ON (m,n)-QUASI-INJECTIVE MODULES

Z. M. ZHU, J. L. CHEN anDp X. X. ZHANG

ABSTRACT. Let R be a ring. For two fixed positive integers m and n, an R-module M is called (m,n)-quasi-injective
if each R-homomorphism from an m-generated submodule of M™ to M extends to one from M™ to M. It is showed
that Mg is (m,n)-quasi-injective if and only if the right R™*"-module M™*" is principally quasi-injective. Many
properties of (m,n)-injective rings and principally quasi-injective modules are extended to these modules. Moreover,
some properties of (m, n)-quasi-injective Kasch modules are investigated.

Throughout this paper R and S are associative rings with identities, and all modules are unitary. Unless specified
otherwise, m and n will be two fixed positive integers. For an Abelian group G, we write G™*™ for the set of
all formal m x n-matrices with entries in G, and write G™ ( resp. G,,) for G1*"(resp. for G"*1). Multiplication
maps ¢ — az and z — za will be denoted by a- and -a, respectively. For A = (a;j)mxn € G™*™ (resp.
a=(a,...,a,)T € Gy), we write 7;;(A) (resp. m;(a)) for a;; (resp. a;). For any z € G, we write l;;(z) (resp.
l;(x))for the m x n-matrices (resp. the m x l-matrices) whose (i, j) entry (resp. i-th entry) is « and the others
are 0’s. Let ¢Mpg be a bimodule. For z € M™*" u € S*™ and v € R™*, under the usual multiplication
of matrices, uz ( resp. av) is a well-defined element in Mixn (resp. M’”Xk). If X C M>™ U C S™™ and
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V C R™*F define
Troxk(X) = {veRY* |zv=0VzeX},
lsmxa(X) = {ueS™|ur=0,VeeX},
Tpgmxn (U) {ye M™" |uy=0,YueU},
)

(
(V) = {zeM™"|z2w=0,YoeV}.

leXn

1. CHARACTERIZATIONS OF (7T7,. 77)—QIL\SI—INJEC’I'I\'E MODULES

Firstly, we recall some concepts. A right R-module My, is called principally quasi-injective (or PQ-injective
in brief) [5] if each R-homomorphism from a cyclic submodule of M to M can be extended to an endomorphism
of M. A ring R is said to be right (m,n)-injective [3] in case each right R-homomorphism from an n-generated
submodule of R™ to R extends to one from R™ to R. A right R-module M, is said to be finitely quasi-injective
[8] if each R-homomorphism from a finitely generated submodule of M to M extends to an endomorphism of M.
Motivated by these concepts, we introduce the following definition.

Definition 1.1. An R-module M is called (m,n)-quasi-injective in case each R-homomorphism from an
n-generated submodule of M™ to M extends to one from M™ to M. An R-module M is called n-quasi-injective
if it is (1, n)-quasi-injective.

Examples. (1) Every quasi-injective module is (m, n)-quasi-injective for all positive integers m and n [2, Propo-
sition 16.13(2)].

(2) R is right (m,n)-injective if and only if Ry is (m, n)-quasi-injective.

(3) Mg is PQ-injective if and only if My is (1, 1)-quasi-injective.

(4) Mg is finitely quasi-injective if and only if Mg is n-quasi-injective for all positive integers n.
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It is easy to see that Mg is (m,n)-quasi-injective if and only if Mg is (I, k)-quasi-injective for all 1 <1 < m
and 1 < k <n.

Definition 1.2. A bimodule g Mg is called left balanced in case every right R-endomorphism of M is left
multiplication by an element of S.

Remark. (1) gna(ary)Mr is left balanced for every right R-module Mg.
(2) Given a module sM, then the bimodule s Mgnq(sar) is left balanced if and only if 5 Mg,q(sar) is balanced

[2, p. 60].

Theorem 1.3. Let sMpg be a left balanced bimodule, then the following statements are equivalent:
(1) Mg is (m,n)-quasi-injective.

(2) lynrr, {a1, a9, ,am} = Sa; + Sag + - - + S, for any m-element subset {a1, aa, -, m}t of M™.
(2)" lynrr, (A) = S™A for all A € M™*™.

