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DISCRETE METHODS AND EXPONENTIAL DICHOTOMY
OF SEMIGROUPS

A. L. SASU

Abstract. The aim of this paper is to characterize the uniform exponential dichotomy of semigroups of linear op-

erators in terms of the solvability of discrete-time equations over N. We give necessary and sufficient conditions
for uniform exponential dichotomy of a semigroup on a Banach space X in terms of the admissibility of the pair
(l∞(N, X), c00(N, X)). As an application we deduce that a C0-semigroup is uniformly exponentially stable if and only
if the pair (Cb(R+, X), C00(R+, X)) is admissible for it and a certain subspace is closed and complemented in X.

1. Introduction

In the last decades an impressive progress has been made in the study of the exponential dichotomy of evolution
equations (see [1]–[5], [8]–[10], [12]–[14], [16], [18], [20]–[22], [24], [25], [27]). New methods have been involved
in order to study classical and new concepts of exponential dichotomy. Evolution semigroups have proved to be
very interesting tools in the study of the exponential dichotomy of evolution families and of linear skew-product
flows (see [3], [8]–[10]). Another important method is the use of the discrete-time techniques (see [2], [4], [7], [8],
[10], [13], [14], [25]).

Recent results concerning the exponential dichotomy of C0-semigroups have been proved by Phóng in [24],
where the author gives necessary and sufficient conditions for exponential dichotomy in terms of the unique
solvability of an integral equation on BUC(R, X) and on APR(R, X), respectively.
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The aim of this paper is to give necessary and sufficient conditions for exponential dichotomy of semigroups in
terms of the solvability of a discrete-time equation on N. We propose a direct approach for the characterization
of the uniform exponential dichotomy of an exponentially bounded semigroup in terms of the admissibility of
the pair (l∞(N, X), c00(N, X)). As an application we obtain that a C0-semigroup is uniformly exponentially
dichotomic if and only if the pair (Cb(R+, X), C00(R+, X)) is admissible for it and a certain subspace is closed
and complemented in X.

2. Main results

Let X be a real or complex Banach space. The norm on X and on B(X)-the Banach algebra of all bounded linear
operators on X, will be denoted by ‖ · ‖.

Definition 2.1. A family T = {T (t)}t≥0 ⊂ B(X) is called semigroup if T (0) = I and T (t + s) = T (t)T (s),
for all t, s ≥ 0.

Definition 2.2. A semigroup T = {T (t)}t≥0 is said to be:
(i) exponentially bounded if there are M ≥ 1 and ω > 0 such that ‖T (t)‖ ≤ Meωt, for all t ≥ 0;
(ii) C0-semigroup if lim

t↘0
T (t)x = x, for all x ∈ X.

Remark. Every C0-semigroup is exponentially bounded (see [23]).

Definition 2.3. A semigroup T = {T (t)}t≥0 is said to be uniformly exponentially dichotomic if there exist
a projection P ∈ B(X) and two constants K ≥ 1 and ν > 0 such that:

(i) T (t)P = PT (t), for all t ≥ 0;
(ii) T (t)| : KerP → KerP is an isomorphism, for all t ≥ 0;
(iii) ‖T (t)x‖ ≤ Ke−νt‖x‖, for all x ∈ Im P and all t ≥ 0;
(iv) ‖T (t)x‖ ≥ 1

K eνt‖x‖, for all x ∈ KerP and all t ≥ 0.
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Definition 2.4. Let T = {T (t)}t≥0 be a semigroup on the Banach space X and let Y be a linear subspace
of X. Y is said to be T-invariant if T (t)Y ⊂ Y , for all t ≥ 0.

Lemma 2.5. Let T = {T (t)}t≥0 be an exponentially bounded semigroup on the Banach space X and let Y
be a T-invariant subspace. The following assertions are equivalent:

(i) there are K ≥ 1 and ν > 0 such that:

‖T (t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0,∀x ∈ Y ;

(ii) there are t0 > 0 and c ∈ (0, 1) such that ‖T (t0)x‖ ≤ c‖x‖, for all x ∈ Y .

