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ON (m,n)-QUASI-INJECTIVE MODULES

Z. M. ZHU, J. L. CHEN and X. X. ZHANG

Abstract. Let R be a ring. For two fixed positive integers m and n, an R-module M is called (m, n)-quasi-injective
if each R-homomorphism from an n-generated submodule of Mm to M extends to one from Mm to M . It is showed
that MR is (m, n)-quasi-injective if and only if the right Rn×n-module Mm×n is principally quasi-injective. Many
properties of (m, n)-injective rings and principally quasi-injective modules are extended to these modules. Moreover,
some properties of (m, n)-quasi-injective Kasch modules are investigated.

Throughout this paper R and S are associative rings with identities, and all modules are unitary. Unless specified
otherwise, m and n will be two fixed positive integers. For an Abelian group G, we write Gm×n for the set of
all formal m× n-matrices with entries in G, and write Gn ( resp. Gn) for G1×n(resp. for Gn×1). Multiplication
maps x 7→ ax and x 7→ xa will be denoted by a· and ·a, respectively. For A = (aij)m×n ∈ Gm×n (resp.
a = (a1, . . . , an)T ∈ Gn), we write πij(A) (resp. πi(a)) for aij (resp. ai). For any x ∈ G, we write lij(x) (resp.
li(x))for the m × n-matrices (resp. the m × 1-matrices) whose (i, j) entry (resp. i-th entry) is x and the others
are 0’s. Let SMR be a bimodule. For x ∈ Mm×n, u ∈ Sl×m and v ∈ Rn×k, under the usual multiplication
of matrices, ux ( resp. xv) is a well-defined element in M l×n (resp. Mm×k). If X ⊆ M l×n, U ⊆ Sl×m and
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V ⊆ Rn×k, define

rRn×k(X) =
{
v ∈ Rn×k | xv = 0,∀x ∈ X

}
,

lSm×l(X) =
{
u ∈ Sm×l | ux = 0,∀x ∈ X

}
,

rMm×n(U) =
{
y ∈ Mm×n | uy = 0,∀u ∈ U

}
,

lMm×n(V ) =
{
z ∈ Mm×n | zv = 0,∀ v ∈ V

}
.

1. Characterizations of (m,n)-quasi-injective modules

Firstly, we recall some concepts. A right R-module MR is called principally quasi-injective (or PQ-injective
in brief) [5] if each R-homomorphism from a cyclic submodule of M to M can be extended to an endomorphism
of M . A ring R is said to be right (m,n)-injective [3] in case each right R-homomorphism from an n-generated
submodule of Rm to R extends to one from Rm to R. A right R-module MR is said to be finitely quasi-injective
[8] if each R-homomorphism from a finitely generated submodule of M to M extends to an endomorphism of M .
Motivated by these concepts, we introduce the following definition.

Definition 1.1. An R-module M is called (m,n)-quasi-injective in case each R-homomorphism from an
n-generated submodule of Mm to M extends to one from Mm to M . An R-module M is called n-quasi-injective
if it is (1, n)-quasi-injective.

Examples. (1) Every quasi-injective module is (m,n)-quasi-injective for all positive integers m and n [2, Propo-
sition 16.13(2)].

(2) R is right (m,n)-injective if and only if RR is (m,n)-quasi-injective.
(3) MR is PQ-injective if and only if MR is (1, 1)-quasi-injective.
(4) MR is finitely quasi-injective if and only if MR is n-quasi-injective for all positive integers n.
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It is easy to see that MR is (m,n)-quasi-injective if and only if MR is (l, k)-quasi-injective for all 1 ≤ l ≤ m
and 1 ≤ k ≤ n.

Definition 1.2. A bimodule SMR is called left balanced in case every right R-endomorphism of M is left
multiplication by an element of S.

Remark. (1) End(MR)MR is left balanced for every right R-module MR.
(2) Given a module SM , then the bimodule SMEnd(SM) is left balanced if and only if SMEnd(SM) is balanced

[2, p. 60].