(3) Ifrg,(A) Crg,(B) where A, B € M™*™, then S™B C S™A.

(4) If z€ M™ and A € M™™ satisfy rr, (A) C g, (2), then z € S™A.

(5) ILa[CR, N7R,(A)] =1y (C) + S™A for all positive integers I, A € M™*! and C € R\*™.

(5) Iprn[CRyNrR, (A)] = lyn (C) + S™A for all A € M™*™ and C € R™™™.

(6) The right R-module M™ (or M,,) is n-quasi-injective.

Proof. (1) & (6), (2) & (2) and (5) = (5)" = (2)' = (3) are trivial.

(1) & (2). Argue as the proof of [3, Theorem 2.4].

3) =

3 (4). Let B = ( “ ) € M™*". Then rr,(A) C rg, (2) = rg, (B) and S™B = Sz. By (3), we have
Sz =S8"B C S™A. Therefore z € S™A.

0
(4) = (5). Let ¢ € Ijn[CR, NrR,(A)]. For ally € rg, (AC), ACy = 0 implies that Cy € CR,,Nrg,(A). Hence
xCy =0, i.e., y € rg, (zC). Thus
rr, (AC) Crg, (xC).
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By (4), zC = uAC for some u € S™. So
z=(x —ul) +uld €lyu(C)+ S"A.

Therefore,
L [CR, N TR, (A)] Clp(C)+ S™A.

The inverse inclusion is clear. O

Corollary 1.4. Let sMp be a left balanced bimodule. Then

(1) Mg is PQ-injective if and only if Lprrr(a) = Sa for any a € M if and only if rr(z) C rr(y) where z,y € M
implies y € Sx;

(2) Mg is n-quasi-injective if and only if lymrg, (o) = Sa for any o € M™ if and only if g, (A) C rg, (B)
where A, B € M™ implies B € SA;

(3) Mg is (m,1)-quasi-injective if and only if M7 (or(M,y,)r) is PQ-injective if and only if Iyrr(N) = N for
any m-generated submodule N of sM ;

(4) Mg is finitely-quasi-injective if and only if lymrg, (o)) = Sa for all positive integers n and any o € M™ if
and only if rg, (A) C rg, (B) where A, B € M"™ implies B € SA for all positive integers n.

Theorem 1.5. Let sMpg be a left balanced bimodule. Then the following conditions are equivalent.

(1) Mg is (m,n)-quasi-injective.

(2) Mg is (m,1)-quasi-injective and lgm (I N K) = lgm(I) + lgm (K), where I, K are submodules of (Mm)r
such that I + K is n-generated.

(3) Mg is (m,1)-quasi-injective and lgm(I N K) = lgm(I) + lgm (K), where I, K are submodules of (My,)r
such that I is cyclic and K is (n — 1)-generated (K =0 ifn=1).

Proof. (1) = (2). It is obvious that Mg is (m, 1)-quasi-injective and lgm (I N K) D lgm (I)+1lgm (K). Conversely,
let € lgm(I N K) and define f : I + K — M by f(c+b) = zcfor all c € [ and b € K. Then f is a right
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R-homomorphism. Since Mg is (m,n)-quasi-injective and gMpg is left balanced, f = y- for some y € S™.
Therefore, for any ¢ € I and b € K, we have yc = f(¢) = x¢ and yb = f(b) = 0. This means that

z=(z—y)+y€lsgn(l)+lsm(K).

(2) = (3) is obvious.

(3) = (1). We proceed by induction on n. Let K = a1 R+ aaR + - - - + a, R be an n-generated submodule of
(Mp,)r and f : K — M be a right R-homomorphism. Write K1 = a1 R, K2 = asR + - - - + a;, R. By induction
hypothesis, f|x, = y1- and f|x, = y2- for some y;,ys € S™. Clearly,

Y1 — Y2 € lgm (K1 N Ka) = lgm (K1) + lgm (K2).

Suppose y1 —y2 = 21+ 22 with z; € lgm (K;) (i = 1,2) and let y = y1 — 21 = Y2+ 22. Then for any v = z1 + 25 € K
with z; € K; (i = 1,2),

f(x) = f(z1) + f(x2) = 1z + yoxe = (y1 — 21)T1 + (Y2 + 22)72 = y(21 + 22) = Y.
So f =y- and (1) follows. O

Corollary 1.6. Given a left balanced bimodule s Mpg.

