prove that the set of smooth points in this Λw,φ, is Ew,φ.

For the proof of the main theorem, we need some auxiliary lemmas.

Lemma 2.1. Let f, h ∈ Λw,φ, A := supp(h)− supp(f) and s a nonzero real number be. If µ(A) > 0, then
there is a m.p.t σf+sh such that |f + sh| = (f + sh)∗ ◦ σf+sh µ-a.e on supp(f + sh) and σhχA

≤ σf+sh µ-a.e on
A, where σhχA

is given by Ryff in [1].
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Proof. From [1] as aλ = µ(ChχA
(λ)) < ∞,

σhχA
(x) =

{
inf{t : x ∈ Eλ,t}+ µhχA

(λ) if λ ∈ W (hχA), x ∈ ChχA
(λ)

µhχA
(λ) otherwise

where {Eλ,t : 0 ≤ t ≤ aλ} is an increasing family of µ-measurable subsets (i.f.m.s) of ChχA
(λ) such that µ(Eλ,t) = t

for 0 ≤ t ≤ aλ.
For each λ ∈ R(f + sh) we define a function αλ : Cf+sh(λ) → If+sh(λ) in the following way. If λ /∈ W (f + sh),

then If+sh(λ) is a singleton and we define αλ(x) = µf+sh(λ). Now suppose that λ ∈ W (f + sh). Since
|s|W (hχA) ⊂ W (f + sh) then λ /∈ |s|W (hχA) or there is a β ∈ W (hχA) such that λ = |s|β. In the first case,
let αλ be the m.p.t given in [1], proposition II.7.4. For the second case, we have ChχA

(β) ⊂ Cf+sh(λ). We call
D := Cf+sh(λ)−ChχA

(β) and kλ = µ(D). If kλ = 0 then aβ = µ(Cf+sh(λ)). Here we consider {Eβ,t : 0 ≤ t ≤ aβ}
an i.f.m.s of Cf+sh(λ) with µ(Eβ,t) = t, 0 ≤ t ≤ aβ and the mapping αλ(x) = inf{t : x ∈ Eβ,t} + µf+sh(λ) is a
m.p.t Finally, if kλ > 0 let {Rλ,t : 0 ≤ t ≤ kλ} be an i.m.f.s of D such that µ(Rλ,t) = t, 0 ≤ t ≤ kλ. Then

Uλ,t =
{

Eβ,t if 0 ≤ t ≤ aβ

Rt−aβ
∪ ChχA

(β) if aβ < t ≤ aβ + kλ

is an i.f.m.s of Cf+sh(λ) such that µ(Uλ,t) = t, 0 ≤ t ≤ aβ + kλ. So, αλ(x) = inf{t : x ∈ Uβ,t} + µf+sh(λ) is a
m.p.t.

Now, we define σf+sh : supp(f + sh) → supp(f + sh)∗ by

σf+sh(x) = αλ(x), (λ ∈ R(f + sh), x ∈ Cf+sh(λ)) .

Clearly, σf+sh is a m.p.t and |f + sh| = (f + sh)∗ ◦ σf+sh µ-a.e on supp(f + sh). On the other hand, for x ∈ A
and λ = |h(x)|, we have x ∈ ChχA

(λ) ⊂ Cf+sh(|s|λ). Since µshχA
≤ µf+sh, if λ ∈ W (hχA), we get σhχA

(x) ≤
inf{t : x ∈ Eλ,t}+ µf+sh(|s|λ) = σf+sh(x). If λ /∈ W (hχA), σhχA

(x) = µhχA
(λ) ≤ µf+sh(|s|λ) ≤ σf+sh(x). The

proof is complete. �

Henceforth, we consider in this paper the m.p.t σf+sh given in lemma 2.1
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Lemma 2.2. Let f, h ∈ Λw,φ. If f∗ is continuous at t0 then

lim
s→0

(f + sh)∗(t0) = f∗(t0).

Proof. Let (sn)n∈N be an arbitrary sequence such that limn→∞ sn = 0. As limn→∞ |f + snh| = |f |, it is well
known that f∗(t) ≤ limn(f + snh)∗(t) for all t ≥ 0.

Using a property of the decreasing rearrangement we obtain for m ∈ N and t ≥ 0, (f + snh)∗(t) = (f +
snh)∗

(
m

m+1 t + 1
m+1 t

)
≤ f∗

(
m

m+1 t
)

+ |sn|h∗
(

1
m+1 t

)
. Therefore, we have limn(f + snh)∗(t) ≤ f∗

(
m

m+1 t
)
. As

f∗ is continuous in t0, taking limit for m →∞, we have

lim
n

(f + snh)∗(t0) ≤ f∗(t0).