Theorem 1.3. Let SMR be a left balanced bimodule, then the following statements are equivalent:
(1) MR is (m,n)-quasi-injective.
(2) lMnrRn

{α1, α2, · · · , αm} = Sα1 + Sα2 + · · ·+ Sαm for any m-element subset {α1, α2, · · · , αm} of Mn.
(2)′ lMnrRn

(A) = SmA for all A ∈ Mm×n.
(3) If rRn

(A) ⊆ rRn
(B) where A, B ∈ Mm×n, then SmB ⊆ SmA.

(4) If z ∈ Mn and A ∈ Mm×n satisfy rRn(A) ⊆ rRn(z), then z ∈ SmA.
(5) lM l [CRn ∩ rRl

(A)] = lM l(C) + SmA for all positive integers l, A ∈ Mm×l and C ∈ Rl×n.
(5)′ lMn [CRn ∩ rRn

(A)] = lMn(C) + SmA for all A ∈ Mm×n and C ∈ Rn×n.
(6) The right R-module Mm (or Mm) is n-quasi-injective.

Proof. (1) ⇔ (6), (2) ⇔ (2)′ and (5) ⇒ (5)′ ⇒ (2)′ ⇒ (3) are trivial.
(1) ⇔ (2). Argue as the proof of [3, Theorem 2.4].

(3) ⇒ (4). Let B =
(

z
0

)
∈ Mm×n. Then rRn(A) ⊆ rRn(z) = rRn(B) and SmB = Sz. By (3), we have

Sz = SmB ⊆ SmA. Therefore z ∈ SmA.
(4) ⇒ (5). Let x ∈ lM l [CRn∩ rRl

(A)]. For all y ∈ rRn
(AC), ACy = 0 implies that Cy ∈ CRn∩ rRl

(A). Hence
xCy = 0, i.e., y ∈ rRn

(xC). Thus
rRn

(AC) ⊆ rRn
(xC).
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By (4), xC = uAC for some u ∈ Sm. So

x = (x− uA) + uA ∈ lM l(C) + SmA.

Therefore,
lM l [CRn ∩ rRl

(A)] ⊆ lM l(C) + SmA.

The inverse inclusion is clear. �

Corollary 1.4. Let SMR be a left balanced bimodule. Then
(1) MR is PQ-injective if and only if lMrR(a) = Sa for any a ∈ M if and only if rR(x) ⊆ rR(y) where x, y ∈ M

implies y ∈ Sx;
(2) MR is n-quasi-injective if and only if lMnrRn

(α) = Sα for any α ∈ Mn if and only if rRn
(A) ⊆ rRn

(B)
where A,B ∈ Mn implies B ∈ SA;

(3) MR is (m, 1)-quasi-injective if and only if Mm
R (or(Mm)R) is PQ-injective if and only if lMrR(N) = N for

any m-generated submodule N of SM ;
(4) MR is finitely-quasi-injective if and only if lMnrRn

(α) = Sα for all positive integers n and any α ∈ Mn if
and only if rRn

(A) ⊆ rRn
(B) where A,B ∈ Mn implies B ∈ SA for all positive integers n.

Theorem 1.5. Let SMR be a left balanced bimodule. Then the following conditions are equivalent.
(1) MR is (m,n)-quasi-injective.
(2) MR is (m, 1)-quasi-injective and lSm(I ∩ K) = lSm(I) + lSm(K), where I,K are submodules of (Mm)R

such that I + K is n-generated.
(3) MR is (m, 1)-quasi-injective and lSm(I ∩ K) = lSm(I) + lSm(K), where I,K are submodules of (Mm)R

such that I is cyclic and K is (n− 1)-generated (K = 0 if n = 1).

Proof. (1)⇒ (2). It is obvious that MR is (m, 1)-quasi-injective and lSm(I ∩K) ⊇ lSm(I)+lSm(K). Conversely,
let x ∈ lSm(I ∩ K) and define f : I + K → M by f(c + b) = xc for all c ∈ I and b ∈ K. Then f is a right
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R-homomorphism. Since MR is (m,n)-quasi-injective and SMR is left balanced, f = y· for some y ∈ Sm.
Therefore, for any c ∈ I and b ∈ K, we have yc = f(c) = xc and yb = f(b) = 0. This means that

x = (x− y) + y ∈ lSm(I) + lSm(K).