(1) The following statements are equivalent:
(i) Mg is n-quasi-injective.
(il) Mg is PQ-injective and ls(I N K) = lg(I) + ls(K), where I, K are submodule of Mg and I + K is
n-generated.
(iii) Mg s PQ-injective and Is(I N K) = Is(I) + Is(K), where I is a cyclic submodules of Mp and K is
an (n — 1)-generated submodule of Mg.
(2) Mg is finitely quasi-injective if and only if lyrgr(x) = Sz for all z € M and ls(INK) = lg(I) + ls(K)
for any finitely generated submodules I and K of Mg.
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(3) Mg is (m,2)-quasi-injective if and only if (M,,)r is PQ-injective and

lsm(aR N BR) = lgm (o) + Lsm(B)
for all o, B € M,,. In particular, Mg is 2-quasi-injective if and only if Mg is PQ-injective and
ls(zRNyR) = ls(x) + ls(y)
for all x,y € M.

Lemma 1.7. Let M be a right R-module. If f € End(Mg.%), then

(1) mi; f(X) =7 f (i lej(zhj)) for each X = (w;;) € M™ ™ and all1 <i<m, 1<j<n.
(2) mijfle; = mir flgn foralll1 <i<m,1<j<nandl<k<m.

Proof. (1) Since

(Z lkt xkt ) (XEtt) f(X)Ett = Zlkt(ﬂktf(X))a

we have m;; f <Z lkt(xkt)> = 0 in case t # j. Thus
k=1

i f(X) = my; [Zf Zlkt Thy) ] =i f (Zlkj(xkj))~

k=1
(2) For any « € M,

Tij [l (x) = 75 f (e () P(1, §)) = miz[f (e () P(1, §)] = mi1 flga ().
So

i [l = mi1 flra

O
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Corollary 1.8. Given a module Mg with S = End(Mg). Then a map f : M™*"™ — M™*™ js a right
R™ ™ -homomorphism if and only if f = C- for some C € S™*™.

Proof. (=) Suppose f € End(MgLnXXT,‘L) and take C' = (M1 flk1)mxm € S™ ™. Then for each X = (2i;)mxn €

M™™and all 1 <i<m,1<j<n, by Lemma 1.7, we have

7T1]f - 7Tl]f (Z lk] Lj > Zﬂ—ljflkj xk] Z’/Tzlflkl xkj) - ﬂ-’L](CX)'

Therefore
f(X)=0CX.

(<) It is clear. O
Theorem 1.9. Given a module Mr with S = End(Mg). Mg is (m,n)-quasi-injective if and only if the right
R™ ™ -module M™*™ is PQ-injective.
Proof. (=). Let A, B € M™*™ with rgnxn(A) C rrax-(B) and write
B
B =
B
Then for each i = 1,2,--- ,m, Traxn(A) C rgaxn(B;). Consequently rg (A) C rg, (B;). Since Mg is (m,n)-
quasi-injective, by Theorem 1.3(4), B; € S™A (i =1,2,--- ,m). So B = C'A for some C' € S™*™. Now we define

[ M — M™*™ by f(X) = CX. Then f € End(M7.57) and B = f(A), whence M7, is PQ-injective by
Corollary 1.4(1).
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(<) Suppose z € M"™, A € M™*™ and rg, (A) C rg,(z). Let B = ( S ) € M™*™. Then rgaxn(A4) C
7gnxn(B). Since M, is PQ-injective, B = C'A for some C' € S™*™ by Corollary 1.4(1) and Corollary 1.8. Tt
follows that z € S™A. By Theorem 1.3(4), we see that Mg is (m,n)-quasi-injective. O

Corollary 1.10. A ring R is right (m,n)-injective if and only if the right R™*"™-module R™*™ is PQ-injective.
In particular, R is right (n,n)-injective if and only if M, (R) is P-injective.

By Theorem 1.9, Corollary 1.4 and Corollary 1.8, we have

Corollary 1.11. Mg is finitely quasi-injective if and only if the right R™*™-module M™ is PQ-injective for
all positive integers n if and only if lymrgexn(x) = Sz for all positive integers n and all x € M™, where
S'i= EHd(MR).