Proof. It is a simple exercise. �

Lemma 2.6. Let T = {T (t)}t≥0 be an exponentially bounded semigroup on the Banach space X and let Y
be a T-invariant subspace. The following assertions are equivalent:

(i) there are K ≥ 1 and ν > 0 such that:

‖T (t)x‖ ≥ 1
K

eνt‖x‖, ∀t ≥ 0,∀x ∈ Y ;

(ii) there are t0 > 0 and c > 1 such that ‖T (t0)x‖ ≥ c‖x‖, for all x ∈ Y .

Proof. It is a trivial exercise. �

We denote by
l∞(N, X) = {s : N → X : sup

n∈N
‖s(n)‖ < ∞}

c0(N, X) = {s : N → X : lim
n→∞

s(n) = 0}

and by c00(N, X) = {s ∈ c0(N, X) : s(0) = 0}. With respect to the norm |||s||| = sup
n∈N

‖s(n)‖, these spaces are

Banach spaces.
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Let T = {T (t)}t≥0 be an exponentially bounded semigroup on X. We consider the discrete-time equation:

(Ed) γ(n + 1) = T (1)γ(n) + s(n + 1), n ∈ N

with γ ∈ l∞(N, X) and s ∈ c00(N, X).

Definition 2.7. We say that the pair (l∞(N, X), c00(N, X)) is admissible for T if for every s ∈ c00(N, X)
there is γ ∈ l∞(N, X) such that the pair (γ, s) verifies the equation (Ed).

In what follows we shall establish the connection between the uniform exponential dichotomy and the admis-
sibility of the pair (l∞(N, X), c00(N, X)).

We consider the linear subspace

X1 = {x ∈ X : sup
t≥0

‖T (t)x‖ < ∞}.

Throughout this paper, we suppose that X1 is a closed linear subspace which has a T-invariant (closed) comple-
ment X2 such that X = X1 ⊕X2. We denote by P the projection corresponding to the above decomposition, i.e.
Im P = X1 and KerP = X2.

Remark. T (t)P = PT (t), for all t ≥ 0.

Remark. If s1, s2 ∈ c00(N, X) and γ ∈ l∞(N, X) such that the pairs (γ, s1) and (γ, s2) verify the equation
(Ed), then s1 = s2.

Hence it makes sense to define the linear subspace

D(H) = {γ ∈ l∞(N, X) : ∃s ∈ c00(N, X) such that (γ, s) satisfies (Ed)}
and the linear operator H : D(H) → c00(N, X),Hγ = s.

Remark. H is a closed linear operator and KerH = {γ : γ(n) = T (n)γ(0) and γ(0) ∈ Im P}.

We consider the linear subspace D̃(H) = {γ ∈ D(H) : γ(0) ∈ KerP}.
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Proposition 2.8. If the pair (l∞(N, X), c00(N, X)) is admissible for T, then
(i) there is ν ∈ (0, 1) such that |||Hγ||| ≥ ν|||γ|||, for all γ ∈ D̃(H);
(ii) for every t ≥ 0, the restriction T (t)| : KerP → KerP is an isomorphism.

Proof. (i) It is easy to see that the restriction H| : D̃(H) → c00(N, X) is bijective. Considering the graph norm
|||γ|||H = |||γ||| + |||Hγ||| on D̃(H), we have that (D̃(H), ||| · |||H) is a Banach space and hence there is ν ∈ (0, 1)
such that

|||Hγ||| ≥ ν|||γ|||H ≥ ν|||γ|||, ∀γ ∈ D̃(H)
which completes the proof of (i).

(ii) It is sufficient to show that T (1)| : KerP → KerP is an isomorphism. Let x ∈ KerP and s, γ : N → X
given by

s(n) =
{
−T (1)x, n = 1

0 , n 6= 1 γ(n) =
{

x, n = 0
0, n ∈ N∗.

