ON BOUNDED MODULE MAPS BETWEEN HILBERT MODULES OVER LOCALLY
C*-ALGEBRAS

M. JOITA

ABSTRACT. Let A be a locally C*-algebra and let E be a Hilbert A-module. We show that the algebra B4 (E) of
all bounded A-module maps on E is a locally m-convex algebra which is algebraically and topologically isomorphic
to LM (K a(FE)), the algebra of all left multipliers of K4 (E), where K 4(FE) is the locally C*-algebra of all ”compact “
A-module maps on E. Also we show that b(B4(E)), the algebra of all bounded elements in B4 (E), is a Banach algebra
which is isometrically isomorphic to By(4)(b(E)).

1. INTRODUCTION

A locally C*-algebra is a complete Hausdorff complex topological x-algebra A whose topology is determined by its
continuous C*-seminorms in the sense that the net {a;}; converges to 0 if and only if the net {p(a;)}; converges
to 0 for every continuous C*-seminorm p on A. In fact a locally C*-algebra is an inverse limit of C*-algebras.
Hilbert modules over locally C*-algebras generalize the notion of Hilbert C*-modules by allowing the inner
product to take values in a locally C*-algebra. In [9], Phillips showed that many results about multipliers of a
C*-algebra are valid for multipliers of a locally C*-algebra. Thus, he proved that M (A), the multiplier algebra of
alocally C*-algebra A, is a locally C*-algebra in the topology of seminorm [9, Theorem 3.14]. In this note we show
that any left multiplier of a locally C*-algebra A is automatically continuous (Proposition 3.4) and LM (A), the
algebra of left multipliers of A, is a complete locally m-convex algebra in the topology of seminorm (Theorem 3.5).
Also, Phillips shows that if F is a Hilbert module over a locally C*-algebra A, then the locally C*-algebra L 4(FE)
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of all adjointable maps on FE is isomorphic to M (K 4(F)), where K 4(F) is the locally C*-algebra of all ” compact “
A-module maps on E [9, Theorem 4.2]. This result is a generalization of Theorem 1 of [5] for Hilbert module
over locally C*-algebras. We show that the locally m-convex algebra B4 (FE) of all bounded A-module maps is
isomorphic to LM (K 4(E) (Theorem 3.6). This result generalizes Theorem 1.5 of [6] in the context of Hilbert
modules over locally C*-algebras. Finally we prove that if £ and F' are Hilbert modules over a locally C*-algebra
A, then b(B4(E, F)), the set of all bounded elements in B4(F, F), is a Banach space in the norm ||-|| which is
isometrically isomorphic to By(4)(b(E), b(F)), the Banach space of all bounded b(A)-module maps from b(E) to
b(F") (Theorem 3.7). In particular, b(B(FE)) is a Banach algebra which is isometrically isomorphic to By(a)(b(E))
and b(La(F)) is a C*-algebra which is isomorphic to Lya)(b(E)).

2. PRELIMINARIES

If A is a locally C*-algebra and S(A) is the set of all continuous C*-seminorms on A, then for each p € S(4),
A, = A/ker(p) is a C*-algebra in the norm induced by p and A =1lim A, (see, for example, [9]). The canonical
p(—

map from A onto A,, p € S(A) is denoted by 7, and the image of a in A under 7, by a,. The connecting maps
of the inverse system {A,},cs(4) are denoted by 7y, ¢,p € S(A), with p > ¢.
Now we recall some facts about Hilbert modules over locally C* -algebras from [9].

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is also a right A-module,
compatible with the complex algebra structure, equipped with an A-valued inner product (-,:) : Ex E — A
which is C- and A-linear in its second variable and satisfies the following relations:

(i) (z,y)" = (y,x) for every z,y € L

(ii) (z,z) >0 for every z € E;

(i) (z,z) =0 if and only if x = 0.
We say that E is a Hilbert A-module if F is complete with respect to the topology determined by the family of
seminorms pg () = v/p ({(x,x)), © € E, p € S(A).
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Given a Hilbert A-module E, for each p € S(A), N = ker(py) is a closed submodule of E and E, = E/NF
is a Hilbert A,-module with (z+ NF)m, (a) = za+ NF and (z + NP,y + NF) = m, ((x,y)) . The canonical map
from E onto E, is denoted by Uf, and the image of = in E under 0‘5 by z,, p € S(A).