2. PROPERTIES OF (m,n)-QUASI-INJECTIVE MODULES

In this section, some known results on PQ-injective modules and principally injective rings are extended to
(m, n)-quasi-injective modules.
We begin with the following theorem, which extends [5, Proposition 1.2].

Theorem 2.1. Given a left balanced bimodule s M with Mg (m,n)-quasi-injective and A, B € M™*™.

(1) If (BR,)r embeds in (ARy)R, then s(S™B) is an image of s(S™A).
(2) If (AR,)R is an image of (BR,)Rr, then s(S™A) embeds in s(S™B).
(3) If (BRn)R = (ARn)R, then s(S™A) = 5(S™B).

Proof. If ¢ : BR, — AR, is a right R-homomorphism, then the (m,n)-quasi- injectivity of Mg forces o =
g|Br, for some g € End((M,,)r). Let D= (migl;)mxm. Then g = D-. But s¢Mp is let balanced, so g = C- for
some C' € S™*™  Choose uy,us, - ,u, € R, such that o(Be;) = Au;, where e; = (0,---,0,1,0,---,0)T € R,
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(with 1 in the ith position and 0’s in all the other positions), : = 1,2, -+ ;n. Let U = (uy,us, -+ ,u,). Then
AU = (Auy, Aug, -+ ,Au,) = (o(Bey),o(Bes), - ,0(Bey))
(CBey,CBesy, -+ ,CBe,) = CB.

Now we define ¢ : S™A — S™B by yA +— yAU. Then ¢ is a left S-homomorphism.
(1) If ¢ is a monomorphism, then for any = = (21,72, ,2,)T € rg, (AU),

o(Bzx) =0 (Z Bel-:ri) = ZU(BQ)%:Z(AW)%:O

i=1 i=1 i=1
follows that
Bx = 0.

Thus rg, (AU) C rg, (B). By Theorem 1.3(3), S™B C S™AU. But S™AU = S™CB C S™B, so S"B = S™AU.
Hence ¢ is an epimorphism.

(2) Suppose o is an epimorphism. Let Ae; = o(Bwv;), v; € Ry, i = 1,2,--- ;n, and write V = (v1,ve, -+ ,v,).
Then V € R"*™ and A=CBYV. Thus, if ¢(yA) = 0, then yAU = 0, i.e., yCB = 0, whence yA = yCBV = 0.
Therefore ¢ is a monomorphism.

(3) By (1) and (2). O

The next theorem extends [5, Lemma 1.2].

Theorem 2.2. Suppose that s Mg is left balanced and Mg is (m,n)-quasi-injective. Then

lsk [’l"]\/[,€ (A) n BRn] =SmA + lsk (B)

for all positive integers k, A € S™** and B € M*F*™.
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Proof. Let © € lg[ra, (A) N BR,]. For all y € rg, (AB), we have ABy = 0. This implies that By €
ru,(A) N BR,,. So zBy =0, i.e., y € rr, (¢B). Thus rg, (AB) C rg, (zB). Since Mg is (m,n)-quasi-injective,
by Theorem 1.3(4), B = u(AB) for some u € S™. Then z — uA € lgx(B). Hence

x=uA+ (x —uAl) € ST"A+ g (B).
Therefore
lsk [TMk. (A) N BRH] Q SmA aF lsk (B)

The inverse inclusion is obvious. O

Corollary 2.3. Let Mp be (m,n)-quasi-injective. If aq, s, ..., € S = End(MRg), 1,22, - , 2, € M,
then

ls (ﬂ Ker ;) N ijR) = ZS%’ + ﬂ ls(z;).
i=1 j=1 i=1 j=1

Proof. Takek =1, A= (aq,..., am)T and B = (z1,%2," - ,Z,) in Theorem 2.2 and then the result follows. O

Corollary 2.4. Let Mg be an n-generated (m,n)-quasi-injective module with S = End(Mpg). Then

(1) Is (ﬂ Kerai> = ZS%‘ for any a1, as,...,a, €S.
i=1 i=1

m m
(2) If B € S (@ = 1,2,---,m) satisfy ﬂ Ker o; C ﬂ Ker 3;, then
i=1 i=1

Bied Sa; (i=1,2-,m).
p=1l
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Take Mr = zR, k = n, A = and B = in Theorem 2.2. Then we have the

Om Z nxn

following corollary.