It is easy to see that the pair (γ, s) verifies the equation (Ed). Since γ(0) ∈ KerP , from (i) we obtain that

‖T (1)x‖ = |||s||| ≥ ν|||γ||| = ν‖x‖.(2.1)

Since ν does not depend on x, from (2.1) we deduce that T (1)| is injective.
Let x ∈ KerP and

s : N → X, s(n) =
{
−x, n = 1
0 , n 6= 1.

From hypothesis there is γ ∈ l∞(N, X) such that the pair (γ, s) verifies the equation (Ed). Then, we have that
γ(n) = T (n)γ(1), for all n ≥ 2, which shows that γ(1) ∈ X1 = Im P .

Let x1 ∈ Im P and x2 ∈ KerP such that γ(0) = x1 + x2. Since γ(1) = T (1)γ(0) − x, we obtain that
γ(1) − T (1)x1 = T (1)x2 − x, so x = T (1)x2. This shows that T (1)| : KerP → KerP is surjective, which
completes the proof. �
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Theorem 2.9. If the pair (l∞(N, X), c00(N, X)) is admissible for the semigroup T = {T (t)}t≥0, then there
exist K ≥ 1 and ν > 0 such that

‖T (t)x‖ ≤ Ke−νt‖x‖, ∀t ≥ 0,∀x ∈ Im P.

Proof. By Proposition 2.8 (i), there is ν ∈ (0, 1) such that

|||Hγ||| ≥ 2ν|||γ|||, ∀γ ∈ D̃(H).(2.2)

Let p ∈ N, p ≥ 2 be such that νeν(p−1) ≥ ‖T (1)‖.
Let x ∈ Im P \ {0} and ∆x = {n ∈ N : T (n)x 6= 0}. We have the following situations:

1. {0, . . . , p} ⊂ ∆x. Define the sequences s, γ : N → X by

s(n) =
χ{1,...,p}(n)
‖T (n)x‖

T (n)x γ(n) =
n∑

k=0

χ{1,...,p}(k)
‖T (k)x‖

T (n)x

where χ{1,...,p} denotes the characteristic function of the set {1, . . . , p}. Then s ∈ c00(N, X) and since x ∈ Im P ,
it follows that γ ∈ l∞(N, X). It is easy to see that the pair (γ, s) verifies the equation (Ed). Since γ(0) = 0 we
have that γ ∈ D̃(H). Then, from relation (2.2) we have that

1 = |||s||| = |||Hγ||| ≥ 2ν|||γ|||.
This inequality shows that

2ν
k∑

j=1

1
‖T (j)x‖

≤ 1
‖T (k)x‖

, ∀k ∈ {1, . . . , p}.(2.3)

Let

δ(k) =
k∑

j=1

1
‖T (j)x‖

, k ∈ {1, . . . , p}.
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If k ∈ {2, . . . , p}, then
1

‖T (k)x‖
≥ 2νδ(k − 1) ≥ (eν − 1)δ(k − 1)

so δ(k) ≥ eνδ(k − 1). It follows that

1
‖T (p)x‖

≥ 2νδ(p) ≥ 2νeν(p−1)δ(1) =
2νeν(p−1)

‖T (1)x‖
.(2.4)

By relation (2.4) we obtain that

‖T (p)x‖ ≤ ‖T (1)x‖
2νeν(p−1)

≤ 1
2
‖x‖.

2. p /∈ ∆x. Then T (p)x = 0.
It follows that

‖T (p)x‖ ≤ 1
2
‖x‖, ∀x ∈ Im P.(2.5)

By relation (2.5) and Lemma 2.5 we conclude the proof. �

Theorem 2.10. If the pair (l∞(N, X), c00(N, X)) is admissible for the semigroup T = {T (t)}t≥0, then there
are K ≥ 1 and ν > 0 such that

‖T (t)x‖ ≥ 1
K

eνt‖x‖, ∀t ≥ 0,∀x ∈ KerP.

Proof. By Proposition 2.8 (i) there exists ν ∈ (0, 1) such that

|||Hγ||| ≥ ν|||γ|||, ∀γ ∈ D̃(H).