For each p,q € S(A) with p > ¢ there is a canonical surjective linear map 0‘51 : B, — E, such that aﬁl(xp) =

x4, © € E. Then {Ep;Ap;aﬁl,p > q, p,q € S(A)} is an inverse system of Hilbert C*-modules in the following
sense:

o ol (zpap) = o) (2p)mpe(ay) for every x, € E, and for every a, € Ap;

<‘7£1($p)v qu(yp» = Tpq ((p, Yp))for every x,,y, € Ep;

E E E .
O Uq'r‘Oqu UpraPZ(]ZT,
E _:3 .
LI idg,;

and lim £, is aHilbert A-module with ((z),) ((ap)p) = (zpap)p and ((zp)p, (¥p)p) = ((%p, Yp)),. Moreover, lim £,
P P

can be identified with E.
We recall that an element a in A respectively x in F is bounded if

lalloc = sup{p(a);p € S(A)} < oo
respectively
2]l = sup{Pg(z);p € S(A)} < oo

The set of all bounded elements in A respectively in E will be denoted by b(A) respectively b(E). We know that
b(A) is a C*-algebra in the C*-norm |-|| ., and b(E) is a Hilbert b(A)-module.
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3. BOUNDED MODULES MAPS

Let A be a locally C*-algebra and let £ and F' be two Hilbert A-modules. An A-module map 7' : E — F is said
to be bounded if for each p € S(A), there is K, > 0 such that pp(Tz) < K,pg(z) for all z € E. The set of all
bounded A-module maps from E to F is denoted by Ba(E, F) and we write B4 (E) for Ba(E, E).

Clearly, for each p € S(A), the map p defined by

P(T) = sup {pp(Tz);x € E and pg(x) <1}, T € Ba(E,F)
is a seminorm on B4 (E, F).

Proposition 3.1. Let A be a locally C*-algebra and let E and F be two Hilbert A-modules. Then we have:
1. Ba(E,F) with the topology determined by the family of seminorms {p}pes(a) is a complete locally convex
space.
2. Ba(E) with the topology determined by the family of seminorms {p}pes(a) is a complete locally m-convex
algebra.

Proof. (1): Let p,q € S(A) with p > g and let S € Ba,(E,, F},). Since

(o0 (S (07 (@) s 034 (S (07 (2)))) = 7 ((S (0, (@) , S (0, (2))))
1511, pa (< s (@),07 (2))) cf. [7, 28]
[ElCACRACH

for all z € E, where |-, is the norm on By, (E,, F},), we can define (qu)*(S) : Eg — Fy by (mpq)«(S) (Jf(x)) =

of, (S (of(x))). It is easy to see that (mpg)«(S) is a bounded Ag-module map from E, to F,. Thus we have
obtained a map (7,¢) from By, (Ey, Fp) to Ba,(E,, Fy). Also it is easy to see that {Ba, (Ep, Fp); (Tpq)+, P > q,
p,q € S(A)} is an inverse system of Banach spaces.

We will show that the locally convex spaces Ba(E, F') and lim By, (E,, F},) are isomorphic.
p(*

IN
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Let p € S(A) and let T € Ba(E,F). Since T(NF) C N} there is a unique linear map T, : E, — F,
such that of" o T = T}, 0 6. Moreover, T}, is a bounded A, -module map. Thus we can define a map (). :
BA(E,F) — Ba,(Eyp, F,) by (mp)«(T) = T, where 0} o T = T, o 0. Clearly (m,). is a continuous linear map
and (mpq), o (mp), = (my), for all p,q € S(A) with p > ¢. Therefore we can define a map ® from B4(FE, F)

to lim Ba, (Ep, F,) by ®(T) = ((mp), (T))p. It is not difficult to check that @ is linear and [|®(T), = p(T)
p(—
for all T € Bu(E,F). To show that ® is surjective, let (7,), € lim By, (Ep, Fp). Define T : E — F by
p(—

T (z) = (T (o] (a:)))p Since o, (T, (0 (2))) = (7pg), (Tp) (0F (z)) = Ty (oF (x)) for all p,q € S(A) with
p=q, T is well-defined. It is not difficult to check that T"is a bounded A -module map and ®(T") = (7}),,. Hence
® is surjective.