Corollary 2.5. Let Mg be a cyclic (m,n)-quasi-injective module with S = End(Mpg). Then
lS"TMn{ala Qg, - 705m} = Z Say;
i=1

for any aq, as, -+, € S™.

Let Mp be a module with S = End(Mg), write W(S) = {w € S|Ker(w) < M}. Then W(S) = J(S5) in case
Mp, is a cyclic PQ-injective module [5, Proposition 2.4]. For the case of n-quasi-injective modules, we have

Lemma 2.6. If My is n-quasi-injective and n-generated, then W(S) = J(S), where S = End(MRg).

Proof. If a € W(S), then ryr(a) = Kera < M, and this forces rps(1 —a) = 0, i.e., lsrar(1 —a) = S. Since
Mp, is n-quasi-injective and n-generated, we have S(1 —a) = S by Corollary 2.4. This means that W (S) C J(95).
Conversely, let a € J(S). For any x € M, if rps(a) NzR = 0, then lg[rar(a) NzR] = S. So we have Sa+Ig(z) = S
by Corollary 2.3. It follows that [g(z) = S, i.e., x = 0. Therefore rps(a) < M, that is, a € W(S5). O

Given a module M. We call U(#£0)e M™*"™ aright uniform element if UR,, is a uniform submodule of
(M,,) R, and write My={x € S™|ru,, () NUR,#0}.

Lemma 2.7. Let Mg be (m,n)-quasi-injective with S = End(Mg). If U € M™*™ is a right uniform element,
then My is the unique mazimal submodule of $S™ which contains lgm (U).

Proof. Since UR,, is a uniform submodule of (M,,)r, My is a submodule of ¢S™. It is easy to see that
lsm(U) C My # S™. If A € 8™\ My, then ry, (A) NUR, = 0. So lgm(ry,, (A) NUR,) = S™. Let A =
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61 € ™™ Then ry, (A) = 7, (A) and S™A = SA. But Mg is (m, n)-quasi-injective, by Theorem 2.2,
SA+lgm(U) = S™. Hence SA + My = S™. Therefore My is a maximal submodule of §S™ which contains
lsm (U). Now, if lgm (U) € sL & S™, then L € My (otherwise, if A € L\ My, then lgm (U) +SA = S™ as before.
So we have L = S™, a contradiction). This completes the proof. |

Lemma 2.8. Let Mp be (m,n)-quasi-injective with S = End(Mg) and W = U1 R, & --- @ U;R,,, where
U; € M™*™ are right uniform elements, i = 1,2,--- ,t. If gL is a mazimal submodule of ¢S™ not of the form
My for any right uniform element U € M™*", then vy, (Em — A)NW W for some A € Ly,.

Proof. Since L # My,, so ryr, (z) N U1R, = 0 for some & € L, thus rg, (zU1) C rg, (U;). Let B =
(zUy,0)" € M™*". Then rgr, (B) =g, (zU1) C rg, (Uy). Since Mg is (m,n)-quasi-injective, S™U; C S™B by
Theorem 1.3(3). Let &1 = (1,0,---,0), e2 = (0,1,0,---,0), ---, &, = (0,---,0,1) € S™ and suppose ¢;U; =
s;xU; for some s; € S (i = 1,2,--- ,m). Write A; = (s1,.. .,smx)T. Then A; € L, and (E,, — A1)U; = 0.
So ry,, (BEm — A1) NULR, # 0. If rpy (B, — A1) NU3R, = 0, then (E,, — A1)UsR,, & UsR,, is a unform
right R-module. Hence (E,, — A3)(E,, — A1)Us = 0 for some Ay € L,,. Let A3 = A; + As — AsA;. Then
(Em — A3)Uy = (B — A3)Us = 0. Thus ray,, (B — A3) NU; R, # 0, ¢ = 1,2. Continue in this way to obtain
A € L, such that ry, (E,, —A)NW IW. O

The following theorem extends [6, Theorem 3.3]. We complete this section with it and two corollaries.