The proof is complete. �

Lemma 2.3. Let A, {An}n∈N and {Bn}n∈N be subsets of Ω such that µ(Bn −An) = 0 for all n ∈ N and
A ⊂ limn Bn =: B0. If A0 := limn An then µ(A) = µ(A ∩A0).

Proof. We note that

A = (A ∩A0) ∪ (A ∩ ∪∞n=1(Bn −An)) .(2.1)

In fact, if x ∈ A, there exists m ∈ N such that x ∈
⋂∞

n=m Bn. Suppose that x /∈ A0 then there exists k ∈ N,
k ≥ m such that x /∈ Ak. Thus x ∈ Bk −Ak. The reciprocal inclusion is obvious, so (2.1) is true.
Since µ(Bn −An) = 0 for all n ∈ N, (2.1) implies that µ(A) = µ(A ∩A0). �

Lemma 2.4. Let f ∈ Λw,φ and (sn)n∈N be such that µ(E(f)) > 0 and limn→∞ sn = 0. Then for all
h ∈ Λw,φ,

lim
n→∞

σf+snh(x) = σf (x)

µ-a.e on E(f) ∩ supp(f).
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Proof. Let A := E(f) ∩ {x ∈ supp(f) : |f(x)| = f∗ ◦ σf (x)}, Bn := supp(f + snh) and An := {x ∈ supp(f +
snh) : |f(x)+snh(x)| = (f +snh)∗ ◦σf+snh(x)}. Clearly A ⊂ limn Bn. Since |f +snh| = (f +snh)∗ ◦σf+snh µ-a.e
on supp(f + snh), we have µ(Bn −An) = 0 for all n ∈ N. As µ(E(f)∩ supp(f)) = µ(A), from lemma 2.3 we get

µ(E(f) ∩ supp(f)) = µ(A ∩ lim
n

An).

We will prove that limn→∞ σf+snh(x) = σf (x) for all x ∈ A ∩ limn An. Assume that it is false, then there
exist x ∈ A ∩ limn An, ε > 0 and a subsequence of (sn)n∈N which we again denote by (sn)n∈N such that
|σf+snh(x)− σf (x)| > ε.
Consider the following sets

N = {n ∈ N : σf+snh(x) > σf (x) + ε} and M = {n ∈ N : σf+snh(x) < σf (x)− ε}.
Clearly some of these sets must be infinite. Suppose that card(N )= ∞. Since the points of noncontinuity of f∗

are at most countably, there exists 0 < δ < ε, such that f∗ is continuous in σf (x) + δ.
As x ∈ A, from lemma 2.2 we have

|f(x)| = f∗(σf (x)) > f∗(σf (x) +
δ

2
) ≥ f∗(σf (x) + δ) = lim

n→∞
(f + snh)∗(σf (x) + δ).

Since x ∈ limn An, for n large enough in N we obtain

|f(x) + snh(x)| = (f + snh)∗ ◦ σf+snh(x).

Therefore
lim

n→∞
(f + snh)∗(σf (x) + δ) ≥ lim

n→∞
(f + snh)∗(σf+snh(x)) = |f(x)|.

It is a contradiction, so the card(N ) must be finite.
We now suppose that card(M)= ∞. Then

|f(x)| = f∗(σf (x)) < f∗(σf (x)− ε

2
) ≤ f∗(σf (x)− ε) ≤ lim

n
(f + snh)∗(σf (x)− ε).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For n large enough in M, (f + snh)∗(σf (x)− ε) ≤ |f(x) + snh(x)|, and we obtain

lim
n

(f + snh)∗(σf (x)− ε) ≤ |f(x)|,

which is other contradiction, so the card(M) must be finite. The proof is complete. �

Lemma 2.5. Let f, h ∈ Λw,φ be with µ(E(f)) > 0. If C := E(f) ∩ supp(f) then

lim
s→0

∫
supp(f+sh)∩C

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ =

∫
C

w(σf )φ′(|f |) sg(f)hdµ

Proof. Let (sn)n∈N be an arbitrary sequence such that limn→∞ sn = 0 and let (wn)n∈N be a sequence of
µ-measurable functions on Ω defined by

wn(x) =
{

w(σf+snh(x)) if x ∈ supp(f + snh) ∩ C
0 otherwise.