(2) ⇒ (3) is obvious.
(3) ⇒ (1). We proceed by induction on n. Let K = α1R + α2R + · · ·+ αnR be an n-generated submodule of

(Mm)R and f : K → M be a right R-homomorphism. Write K1 = α1R, K2 = α2R + · · · + αnR. By induction
hypothesis, f |K1 = y1· and f |K2 = y2· for some y1, y2 ∈ Sm. Clearly,

y1 − y2 ∈ lSm(K1 ∩K2) = lSm(K1) + lSm(K2).

Suppose y1−y2 = z1 +z2 with zi ∈ lSm(Ki) (i = 1, 2) and let y = y1−z1 = y2 +z2. Then for any x = x1 +x2 ∈ K
with xi ∈ Ki (i = 1, 2),

f(x) = f(x1) + f(x2) = y1x1 + y2x2 = (y1 − z1)x1 + (y2 + z2)x2 = y(x1 + x2) = yx.

So f = y· and (1) follows. �

Corollary 1.6. Given a left balanced bimodule SMR.

(1) The following statements are equivalent:
(i) MR is n-quasi-injective.
(ii) MR is PQ-injective and lS(I ∩K) = lS(I) + lS(K), where I,K are submodule of MR and I + K is

n-generated.
(iii) MR is PQ-injective and lS(I ∩K) = lS(I) + lS(K), where I is a cyclic submodules of MR and K is

an (n− 1)-generated submodule of MR.
(2) MR is finitely quasi-injective if and only if lMrR(x) = Sx for all x ∈ M and lS(I ∩K) = lS(I) + lS(K)

for any finitely generated submodules I and K of MR.
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(3) MR is (m, 2)-quasi-injective if and only if (Mm)R is PQ-injective and

lSm(αR ∩ βR) = lSm(α) + lSm(β)

for all α, β ∈ Mm. In particular, MR is 2-quasi-injective if and only if MR is PQ-injective and

lS(xR ∩ yR) = lS(x) + lS(y)

for all x, y ∈ M .

Lemma 1.7. Let M be a right R-module. If f ∈ End(Mm×n
Rn×n), then

(1) πijf(X) = πijf (
∑m

k=1 lkj(xkj)) for each X = (xij) ∈ Mm×n and all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
(2) πijflkj = πi1flk1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ m.

Proof. (1) Since

f

(
m∑

k=1

lkt(xkt)

)
= f(XEtt) = f(X)Ett =

m∑
k=1

lkt(πktf(X)),

we have πijf

(
m∑

k=1

lkt(xkt)
)

= 0 in case t 6= j. Thus

πijf(X) = πij

[
n∑

t=1

f(
m∑

k=1

lkt(xkt))

]
= πijf

(
m∑

k=1

lkj(xkj)

)
.

(2) For any x ∈ M ,

πijflkj(x) = πijf(lk1(x)P (1, j)) = πij [f(lk1(x))P (1, j)] = πi1flk1(x).

So
πijflkj = πi1flk1.

�
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Corollary 1.8. Given a module MR with S = End(MR). Then a map f : Mm×n → Mm×n is a right
Rn×n-homomorphism if and only if f = C· for some C ∈ Sm×m.

Proof. (⇒) Suppose f ∈ End(Mm×n
Rn×n) and take C = (πi1flk1)m×m ∈ Sm×m. Then for each X = (xij)m×n ∈

Mm×n and all 1 ≤ i ≤ m, 1 ≤ j ≤ n, by Lemma 1.7, we have

πijf(X) = πijf

(
m∑

k=1

lkj(xkj)

)
=

m∑
k=1

πijflkj(xkj) =
m∑

k=1

πi1flk1(xkj) = πij(CX).

Therefore
f(X) = CX.

(⇐) It is clear. �

Theorem 1.9. Given a module MR with S = End(MR). MR is (m,n)-quasi-injective if and only if the right
Rn×n-module Mm×n is PQ-injective.