Theorem 2.9. Let Mg be an n-generated n-quasi-injective and finite dimensional module with S = End(MRg).
(1) If L C S is a mazimal left ideal, then L = My for some right uniform element U € M™.
(2) S/J(S) is semisimple artinian.

Proof. Since M, is finite dimensional, we may assume W = U1 R,, ®--- @ Ui R, < Mg, where Uy, --- , Uy € M™
and each U; R, is uniform [4, Proposition 3.19]. If gL is a maximal left ideal of ¢S not of the form My for any
right uniform element U € M™, then r3;(1 —a) NW I W for some a € L by Lemma 2.8. So 1 —a € J(S) C L by
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Lemma 2.6, a contradiction. Thus (1) follows. As to (2), if a € My, N My, N---N My,, then rp(a) NU; R, # 0,
t=1,2,---,t. Hence
¢

Plra(a) NUiR,) < Mg

i=1
because each U; R,, is uniform. This means rjs(a) < Mp. By Lemma 2.6, a € J(5). But each My, is maximal in
sS by Lemma 2.7, so

J(S) = My, " My, N---N My,.
Therefore S/.J(S) is semisimple artinian. O

Corollary 2.10. If My is finitely quasi-injective finite dimensional and finitely generated, then S/J(S) is
semisimple artinian, where S = End(Mpg).

Corollary 2.11. If Mg is an n-quasi-injective and n-generated uniform module, then S = End(MRg) is local.
3. (m,n)-QUASI-INJECTIVE KASCH MODULES

Following Albu and Wisbauer [1], a right R-module My, is called a Kasch module if any simple module in o[Mpg]
embeds in Mg, where o[M] is the category consisting of all M-subgenerated right R-modules [9, p. 118]. In this
section, we study some properties of (m, n)-quasi-injective (in particular, n-quasi-injective) Kasch modules.

Recall that a bimodule s Mp is said to be faithfully balanced [2] in case the canonical ring homomorphisms
A: S — End(Mg) and p: R — End(sM) are isomorphisms.

Proposition 3.1. If sMp is faithfully balanced and Mg is an (n,m + 1)-quasi-injective Kasch module, then
sM is (m,n)-quasi-injective.

Proof. Let ay,as,+ ,apy € M,. Then
N=oiR+ - +anRCry lsn{ar,...,am}.
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Assume § € 7y lgn{oq,...,an} but SEN. Then N C Lp for some maximal submodule Ly of SR + Ng.
Since (BR + N)/L is a simple module in o[MEg], there exists a monomorphism § : (3R + N)/L — Mp. Define
f:BR+ N — Mp by f(z) = 6(x + L). Then f(a;) = 0 for all ¢ = 1,2,--- ,m, but f(8) # 0. Note that
Mg is (n,m + 1)-quasi-injective and SR + N is an (m + 1)-generated submodule of (M,)g, so f(z) = uzx for
some v € (End(Mg))”. And hence there exists v € S™ such that f(z) = vz for sMpg is balanced. Thus
vay, = 0,1 =1,2,-+- ,m, ie., v € lgn{a1, a2, - ,y,}. This implies that f(8) = vB = 0, a contradiction. So
N =rpy lgn{ar, -+ ,am}, whence sM is (m,n)-quasi-injective. O

Corollary 3.2. [3, Theorem 2.7] If R is right Kasch and right (n,m + 1)-injective, then R is left (m,n)-
injective.

Our next theorem extends [6, Lemma 2.3].

Theorem 3.3. Given a left balanced bimodule sMpg. If Mg is l-generated and In-quasi-injective and Kasch,
then lgn (J,)<sS™, where J = Rad(MRg).

Proof. If 0 # a € S™, then choose a maximal submodule A of the right R-module aM,,. Let o : aM,, /A — Mg
be a monomorphism and define o : aM,, — Mg by a(x) = o(x+ A). Since aM,, is an In-generated submodule of
the In-quasi-injective module Mg, « extends to an endomorphism of M. Then a = sg- for some sy € S because
sMpg is left balanced. Choose y € M,, such that ay€A. Then spay = a(ay) = o(ay + A) # 0. So spa # 0. If
aJ, ¢ A, then T, + A = aM,,. Now, let a = (s1,---,s,). Then s;(Rad(Mg)) < s;M (i =1,2,--- ,n) for Mg
is finitely generated. This follows that
Zsi(Rad Mg) < Z&‘(MR), ie., aJ, < aM,.

i=1 i=1
Hence A = aM,, a contradiction. Thus aJ, C A and it implies that

(soa)J, = alad,) = a(0) = 0.
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So 0 # sga € SaNlgn(J,). Therefore lgn(J,)<sS™. O

Corollary 3.4. Given a cyclic module Mg with S = End(Mg), if Mg is PQ-injective and Kasch, then
ls(J)<LsS, where J = Rad(MRg).