Thus we showed that the topological spaces Ba(E,F) and lim Ba,(E,, F)) are isomorphic, and since
p(—
lim B, (E,, F) is complete, Ba(FE, F') is complete.
p(—
(2): It is not difficult to check that p is a submultiplicative seminorm on B4(E) for all p € S(A) and
{Bp(Ep); (Tpg)s, P > q, p,q € S(A)} is an inverse system of Banach algebras. Also it is easy to check that

the map ® from B(E) to lim By, (E,) defined by (T) = ((mp), (T))p is an isomorphism of topological algebras,
p‘*

and since lim By, (£,) is complete, the assertion is proved. O
p(*

Remark 3.2. If A is a locally C*-algebra and E and F are Hilbert A-modules, then the locally convex spaces
Ba(E, F) and lim Ba, (Ey, F},) as well as the locally m-convex algebras Ba(E) and lim B4, (E,) can be identified.
P e

A map T from FE to F is adjointable if there is a map T from F' to E such that (T'(x),y) = (x,T*(y)) for all
2 in E and for all y in F. Any adjointable map from F into F is a bounded A-module map (cf. [11]). The set of
all adjointable maps from E into F is denoted by L4(E, F), and we write L4 (E) for Ls(F, E). For z in E and
for y in F the map 0, , : E — F defined by 6, , (2) = y (z, 2) is adjointable. The closed subspace of L (E, F)
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generated by {6, .;x € E, y € F'} is denoted by K4(E, F), and we write K4 (E) for K4(E, E). It is easy to
verify that (mpq)« (La,(Ep, Fp)) € La,(Eq, Fy) and (mpq)« (Ka, (Ep, Fy)) € Ka,(Ey, Fy) for all p,q € S(A)
with p > ¢. Then the restriction of ® on L4(FE, F) is exactly the same map as defined in Proposition 4.7 of
[9]. Therefore the restriction of ® on L4(E, F) is an isomorphism between the locally convex spaces La(FE, F)
and lz}g La,(E,, Fp), and the restriction of ® on K4(F, F') is an isomorphism between the locally convex spaces

KA(E, F)and lim K4, (E,, F),) [9, Proposition 4.7]. Also the restriction of ® on L4 (E) is an isomorphism between
p(—

the locally C*-algebras L4(FE) and lim L 4,(E,), and the restriction of ® on K 4(E) is an isomorphism between
p(—

the locally C*-algebras K4(E) and lim K4, (E,) [9, Theorem 4.2].
ph

In [9, Theorem 4.2], Phillips shows that the locally C*-algebras L4 (E) and M (K 4(F)), the multiplier algebra
of K4(F), are isomorphic. We will prove here that the locally m-convex algebras B4(F) and LM (K 4(E)), the
algebra of left multipliers of K 4(F), are isomorphic.

If A is a locally C*-algebra, we recall that a left multiplier of A is a linear map  : A — A such that I(ab) = I(a)b
for all @ and b in A. We know that any left multiplier of a C*-algebra is automatically continuous. We will show
that this result is still valid for left multipliers of a locally C*-algebra. Recall that in [11], Weinder showed that
the multipliers of a locally C*-algebra are automatically continuous.

Lemma 3.3. Let a be an element of a locally C*-algebra A. If 0 < a < 1, then there is an element u in A
such that a = u|a|®, where |a|* = aa*.

Proof. We know that for each p in S(A), there is an element w,, in A, such that m,(a) = up|mp(a)|*. Moreover,

—1
up = liTan mp(a) (£ + |mp(a)?) ® |mp(a)| = (see, for example, [3, 1.4.6]).
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To show that (up)p is a coherent sequence in A,, p € S(A), let p,q € S(A) with p > ¢. Since m,, preserves
spectral functions, we have

=1

o (1) = T (ma) (jl+|wp<a>|2); |7rp<a>1-a> —tim @) (7 + (@) (o)~ =

Hence (up), is a coherent sequence in Ay, p € S(A). Let u in A be such that m, (u) = u, for all p € S(A). Then,
since 7, (|a]®) = |mp, (a) |* for all p € S(A) (see [9] or [2]), we have a = u|a| . O

Proposition 3.4. Any left multiplier of a locally C*-algebra A is automatically continuous.