Clearly ∫
supp(f+snh)∩C

w(σf+snh)
φ(|f + snh|)− φ(|f |)

sn
dµ =

∫
C

wn
φ(|f + snh|)− φ(|f |)

sn
dµ.

Let H := {t ∈ supp(f∗) : w is continuous at t} and D := A∩limn An∩σ−1
f (H) where A and An are the sets defined

in lemma 2.4 Then µ(D) = µ(C). In fact, by the proof of the lemma 2.4 we have µ(A∩ limn An) = µ(C). On the
other hand, as supp(f)− σ−1

f (H) ⊂ σ−1
f (supp(f∗)−H) and µ(σ−1

f (supp(f∗)−H)) = m(supp(f∗)−H) = 0, we
get µ(D) = µ(A ∩ limn An).

So, if x ∈ D we get
lim

n→∞
wnφ(2(|f |+ |h|)) = w(σf )φ(2(|f |+ |h|)) on D
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and

lim
n→∞

wn
φ(|f + snh|)− φ(|f |)

sn
= w(σf )φ′(|f |) sg(f)h on D.

Moreover, for all n ∈ N such that 0 < |sn| ≤ 1,
∣∣∣wn

φ(|f+snh|)−φ(|f |)
sn

∣∣∣ ≤ wnφ(2(|f |+ |h|)). On the other hand,∫
supp(f)

w(σf )φ(2(|f |+ |h|))dµ ≤
∫ ∞

0

wφ(2(|f |+ |h|)∗)dt < ∞.(2.2)

Then by the generalized Lebesgue convergence theorem we have

lim
n→∞

∫
C

wn
φ(|f + snh|)− φ(|f |)

sn
dµ =

∫
C

w(σf )φ′(|f |) sg(f)hdµ.

�

Remark. We observe that the lemma 2.5 holds when φ′+(0) > 0.

Theorem 2.6. If f ∈ Ew,φ and h ∈ Λw,φ then

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Proof. Since
wφ(f∗) ∼ w(σf )φ(|f |) and wφ((f + sh)∗) ∼ w(σf+sh)φ(|f + sh|)

we have

Ψw,φ(f)=
∫

supp (f)

w(σf )φ(|f |)dµ, Ψw,φ(f + sh)=
∫

supp (f+sh)

w(σf+sh)φ(|f + sh|)dµ.
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As (w(σf ))∗ = w in [0, µ(supp(f)), by the Hardy-Littlewood inequality (see [1])∫
supp (f)

w(σf )φ(|f + sh|)dµ ≤
∫ ∞

0

w(t)φ((f + sh)∗(t))dt.

In consequence, for all s > 0 we get

1
s

(∫
supp (f+sh)

w(σf+sh)φ(|f + sh|)dµ−
∫
supp (f)

w(σf )φ(|f + sh|)dµ

)
≥ 0.

So
Ψw,φ(f + sh)−Ψw,φ(f)

s
≥
∫
supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ.(2.3)

Analogously with f + sh to instead of f , we get for s > 0 the inequality

Ψw,φ(f + sh)−Ψw,φ(f)
s

≤
∫
supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ.

(2.4)

Similarly for all s < 0∫
supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ ≤ Ψw,φ(f + sh)−Ψw,φ(f)

s

≤
∫

supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ.

(2.5)
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For all s, 0 < |s| ≤ 1,
∣∣∣w(σf )φ(|f+sh|)−φ(|f |)

s

∣∣∣ ≤ w(σf )φ(2(|f | + |h|)). Thus, from (2.4) and the Lebesgue
convergence theorem we get

lim
s→0

∫
supp (f)

w(σf )
φ(|f + sh|)− φ(|f |)

s
dµ =

∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

We now consider A := supp(h)− supp(f) and the following functions

H(s) =
∫

supp (f+sh)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ,

K(s) =
∫

A

w(σf+sh)
φ(|sh|)

s
dµ,

and

L(s) =
∫
supp (f+sh)∩E(f)∩supp (f)

w(σf+sh)
φ(|f + sh|)− φ(|f |)

s
dµ.

Since f ∈ Ew,φ we have H(s) = L(s) + K(s). In addition, by lemma 2.5 we get

lim
s→0

L(s) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

If µ(A) = 0, then K(s) = 0. In otherwise, from lemma 2.1, we get∣∣∣∣w(σf+sh)
φ(|sh|)

s

∣∣∣∣ ≤ w(σhχA
)
φ(|sh|)
|s|

µ-a.e on A.