Corollary 3.5. Given a finitely generated module Mr with S = End(Mpg). If Mg is finitely quasi-injective
and Kasch, then lgn(Jp,)<gS™ for all positive integers n, where J = Rad(MRg).

Lemma 3.6. Given a module Mr with S = End(Mg). If Rad(Mgr) # Mg and consider the following

conditions:

(1) Mg is a Kasch module.

(2) lsn(T) # 0 for all positive integers n and for any mazimal submodule T of (M,)r.
(3) lsn(T) # 0 for some positive integer n and for any mazimal submodule T of (M,)rR.
(4) 1s(T) # 0 for any mazimal submodule T of Mg.

Then we always have the following implications:
1) = (2 = @) = @
If Mg generates all simple modules in o[M| (in particular, if Mg is a generator in o[M]), then we have (4) = (1).

Proof. Since Rad(M) # M, so M (and hence M,,) has maximal submodules.

(1) = (2). Let ¢ : M,,/T — Mg be a monomorphism, define f : M,, — M by  — o(z + T), and write
a= (fly, fla, -+, flp). Then 0 # a € S™ and oT = f(T) = 0. So lgn(T) # 0.

(2) = (3) is clear.

(3) = (4). If n = 1, the implication holds. Now we assume n > 1. Let T be any maximal submodule of M,
write K = < MT >, and define ¢ : M,,/K — M/T via ( z ) + Kw—x+T, where x € M, y € M,,_1. Then

n—1

¢ is a right R-isomorphism. This means that K is a maximal submodule of M,,. Hence lgn(K) # 0. Suppose
0 # (u,v) € lgn(K), where u € S and v € S"~1. Then 0 # u € Is(T).
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Lastly, assume M generates all simple R-modules in o[M] and (4) holds. Then for every simple module Ag
in o[M], there exists a maximal submodule T' of M such that A = M/T. Suppose 0 # so € ls(T). Then
T Cry(so) # M. Hence T = rps(sg). Now we define ¢ : M/T — M by x +T — sox. Then it is easy to see that
© is an R-monomorphism. ]

The following theorem is an extension of [7, Theorem 1.2].

Theorem 3.7. Let Mp be an n-quasi-injective cyclic Kasch module with S = End(Mpg). Then the map
K1y (K) and T — lgn (T) are mutually inverse bijections between the set of all minimal submodules of sS™
and the set of all mazimal submodules of (My)r. In particular,

(1) lgnrpr, (K) = K for all minimal submodules K of §S™.
(2) rag,lsn(T) =T for all mazimal submodules T of (M,)r.

Proof. (1) follows from Corollary 2.5. As to (2), observe that T' C rpy, ls»(T) and that raz, lsn(T) # M, by
Lemma 3.6. The proof is completed by establishing the following claims. |

Claim 1. ry, (K) is a mazimal submodule of (My,)r for each minimal submodule K of sS™.

Proof. Let rpp, (K) C T, where T is a maximal submodule of M,,. Then 0 # lgn (T) C lgnry, (K) = K by (1).
So lgn(T) = K because K is minimal in §S™. Hence rp;, (K) = ray, ls»(T) =T by (2). O

Claim 2. Ign(T) is a minimal submodule of sS™ for all mazimal submodules T' of (My)R.-

Proof. Since My is Kasch, by Lemma 3.6(2), we may choose 0 # x € lgn(T). Then T' C 7y, (x) # M, whence
T = ry, (). As Mg is n-quasi-injective and cyclic, this gives lgn(T") = lgnrps, () = Sz by Corollary 2.5 and it
follows that lgn(T) is a minimal submodule of gS™. O
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