Let x ∈ KerP \ {0}. By Proposition 2.8 (ii) we deduce that T (n)x 6= 0, for all n ∈ N.
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For every p ∈ N∗, we consider the sequences

sp : N → X, sp(n) = −
χ{1,...,p}(n)
‖T (n)x‖

T (n)x

γp : N → X, γp(n) =
∞∑

k=n+1

χ{1,...,p}(k)
‖T (k)x‖

T (n)x.

Then sp ∈ c00(N, X) and γp ∈ l∞(N, X). Moreover, since

γp(0) =
( p∑

k=1

1
‖T (k)x‖

)
x ∈ KerP

we deduce that γp ∈ D̃(H). It is easy to see that the pair (γp, sp) verifies the equation (Ed), so

1 = |||sp||| = |||Hγp||| ≥ ν|||γp|||, ∀p ∈ N∗.

It follows that

ν

p∑
k=n+1

1
‖T (k)x‖

≤ 1
‖T (n)x‖

, ∀n, p ∈ N, n < p.(2.6)

By relation (2.6) we obtain that

ν

∞∑
k=n+1

1
‖T (k)x‖

≤ 1
‖T (n)x‖

, ∀n ∈ N.(2.7)

From (2.7) we have that
∞∑

k=n

1
‖T (k)x‖

≥ (ν + 1)
∞∑

k=n+1

1
‖T (k)x‖

, ∀n ∈ N.(2.8)
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Let n ∈ N∗ such that c = ν(1 + ν)n > 1. By relations (2.7) and (2.8) we deduce that

1
‖x‖

≥ ν
∞∑

k=1

1
‖T (k)x‖

≥ ν(1 + ν)n
∞∑

k=n+1

1
‖T (k)x‖

≥ c

‖T (n + 1)x‖
.

It follows that ‖T (n + 1)x‖ ≥ c‖x‖. Taking into account that n and c do not depend on x, we obtain that

‖T (n + 1)x‖ ≥ c‖x‖, ∀x ∈ KerP.

Then, from Lemma 2.6 we deduce the conclusion. �

Lemma 2.11. Let T = {T (t)}t≥0 be a semigroup on the Banach space X. If T is uniformly exponentially
dichotomic relative to the projection P , then X1 = Im P .

Proof. Obviously Im P ⊂ X1. Let K, ν be given by Definition 2.2. If x ∈ X1, then from

‖x− Px‖ ≤ Ke−νt‖T (t)(I − P )x‖
≤ Ke−νt(‖T (t)x‖+ Ke−νt‖Px‖), ∀t ≥ 0

we obtain that x ∈ Im P . So Im P = X1. �

The main result of this section is given by:

Theorem 2.12. An exponentially bounded semigroup T = {T (t)}t≥0 is uniformly exponentially dichotomic if
and only if the following statements hold:

(i) the pair (l∞(N, X), c00(N, X)) is admissible for T;
(ii) the subspace X1 is closed and it has a T-invariant complement.
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Proof. Necessity. Let P be given by Definition 2.2. If s ∈ c00(N, X), consider the sequence γ : N → X defined
by

γ(n) =
n∑

k=0

T (n− k)Ps(k)−
∞∑

k=n+1

T (k − n)−1
| (I − P )s(k)

where T (k)−1
| denotes the inverse of the operator T (k)| : KerP → KerP . Then γ ∈ l∞(N, X) and the pair (γ, s)

verifies the equation (Ed). It follows that the pair (l∞(N, X), c00(N, X)) is admissible for T.
From Lemma 2.11 we deduce that X1 = Im P . It follows that X1 is closed and it has a complement – KerP –

which is T-invariant.

Sufficiency. It results from Proposition 2.8, Theorem 2.9 and Theorem 2.10. �

3. Applications for the case of C0-semigroups

Let X be a Banach space. We denote by Cb(R+, X) the space of all bounded continuous functions v : R+ → X
and by C00(R+, X) = {v ∈ Cb(R+, X) : v(0) = lim

t→∞
v(t) = 0}.