Proof. (⇒). Let A,B ∈ Mm×n with rRn×n(A) ⊆ rRn×n(B) and write

B =

 B1

...
Bm

 .

Then for each i = 1, 2, · · · ,m, rRn×n(A) ⊆ rRn×n(Bi). Consequently rRn
(A) ⊆ rRn

(Bi). Since MR is (m,n)-
quasi-injective, by Theorem 1.3(4), Bi ∈ SmA (i = 1, 2, · · · ,m). So B = CA for some C ∈ Sm×m. Now we define
f : Mm×n → Mm×n by f(X) = CX. Then f ∈ End(Mm×n

Rn×n) and B = f(A), whence Mm×n
Rn×n is PQ-injective by

Corollary 1.4(1).
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(⇐) Suppose z ∈ Mn, A ∈ Mm×n and rRn
(A) ⊆ rRn

(z). Let B =
(

z
0

)
∈ Mm×n. Then rRn×n(A) ⊆

rRn×n(B). Since Mm×n
Rn×n is PQ-injective, B = CA for some C ∈ Sm×m by Corollary 1.4(1) and Corollary 1.8. It

follows that z ∈ SmA. By Theorem 1.3(4), we see that MR is (m,n)-quasi-injective. �

Corollary 1.10. A ring R is right (m,n)-injective if and only if the right Rn×n-module Rm×n is PQ-injective.
In particular, R is right (n, n)-injective if and only if Mn(R) is P-injective.

By Theorem 1.9, Corollary 1.4 and Corollary 1.8, we have

Corollary 1.11. MR is finitely quasi-injective if and only if the right Rn×n-module Mn is PQ-injective for
all positive integers n if and only if lMnrRn×n(x) = Sx for all positive integers n and all x ∈ Mn, where
S = End(MR).

2. Properties of (m,n)-quasi-injective modules

In this section, some known results on PQ-injective modules and principally injective rings are extended to
(m,n)-quasi-injective modules.

We begin with the following theorem, which extends [5, Proposition 1.2].

Theorem 2.1. Given a left balanced bimodule SMR with MR (m,n)-quasi-injective and A,B ∈ Mm×n.

(1) If (BRn)R embeds in (ARn)R, then S(SmB) is an image of S(SmA).
(2) If (ARn)R is an image of (BRn)R, then S(SmA) embeds in S(SmB).
(3) If (BRn)R

∼= (ARn)R, then S(SmA) ∼= S(SmB).

Proof. If σ : BRn → ARn is a right R-homomorphism, then the (m,n)-quasi- injectivity of MR forces σ =
g|BRn for some g ∈ End((Mm)R). Let D =(πiglj)m×m. Then g = D·. But SMR is let balanced, so g = C· for
some C ∈ Sm×m. Choose u1, u2, · · · , un ∈ Rn such that σ(Bei) = Aui, where ei = (0, · · · , 0, 1, 0, · · · , 0)T ∈Rn
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(with 1 in the ith position and 0’s in all the other positions), i = 1, 2, · · · , n. Let U = (u1, u2, · · · , un). Then

AU = (Au1, Au2, · · · , Aun) = (σ(Be1), σ(Be2), · · · , σ(Ben))
= (CBe1, CBe2, · · · , CBen) = CB.

Now we define ϕ : SmA → SmB by yA 7→ yAU . Then ϕ is a left S-homomorphism.
(1) If σ is a monomorphism, then for any x = (x1, x2, · · · , xn)T ∈ rRn

(AU),

σ(Bx) = σ

(
n∑

i=1

Beixi

)
=

n∑
i=1

σ(Bei)xi=
n∑

i=1

(Aui)xi=0

follows that

Bx = 0.

Thus rRn(AU) ⊆ rRn(B). By Theorem 1.3(3), SmB ⊆ SmAU . But SmAU = SmCB ⊆ SmB, so SmB = SmAU .
Hence ϕ is an epimorphism.