Moreover, lims→0 w(σhχA
)φ(|sh|)

|s| = 0, w(σhχA
)φ(|sh|)

|s| ≤ w(σhχA
)φ(|h|) if |s| ≤ 1 and∫

A

w(σhχA
)φ(|h|)dµ ≤ Ψw,φ(h) < ∞.
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Thus by generalized Lebesgue convergence theorem, lims→0 K(s) = 0, which implies that

lim
s→0

H(s) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Finally from (2.3), (2.4) and (2.5) we obtain

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

�

Corollary 2.7. For all f ∈ Ew,φ,

Γ(f) = w(µf (|f |))φ′(|f |) sg(f)

where Γ denotes the Gateaux gradient operator.

Proof. Since σf (x) = µf (|f(x)|) on supp(f), the corollary is an immediate consequence of theorem 2.6 �

Next, we establish the main result of this section.

Theorem 2.8. Suppose that w is a strictly decreasing function. f ∈ Λw,φ is a smooth point if only if f ∈ Ew,φ.

Proof. The sufficient condition follows from theorem 2.6.
Suppose now that f /∈ Ew,φ. If f = 0 then for any h ∈ Λw,φ − {0}, γ+(f, h) 6= γ−(f, h), so f is not a smooth

point. Assume f 6= 0. Then there exists r > 0 such that µ(Cf (r)) = a > 0. As µ is nonatomic, there is a set
A ⊂ Cf (r) such that µ(A) = a

4 . We define h ∈ Λw,φ by h(x) = χA(x) sg(f(x)). For s > 0, we call fs = f + sh and
gs = f−sh. From the definition of h, for sufficiently small positive s, we have |fs| = |f |+s|h| and |gs| = |f |−s|h|.
Next, if s < r and µf (r) < µf (r + s) + a

4 , we obtain

µfs(λ) =
{

µf (λ) + a
4 if r ≤ λ < r + s

µf (λ) otherwise
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and

f∗s (t) =

 r + s if µf (r + s) ≤ t < µf (r + s) + a
4

f∗
(
t− a

4

)
if µf (r + s) + a

4 ≤ t < µf (r) + a
4

f∗(t) otherwise

Thus,

Ψw,φ(fs)−Ψw,φ(f)
s

=
∫ µf (r)

µf (r+s)

w(t)
φ(r + s)− φ(f∗(t))

s
dt

+
∫ µf (r+s)+ a

4

µf (r)

w(t)
φ(r + s)− φ(r)

s
dt

+
∫ µf (r)+ a

4

µf (r+s)+ a
4

w(t)
φ(f∗(t− a

4 ))− φ(r)
s

dt.

It is easy to prove that the first and third terms in the equality above tend to zero as s → 0. A straightforward
computation leads to

γ+(f, h) = φ′(r)
∫ µf (r)+ a

4

µf (r)

w(t)dt.
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Since φ(t) > 0 for t > 0, φ′(r) > 0. On the other hand, if s < r and µf (r − s)− a
4 < µf (r) + a, we obtain, in a

similar way,
Ψw,φ(gs)−Ψw,φ(f)

−s
=
∫ µf (r−s)− a

4

µf (r)+ 3
4 a

w(t)
φ(r)− φ(f∗(t + a

4 ))
s

dt

+
∫ µf (r)+a

µf (r−s)− a
4

w(t)
φ(r)− φ(r − s)

s
dt

+
∫ µf (r−s)

µf (r)+a

w(t)
φ(f∗(t))− φ(r − s)

s
dt.

Therefore

γ−(f, h) = φ′(r)
∫ µf (r)+a

µf (r)+ 3
4 a

w(t)dt.

Since w is strictly decreasing, γ−(f, h) < γ+(f, h). We conclude that f is not a smooth point. �

Remark. We observe that the necessary condition of theorem 2.8 holds when φ′+(0) > 0.

3. A characterization of the smooth points in Λw,φ when φ′+(0) > 0

In this section we give a characterization of smooth points in Orlicz-Lorentz space Λw,φ when φ′+(0) > 0. We will
use a similar technical to the developed in the section two. We assume here that lim

t→∞
w(t) = 0.

We begin with two auxiliary lemmas.