Let T = {T (t)}t≥0 be a C0-semigroup on X. We consider the integral equation

(Ec) f(t) = T (t− s)f(s) +
∫ t

s

T (t− τ)v(τ) dτ, ∀t ≥ s ≥ 0

with f ∈ Cb(R+, X) and v ∈ C00(R+, X).

Definition 3.1. The pair (Cb(R+, X), C00(R+, X)) is said to be admissible for T if for every v ∈ C00(R+, X)
there is f ∈ Cb(R+, X) such that the pair (f, v) verifies the equation (Ec).

The central result of this section is:

Theorem 3.2. The C0-semigroup T = {T (t)}t≥0 is uniformly exponentially dichotomic if and only if
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(i) the pair (Cb(R+, X), C00(R+, X)) is admissible for T;
(ii) the subspace X1 is closed and it has a T-invariant complement.

Proof. Necessity. For v ∈ C00(R+, X), we consider the function f : R+ → X defined by

f(t) =
∫ t

0

T (t− s)Pv(s) ds−
∫ ∞

t

T (s− t)−1
| (I − P )v(s) ds

where T (s)−1
| denotes the inverse of the operator T (s)| : Ker P → KerP . It is easy to see that f ∈ Cb(R+, X)

and the pair (f, v) verifies the equation (Ec), so the pair (Cb(R+, X), C00(R+, X)) is admissible for T. From
Lemma 2.11 we deduce that X1 = Im P , so it is closed and it has a complement – KerP – which is T-invariant.

Sufficiency. Let α : [0, 1] → [0, 2] be a continuous function with the support contained in (0, 1) and
∫ 1

0
α(τ) dτ =

1. For s ∈ c00(N, X) we consider the function

v : R+ → X, v(t) = T (t− [t])s([t])α(t− [t]).

Then v is continuous and v(0) = 0. Moreover, if M ≥ 1 and ω > 0 are chosen such that ‖T (t)‖ ≤ Meωt,
for all t ≥ 0, then we have ‖v(t)‖ ≤ 2Meω‖s([t])‖, for all t ≥ 0, so v ∈ C00(R+, X). By hypothesis, there is
f ∈ Cb(R+, X) such that

f(t) = T (t− s)f(s) +
∫ t

s

T (t− τ)v(τ) dτ, ∀t ≥ s ≥ 0.

Then, for every n ∈ N, we obtain that

f(n + 1) = T (1)f(n) +
∫ n+1

n

T (n + 1− τ)v(τ) dτ

= T (1)f(n) + T (1)s(n).(3.1)
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Denoting by γ(n) = f(n) + s(n), for all n ∈ N, from (3.1) we deduce that

γ(n + 1) = T (1)γ(n) + s(n + 1), ∀n ∈ N

so the pair (γ, s) verifies the equation (Ed). Since s ∈ c00(N, X) and f ∈ Cb(R+, X), it follows that γ ∈ l∞(N, X).
So the pair (l∞(N, X), c00(N, X)) is admissible for T. By Theorem 2.12 we obtain the conclusion. �
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11. Massera J. L. and Schäffer J. J., Linear Differential Equations and Function Spaces, Academic Press, New York, (1966).

12. Megan M., Sasu B. and Sasu A. L., On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral
Equations Operator Theory 44 (2002), 71–78.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

13. Megan M., Sasu A. L. and Sasu B., Discrete admissibility and exponential dichotomy for evolution families, Discrete Contin.

Dynam. Systems 9 (2003), 383–397.
14. , Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows, Bull. Belg. Mat. Soc.

Simon Stevin 10 (2003), 1–21.
15. , Perron conditions for uniform exponential expansiveness of linear skew-product flows, Monatsh. Math. 138 (2003),

145-157.
16. , Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows, accepted for publication

in Integral Equations Operator Theory.
17. , Theorems of Perron type for uniform exponential stability of linear skew-product semiflows, accepted for publication in

Dynam. Contin. Discrete Impulsive Systems.
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