(2) Suppose σ is an epimorphism. Let Aei = σ(Bvi), vi ∈ Rn, i = 1, 2, · · · , n, and write V =(v1, v2, · · · , vn).
Then V ∈ Rn×n and A=CBV . Thus, if ϕ(yA) = 0, then yAU = 0, i.e., yCB = 0, whence yA = yCBV = 0.
Therefore ϕ is a monomorphism.

(3) By (1) and (2). �

The next theorem extends [5, Lemma 1.2].

Theorem 2.2. Suppose that SMR is left balanced and MR is (m,n)-quasi-injective. Then

lSk [rMk
(A) ∩BRn] = SmA + lSk(B)

for all positive integers k, A ∈ Sm×k and B ∈ Mk×n.
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Proof. Let x ∈ lSk [rMk
(A) ∩ BRn]. For all y ∈ rRn

(AB), we have ABy = 0. This implies that By ∈
rMk

(A) ∩ BRn. So xBy = 0, i.e., y ∈ rRn(xB). Thus rRn(AB) ⊆ rRn(xB). Since MR is (m,n)-quasi-injective,
by Theorem 1.3(4), xB = u(AB) for some u ∈ Sm. Then x− uA ∈ lSk(B). Hence

x = uA + (x− uA) ∈ SmA + lSk(B).

Therefore
lSk [rMk

(A) ∩BRn] ⊆ SmA + lSk(B).

The inverse inclusion is obvious. �

Corollary 2.3. Let MR be (m,n)-quasi-injective. If α1, α2, . . . , αm ∈ S = End(MR), x1, x2, · · · , xn ∈ M ,
then

lS

(
m⋂

i=1

Kerαi) ∩
n∑

j=1

xjR)

 =
m∑

i=1

Sαi +
n⋂

j=1

lS(xj).

Proof. Take k = 1, A = (α1, . . . , αm)T and B = (x1, x2, · · · , xn) in Theorem 2.2 and then the result follows. �

Corollary 2.4. Let MR be an n-generated (m,n)-quasi-injective module with S = End(MR). Then

(1) lS

(
m⋂

i=1

Kerαi

)
=

m∑
i=1

Sαi for any α1, α2, . . . , αm ∈ S.

(2) If αi, βi ∈ S (i = 1, 2, · · · ,m) satisfy
m⋂

i=1

Kerαi ⊆
m⋂

i=1

Kerβi, then

βi ∈
m∑

i=1

Sαi (i = 1, 2, · · · ,m).
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Take MR = xR, k = n, A =

 α1

...
αm

 and B =

 x
. . .

x


n×n

in Theorem 2.2. Then we have the

following corollary.

Corollary 2.5. Let MR be a cyclic (m,n)-quasi-injective module with S = End(MR). Then

lSnrMn
{α1, α2, · · · , αm} =

m∑
i=1

Sαi

for any α1, α2, · · · , αm ∈ Sn.

Let MR be a module with S = End(MR), write W (S) = {w ∈ S|Ker(w) � M}. Then W (S) = J(S) in case
MR is a cyclic PQ-injective module [5, Proposition 2.4]. For the case of n-quasi-injective modules, we have

Lemma 2.6. If MR is n-quasi-injective and n-generated, then W (S) = J(S), where S = End(MR).

Proof. If a ∈ W (S), then rM (a) = Ker a � M , and this forces rM (1 − a) = 0, i.e., lSrM (1 − a) = S. Since
MR is n-quasi-injective and n-generated, we have S(1− a) = S by Corollary 2.4. This means that W (S) ⊆ J(S).
Conversely, let a ∈ J(S). For any x ∈ M , if rM (a)∩xR = 0, then lS [rM (a)∩xR] = S. So we have Sa+ lS(x) = S
by Corollary 2.3. It follows that lS(x) = S, i.e., x = 0. Therefore rM (a) � M , that is, a ∈ W (S). �

Given a module MR. We call U(6=0)∈Mm×n a right uniform element if URn is a uniform submodule of
(Mm)R, and write MU={x ∈ Sm|rMm(x) ∩ URn 6=0}.