Proof. Let I be a left multiplier of A, let p € S(A) and a € ker(p). By Lemma 3.3, there is u € A such that
a = ula|z, and then
1 1
p(l(a)) = p(l(u)la|2) < p((w))p(a)?
whence we conclude that I(a) € ker(p). Hence there is a unique linear map I, : A, — A, such that m, 0l = [, om,,.

Moreover, I, is a left multiplier of A, and so it is continuous (see, for example, [, 3.12.2]). From these facts we
conclude that [ is continuous and the proposition is proved. (]

We consider on LM (A), the set of all left multipliers of A, the seminorm topology (that is the topology
determined by that family of seminorms {p},egs(4), where p(l) = sup{p(l(a)), a € A and p(a) < 1}).

Theorem 3.5. Let A be a locally C*-algebra. Then we have:
(1) LM(A) is a complete locally m-convez algebra.
(2) IfA = )\li}\n Ay and the canonical maps 7y : A — Ay are all surjective, then the locally m-convex algebras
EN—

LM(A) and Ahfxn LM(Ay) are isomorphic.
EN—
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Proof. To prove this theorem we use the same arguments as in the proof of Theorem 3.14 of [9].

(1): Let p,q € S(A) with p > ¢. Since mpq is surjective, there is a unique morphism ’R’;q 2 A; — A; which
extends 7,q and 7, (LM(A,)) € LM(A,) (see, for example, [2, 3.7.7 and 3.12]). Then {LM(A,); mpolrai(a,),
p>q,p,q € S(A)} is an inverse system of Banach algebras. It is not difficult to check that the map U : LM (A) —
lgg LM(A,) defined by ¥(I) = (I,)p, where m, 0l = [, om, for all p € S(A), is an isomorphism of locally m-convex

algebras.
(2): Exactly as in the proof of Theorem 3.14 of [9] we show that the inverse systems {LM(A))}rea and
{LM(Ay)}pes(a) have the same inverse limit and thus the assertion is proved. O

The following theorem is a generalization of Theorem 1.5 of [6] in the context of Hilbert modules over locally
C*-algebras.

Theorem 3.6. Let A be a locally C*-algebra and let E be a Hilbert A-module. Then the locally m-convex
algebras Bo(E) and LM (K 4(E)) are isomorphic.

Proof. Let p,q € S(A) with p > q. Since (mpq), (0y.2) = 05, (y),0pq(2) for all x,y € E}, and since the map
0pq from E, to E, is surjective, the morphism (7,,), from K4, (E),) to K4, (E,) is surjective. Then according to
Theorem 3.5 (2), the locally m-convex algebras LM (K4 (F)) and lim LM (K 4, (E,)) are isomorphic.

p(—

For each p € S(A), the map ®, : By, (E,) - LM(K 4, (E,)) defined by ®,(7,)(S,) = T o S, is an iso-

metric isomorphism of Banach algebras [6, Theorem 1.5]. It is easy to check that (®,), is an inverse system of

isometric isomorphisms of Banach algebras. Then lim ®, is an isomorphism of locally m -convex algebras from
pb

lim B, (E,) onto lim LM (K 4, (E,)) and the theorem is proved. O
p— p—

We say that an element T' of B4(E, F) is bounded in By (E, F) if there is M > 0 such that p(T) < M for
all p € S(A) and denote by b(Ba(F, F)) the set of all bounded elements in B (F, F). It is clear that the map
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Il o : 6(BA(E, F)) — [0,00) defined by
1Tl = sup{p(T);p € S(A)}
is a norm on b(B4(E, F)).

Theorem 3.7. If E and F' are Hilbert A-modules, then b(Ba(E,F')) is a Banach space in the norm ||-|| .
Moreover, b(Ba(E, F')) is isometrically isomorphic to By a)(b(E),b(F)).
Proof. Let T € b(Ba(E, F)). Then, since
Pr(Tz) < || Tl [l4]lo
for every x € b(E) and for every p € S(A), T(b(E)) C b(F) and it is easy to see that the restriction Tz of T

on b(E) is an element in By4)(b(E),b(F)). Moreover, ||T|yg)|| < |IT|| .. On the other hand, since b(E) is dense
in E [4, Proposition 3.1], and since