Lemma 3.1. Let f, h ∈ Λw,φ. If µf is continuous at λ then

lim
s→0

µf+sh(λ) = µf (λ).
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Proof. Let s be such that 0 < |s| < 1. Using properties of the distribution function we have

µf+sh(λ) = µf+sh

(
(1−

√
|s|)λ +

√
|s|λ

)
≤ µf

(
(1−

√
|s|)λ

)
+ µh

(√
|s|
|s|

λ

)
,

(3.1)

lims→0 µh

(√
|s|
|s| λ

)
= 0 and µf (λ) ≤ lims µf+sh(λ). In addition, by hypotheses, we have lims→0 µf ((1−

√
|s|)λ) =

µf (λ). From (3.1), lims µf+sh(λ) ≤ µf (λ). The proof follows immediately. �

Lemma 3.2. Let f ∈ Ew,φ and h ∈ Λw,φ be. If m(supp(f∗)) = ∞ then

lim
s→0

σf+sh(x) = ∞ for all x ∈ supp(h)− supp(f).

Proof. If supp(h) − supp(f) = ∅, it is trivial. In either case, let x ∈ supp(h) − supp(f). Given M > 0,
since m(supp(f∗)) = ∞ we can choice s1 such that µf (|s1h(x)|) > M . As f ∈ Ew,φ, µf is continuous.
Then by lemma 3.1 lims→0 µf+sh(|s1h(x)|) = µf (|s1h(x)|). Thus µf+sh(|s1h(x)|) > M for sufficiently small s. It
follows that M < µf+sh(|sh(x)|) for sufficiently small s. Finally, for the last remark in the introduction we have
µf+sh(|sh(x)|) ≤ σf+sh(x). The proof is complete. �

Theorem 3.3. If f ∈ ∆w,φ and h ∈ Λw,φ then

γ(f, h) =
∫
supp (f)

w(σf )φ′(|f |) sg(f)hdµ.

Proof. We proceed analogously to the proof of theorem 2.6. According to the remark of lemma 2.5, we only
need to prove that lims→0 K(s) = 0. Let A := supp(h) − supp(f). If µ(Ω − supp(f)) = 0 then µ(A) = 0.
Therefore K(s) ≡ 0. Suppose that µ(A) > 0 and m(supp(f∗)) = ∞. From lemma 2.1, σhχA

(x) ≤ σf+sh(x) for all
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x ∈ A. In addition,
∫

A
w(σhχA

)φ(|h|)dµ ≤ Ψw,φ(h) < ∞. Therefore by lemma 3.2 and the Lebesgue convergence
theorem, lims→0 K(s) = 0. �

Corollary 3.4. For all f ∈ ∆w,φ,

Γ(f) = w(µf (|f |))φ′(|f |) sg(f)

where Γ denotes the Gateaux gradient operator.

Theorem 3.5. Suppose that w is a strictly decreasing function. f ∈ Λw,φ is a smooth point if only if f ∈ ∆w,φ.

Proof. The sufficient condition is immediate consequence of theorem 3.3.
Assume that f /∈ ∆w,φ. If f /∈ Ew,φ then f is not a smooth point because the remark of theorem 2.8. We

now suppose that f ∈ Ew,φ, so µ(Ω − supp(f)) > 0 and m(supp(f∗)) < ∞. Take a set A ⊂ Ω − supp(f) with
0 < µ(A) < ∞ and let h(x) = χ

A
(x). A straightforward computation leads to

lim
s→0±

Ψw,φ(f + sh)−Ψw,φ(f)
s

= ±φ′+(0)
∫ µf (0)+µ(A)

µf (0)

w(t)dt(3.2)

i.e., γ+(f, h) 6= γ−(f, h). �

Remark. It is well known that Ew,φ and ∆w,φ are dense sets in the Lorentz space because the points of
Gateaux-differentiability of the norm in a separable space form always a dense set.

4. An example

In [2], the authors have established the following corollary for 1 ≤ q < ∞ :

Corollary. Let f and h be any elements in Lw,q, Then

lim
s↓0

‖f + sh‖q − ‖f‖q

s
= lim

s↑0

‖f + sh‖q − ‖f‖q

s
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if and only if for all λ > 0, µ(|f | = λ) > 0 implies h · sg(f) is constant on |f |−1(λ).
However, next we give an example which shows that the Corollary does not hold for q = 1.
Example. Let f ∈ Lw,1(0,∞) be defined by f(x) = (1− x)χ[0,1](x). According to corollary 3, f should be a

smooth point, however f /∈ ∆p,1.
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