Lemma 2.7. Let MR be (m,n)-quasi-injective with S = End(MR). If U ∈ Mm×n is a right uniform element,
then MU is the unique maximal submodule of SSm which contains lSm(U).

Proof. Since URn is a uniform submodule of (Mm)R, MU is a submodule of SSm. It is easy to see that
lSm(U) ⊆ MU 6= Sm. If A ∈ Sm \ MU , then rMm

(A) ∩ URn = 0. So lSm(rMm
(A) ∩ URn) = Sm. Let A =



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(
A
0

)
∈ Sm×m. Then rMm

(A) = rMm
(A) and SmA = SA. But MR is (m,n)-quasi-injective, by Theorem 2.2,

SA + lSm(U) = Sm. Hence SA + MU = Sm. Therefore MU is a maximal submodule of SSm which contains
lSm(U). Now, if lSm(U) ⊆ SL $ Sm, then L ⊆ MU (otherwise, if A ∈ L\MU , then lSm(U)+SA = Sm as before.
So we have L = Sm, a contradiction). This completes the proof. �

Lemma 2.8. Let MR be (m,n)-quasi-injective with S = End(MR) and W = U1Rn ⊕ · · · ⊕ UtRn, where
Ui ∈ Mm×n are right uniform elements, i = 1, 2, · · · , t. If SL is a maximal submodule of SSm not of the form
MU for any right uniform element U ∈ Mm×n, then rMm(Em −A) ∩W � W for some A ∈ Lm.

Proof. Since L 6= MU1 , so rMm
(x) ∩ U1Rn = 0 for some x ∈ L, thus rRn

(xU1) ⊆ rRn
(U1). Let B =

(xU1, 0)T ∈ Mm×n. Then rRn
(B) = rRn

(xU1) ⊆ rRn
(U1). Since MR is (m,n)-quasi-injective, SmU1 ⊆ SmB by

Theorem 1.3(3). Let ε1 = (1, 0, · · · , 0), ε2 = (0, 1, 0, · · · , 0), · · · , εm = (0, · · · , 0, 1) ∈ Sm and suppose εiU1 =
sixU1 for some si ∈ S (i = 1, 2, · · · ,m). Write A1 = (s1x, . . . , smx)T . Then A1 ∈ Lm and (Em − A1)U1 = 0.
So rMm

(Em − A1) ∩ U1Rn 6= 0. If rMm
(Em − A1) ∩ U2Rn = 0, then (Em − A1)U2Rn

∼= U2Rn is a unform
right R-module. Hence (Em − A2)(Em − A1)U2 = 0 for some A2 ∈ Lm. Let A3 = A1 + A2 − A2A1. Then
(Em − A3)U1 = (Em − A3)U2 = 0. Thus rMm(Em − A3) ∩ UiRn 6= 0, i = 1, 2. Continue in this way to obtain
A ∈ Lm such that rMm(Em −A) ∩W � W . �

The following theorem extends [6, Theorem 3.3]. We complete this section with it and two corollaries.

Theorem 2.9. Let MR be an n-generated n-quasi-injective and finite dimensional module with S = End(MR).
(1) If L ⊆ S is a maximal left ideal, then L = MU for some right uniform element U ∈ Mn.
(2) S/J(S) is semisimple artinian.

Proof. Since MR is finite dimensional, we may assume W = U1Rn⊕· · ·⊕UtRn �MR, where U1, · · · , Ut ∈ Mn

and each UiRn is uniform [4, Proposition 3.19]. If SL is a maximal left ideal of SS not of the form MU for any
right uniform element U ∈ Mn, then rM (1− a)∩W � W for some a ∈ L by Lemma 2.8. So 1− a ∈ J(S) ⊆ L by
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Lemma 2.6, a contradiction. Thus (1) follows. As to (2), if a ∈ MU1 ∩MU2 ∩ · · · ∩MUt
, then rM (a) ∩ UiRn 6= 0,

i = 1, 2, · · · , t. Hence
t⊕

i=1

[rM (a) ∩ UiRn] � MR

because each UiRn is uniform. This means rM (a) � MR. By Lemma 2.6, a ∈ J(S). But each MUi
is maximal in

SS by Lemma 2.7, so
J(S) = MU1 ∩MU2 ∩ · · · ∩MUt .