2
(Tloey; Tloey ) < || T oy || (2, 2)
for every x € b(E) (cf. [7, 2.8]), we have | T|| . < ||T|oe)||- Hence |T||o = ||Tlocs)||- Define ¥ : b(Ba(E, F)) —
Bya)(b(E),b(F)) by
‘I’(T) = T|b(E)-
Clearly VU is an isometric morphism from b(Ba(FE, F)) to Bya)(b(E),b(F)). To show that W is surjective, let S
€ L(b(E),b(F)). Since
(Sz, Sz < ISI (2, 2)
for all z in b(E) (cf. [7, 2.8]) and b(E) is dense in E, S can be extended to a bounded A-module map S from E

to F. Moreover, since p(S) < ||S|| for all p € S(A), S is a bounded element in Ba(E, F). Hence W is surjective.
Thus we showed that b(Ba(E, F)) is isometrically isomorphic to By(a)(b(E), b(F)), and so b(Ba(E, F)) is a
Banach space. O
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It is easy to check that an element T" in b(B4(E, F')) is adjointable if and only if T'[,(g) is adjointable.

Remark 3.8. The restriction of U on b(La(E,F)) is an isometric isomorphism from b(La(E,F)) onto
Ly(a) (b(E), b(F))).

Knowing that for each p € S(A), p is a submultiplicative seminorm on B4(E) and p|.,(g) is a C*-seminorm
on L, (E), it is easy to see that ||-|| is a submultiplicative norm on b(Ba(F)) and a C*-norm on b(L4(E)).

Corollary 3.9. Let A be a locally C*-algebra and let E be a Hilbert A-module. Then we have:
(1) b(Ba(E)) with the norm ||-||, is a Banach algebra which is isometrically isomorphic to By ay(b(E)).
(2) b(La(E)) with the norm |- is a C*-algebra which is isomorphic to Ly 4)(b(E)) [4, Theorem 3.3].

Proof. Putting F' = F in Theorem 3.7, it is easy to verify that U is an isometric isomorphism from b(B(E))
onto By(4)(b(E)) and the restriction ¥ on b(L4(E)) is an isomorphism from b(La(E)) onto Ly(a(b(E)). O

Remark 3.10. Let E and F be two Hilbert A-modules. Ingeneral, b(K4(F,F)) is not isomorphic to
Kp(a) (b(E), b(F))-

Example. Let A = C(Z"), the x-algebra of all complex valued functions on Z*. It is not difficult to see
o0
that A is just [ C. Also it is not difficult to check that A with the topology determined by the family of

n=1

C*-seminorms {py, }», where p,((an)n) = sup{|ax|; 1 < k < n}, is a locally C*-algebra, and A,, can be identified
with the product of the first n factors of A for each n.

Let E = ][] C*". We make E into a Hilbert A-module via (&), (an),, = (&nan),, and ((&n),, (Mn),) =

n=1

({€nsMn)y,),,» Where (-, -)  denotes the usual C-inner product on C". Clearly E is not finitely generated as Hilbert
A-module. Moreover, E, can be identified with the product of the first n factors of E for each n. Therefore,
La, (Ep,) = Ka, (Ep,) for each n. This implies that La(E) = Ka(E) [9, Example 4.9], and by Corollary 3.9,
b(Ka(F)) is isomorphic with Ly 4 (b(E)).
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Suppose that b(K 4 (E)) is isomorphic with Kj(4)(b(E)). Then the C*-algebras Ky(4)(b(£)) and Ly 4 (b(E)) are
isomorphic. This implies that b(E) is finitely generated as Hilbert b(A)-module [10] and so E is finitely generated
as Hilbert A-module, a contradiction. Therefore b(K 4(F)) is not isomorphic with Ky 4)(b(E)).

Remark 3.11. If A is a locally C*-algebra then A is a Hilbert A-module with (a,b) = a*b, a,b € A and the
locally C*-algebras L4(A) and M(A), where M (A) is the set of all multipliers of A, are isomorphic [9]. Putting
E = A in Corollary 3.9, we deduce that the C*-algebras M (b(A)) and b(M (A)) are isomorphic, a result obtained
independently by Bhatt and J. Karia [1, Theorem 5.1] and the author [3, Theorem 2].
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