Therefore S/J(S) is semisimple artinian. �

Corollary 2.10. If MR is finitely quasi-injective finite dimensional and finitely generated, then S/J(S) is
semisimple artinian, where S = End(MR).

Corollary 2.11. If MR is an n-quasi-injective and n-generated uniform module, then S = End(MR) is local.

3. (m,n)-quasi-injective Kasch modules

Following Albu and Wisbauer [1], a right R-module MR is called a Kasch module if any simple module in σ[MR]
embeds in MR, where σ[M ] is the category consisting of all M -subgenerated right R-modules [9, p. 118]. In this
section, we study some properties of (m,n)-quasi-injective (in particular, n-quasi-injective) Kasch modules.

Recall that a bimodule SMR is said to be faithfully balanced [2] in case the canonical ring homomorphisms
λ : S → End(MR) and ρ : R → End(SM) are isomorphisms.

Proposition 3.1. If SMR is faithfully balanced and MR is an (n, m + 1)-quasi-injective Kasch module, then
SM is (m,n)-quasi-injective.

Proof. Let α1, α2, · · · , αm ∈ Mn. Then

N = α1R + · · ·+ αmR ⊆ rMn
lSn{α1, . . . , αm}.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Assume β ∈ rMn
lSn{α1, . . . , αm} but β∈N . Then NR ⊆ LR for some maximal submodule LR of βR + NR.

Since (βR + N)/L is a simple module in σ[MR], there exists a monomorphism δ : (βR + N)/L → MR. Define
f : βR + N → MR by f(x) = δ(x + L). Then f(αi) = 0 for all i = 1, 2, · · · ,m, but f(β) 6= 0. Note that
MR is (n, m + 1)-quasi-injective and βR + N is an (m + 1)-generated submodule of (Mn)R, so f(x) = ux for
some u ∈ (End(MR))n. And hence there exists v ∈ Sn such that f(x) = vx for SMR is balanced. Thus
vαi = 0, i = 1, 2, · · · ,m, i.e., v ∈ lSn{α1, α2, · · · , αm}. This implies that f(β) = vβ = 0, a contradiction. So
N = rMn

lSn{α1, · · · , αm}, whence SM is (m,n)-quasi-injective. �

Corollary 3.2. [3, Theorem 2.7] If R is right Kasch and right (n, m + 1)-injective, then R is left (m,n)-
injective.

Our next theorem extends [6, Lemma 2.3].

Theorem 3.3. Given a left balanced bimodule SMR. If MR is l-generated and ln-quasi-injective and Kasch,
then lSn(Jn)�SSn, where J = Rad(MR).

Proof. If 0 6= a ∈ Sn, then choose a maximal submodule A of the right R-module aMn. Let σ : aMn/A → MR

be a monomorphism and define α : aMn → MR by α(x) = σ(x + A). Since aMn is an ln-generated submodule of
the ln-quasi-injective module MR, α extends to an endomorphism of M . Then α = s0· for some s0 ∈ S because
SMR is left balanced. Choose y ∈ Mn such that ay∈A. Then s0ay = α(ay) = σ(ay + A) 6= 0. So s0a 6= 0. If
aJn * A, then aTn + A = aMn. Now, let a = (s1, · · · , sn). Then si(Rad(MR)) � siM (i = 1, 2, · · · , n) for MR

is finitely generated. This follows that
n∑

i=1

si(RadMR) �
n∑

i=1

si(MR), i.e., aJn � aMn.

Hence A = aMn, a contradiction. Thus aJn ⊆ A and it implies that

(s0a)Jn = α(aJn) = σ(0) = 0.
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So 0 6= s0a ∈ Sa ∩ lSn(Jn). Therefore lSn(Jn)�SSn. �

Corollary 3.4. Given a cyclic module MR with S = End(MR), if MR is PQ-injective and Kasch, then
lS(J)�SS, where J = Rad(MR).

Corollary 3.5. Given a finitely generated module MR with S = End(MR). If MR is finitely quasi-injective
and Kasch, then lSn(Jn)�SSn for all positive integers n, where J = Rad(MR).

Lemma 3.6. Given a module MR with S = End(MR). If Rad(MR) 6= MR and consider the following
conditions:

(1) MR is a Kasch module.
(2) lSn(T ) 6= 0 for all positive integers n and for any maximal submodule T of (Mn)R.
(3) lSn(T ) 6= 0 for some positive integer n and for any maximal submodule T of (Mn)R.
(4) lS(T ) 6= 0 for any maximal submodule T of MR.
Then we always have the following implications:

(1) ⇒ (2) ⇒ (3) ⇒ (4).

If MR generates all simple modules in σ[M ] (in particular, if MR is a generator in σ[M ]), then we have (4) ⇒ (1).

Proof. Since Rad(M) 6= M , so M (and hence Mn) has maximal submodules.
(1) ⇒ (2). Let ϕ : Mn/T → MR be a monomorphism, define f : Mn → M by x 7→ ϕ(x + T ), and write

a = (fl1, f l2, · · · , f ln). Then 0 6= a ∈ Sn and aT = f(T ) = 0. So lSn(T ) 6= 0.
(2) ⇒ (3) is clear.
(3) ⇒ (4). If n = 1, the implication holds. Now we assume n > 1. Let T be any maximal submodule of M ,

write K =
(

T
Mn−1

)
, and define ϕ : Mn/K → M/T via

(
x
y

)
+ K 7→ x + T , where x ∈ M , y ∈ Mn−1. Then

ϕ is a right R-isomorphism. This means that K is a maximal submodule of Mn. Hence lSn(K) 6= 0. Suppose
0 6= (u, v) ∈ lSn(K), where u ∈ S and v ∈ Sn−1. Then 0 6= u ∈ lS(T ).
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Lastly, assume M generates all simple R-modules in σ[M ] and (4) holds. Then for every simple module AR

in σ[M ], there exists a maximal submodule T of M such that A ∼= M/T . Suppose 0 6= s0 ∈ lS(T ). Then
T ⊆ rM (s0) 6= M . Hence T = rM (s0). Now we define ϕ : M/T → M by x + T 7→ s0x. Then it is easy to see that
ϕ is an R-monomorphism. �

The following theorem is an extension of [7, Theorem 1.2].

Theorem 3.7. Let MR be an n-quasi-injective cyclic Kasch module with S = End(MR). Then the map
K 7→ rMn(K) and T 7→ lSn(T ) are mutually inverse bijections between the set of all minimal submodules of SSn

and the set of all maximal submodules of (Mn)R. In particular,
(1) lSnrMn

(K) = K for all minimal submodules K of SSn.
(2) rMn

lSn(T ) = T for all maximal submodules T of (Mn)R.

Proof. (1) follows from Corollary 2.5. As to (2), observe that T ⊆ rMn
lSn(T ) and that rMn

lSn(T ) 6= Mn by
Lemma 3.6. The proof is completed by establishing the following claims. �

Claim 1. rMn
(K) is a maximal submodule of (Mn)R for each minimal submodule K of SSn.

Proof. Let rMn
(K) ⊆ T , where T is a maximal submodule of Mn. Then 0 6= lSn(T ) ⊆ lSnrMn

(K) = K by (1).
So lSn(T ) = K because K is minimal in SSn. Hence rMn

(K) = rMn
lSn(T ) = T by (2). �

Claim 2. lSn(T ) is a minimal submodule of SSn for all maximal submodules T of (Mn)R.

Proof. Since MR is Kasch, by Lemma 3.6(2), we may choose 0 6= x ∈ lSn(T ). Then T ⊆ rMn
(x) 6= Mn, whence

T = rMn
(x). As MR is n-quasi-injective and cyclic, this gives lSn(T ) = lSnrMn

(x) = Sx by Corollary 2.5 and it
follows that lSn(T ) is a minimal submodule of SSn. �
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