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SOME RESULTS ON INCREMENTS
OF THE WIENER PROCESS

A. BAHRAM

Abstract. Let λ(T,aT ,α) =
{

2aT

[
log T

aT
+ α log log T + (1− α) log log aT

]}− 1
2

where 0 ≤ α ≤ 1 and {W (t), t ≥ 0} be

a standard Wiener process. This paper studies the almost sure limiting behaviour of sup
0≤t≤T−aT

λ(T,aT ,α)|W (t + aT )−

W (t)| as T −→∞ under varying conditions on aT and T
aT

.

1. Introduction

Let {W (t), t ≥ 0} be a standard Wiener process. Suppose that aT is a nondecreasing function of T such that
0 < aT ≤ T and T

aT
is nondecreasing. Csörgő and Révész [2], [3] etablished the following theorem.

Theorem 1.1. Let aT for T ≥ 0 satisfy

aT is nondecreasing,(1)

0 < aT ≤ T,(2)
aT

T
is nonincreasing.(3)
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Define βT = (2aT (log T
aT

+ log log T ))−
1
2 . Then

lim sup
T−→∞

sup
0≤t≤T−aT

βT |W (T + aT )−W (t)| = 1 a.s.(4)

lim sup
T−→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

βT |W (t + s)−W (t)| = 1 a.s.(5)

If, in addition,

lim
T−→∞

log T
aT

log log T
= ∞,(6)

then “limsup” may be replaced by “lim” in both equations (4) and (5).

Here and in the sequel we shall define for each u ≥ 0 the functions

Lu = log u = log(max(u, 1)),

and

L2u = log log(max(u, e)).

ε stands for a positive number given arbitrarily, and C will be understood as a positive constant independent of
n, which can take different values on each appearance.
To simplify the notation, we will set

A(T, aT , α) = sup
0≤t≤T−aT

λ(T,aT ,α)|W (t + aT )−W (t)|,

B(T, aT , α) = sup
0≤t≤T−aT

sup
0≤s≤aT

λ(T,aT ,α)|W (t + s)−W (t)|,
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where

λ(T,aT ,α) =
{

2aT

[
L

T

aT
+ αL2T + (1− α)L2aT

]}− 1
2

and 0 ≤ α ≤ 1.

2. Main result

In this section we shall investigate the analogous problem when βT is replaced by λ(T,aT ,α). Our goal is to prove
the following result.

Theorem 2.1. Under assumptions (2) and (3) of Theorem 1.1, we have

lim sup
T−→∞

A(T, aT , α) = 1 a.s.,(7)

lim sup
T−→∞

B(T, aT , α) = 1 a.s.(8)

If we also have

lim
T−→∞

L T
aT

L((LT )α(LaT )1−α)
= ∞,(∗)

then

lim
T−→∞

A(T, aT , α) = 1 a.s.,(9)

lim
T−→∞

B(T, aT , α) = 1 a.s.(10)

Remark 2.1. Let us mention some particular cases .
1. For aT = T we obtain the law of iterated logarithm.
2. If α = 1, we obtain Csörgő-Révész theorem (see Theorem 1.1).
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3. If α = 0, under assumptions (2) and (3) of Theorem 1.1, then we also have

lim sup
T−→∞

A(T, aT , 0) = 1, a.s.,(11)

lim sup
T−→∞

B(T, aT , 0) = 1, a.s.(12)

If we also have lim
T−→∞

log T
aT

log log aT
= ∞, then ” lim sup ” in Equation (11) and (12) may be replaced by “lim”.

Proof of Theorem 2.1. Our proof will be given in three steps expressed by the following three lemmas.

Lemma 2.1. Let aT be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then
for any ε > 0 we have

lim sup
T−→∞

A(T, aT , α) ≥ 1− ε.(13)

Lemma 2.2. Let aT be a nondecreasing function of T satisfying conditions (2) and (3) of Theorem 1.1. Then
for any ε > 0 we have

lim sup
T−→∞

B(T, aT , α) ≤ 1 + ε.(14)

Lemma 2.3. Let aT be a nondecreasing function of T satisfying conditions (2), (3) of Theorem 1.1 and (∗)
of Theorem 2.1. Then for any ε > 0 we have

lim inf
T−→∞

A(T, aT , α) ≥ 1− ε.(15)

Proof of Lemma 2.1. Let
C(T ) = λ(T,aT ,α)|W (T )−W (T − aT )|.
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Using the well known probability inequality

1√
2π

(
1
x
− 1

x3

)
exp

(
−x2

2

)
≤ P (W (1) ≥ x) ≤ 1√

2πx
exp

(
−x2

2

)
,(16)

for x ≥ 0, (see, e.g., [4, p.175]), it follows that

P (C(T ) ≥ 1− ε) ≥
(

aT

T (LT )α(LaT )1−α

)1−ε

≥
((

aT

TLaT

)(
LaT

LT

)α)1−ε

≥
((

aT

TLaT

)(
LaT

LT

))1−ε

≥
( aT

TLT

)1−ε

if T is big enough. We define the sequence {Tk} as follows: Let T1 = 1 and define Tk+1 by

Tk+1 − aTk+1 = Tk if ρ < 1

and

Tk+1 = θk+1 if ρ = 1,

where θ > 1 and lim
T→∞

aT

T
= ρ. The conditions (2) and (3) imply that aT is a continuous function of T and that

ρ = 1 if and only if aT = T . Moreover T − aT is a strictly increasing function of T if ρ < 1. In the case ρ = 1 we
refer to the law of the iterated logarithm. So we assume that ρ < 1, (13) follows from

∞∑
k=2

aT

Tk(LTk)1−ε
= ∞,(17)

as was shown in Csáki, Csörgő, Földes and Révész [1, Lemma 3.2], and the r.v. C(Tk) (k = 1, 2, . . .) are
independent. �
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Proof of Lemma 2.2. Let aTk
= θk, θ > 1 and ε > 0. Using the inequality

P{ sup
0≤s′ ,s≤T,0≤s−s′≤h

h−
1
2 |W (s)−W (s

′
)| ≥ v} ≤ CT

h
exp

{
−v2

2 + ε

}
,(18)

where C is a positive constant depending only on ε (see in [2, Lemma 1∗]), we have
∞∑

k=1

P (B(Tk, aTk
, α) ≥ (1 + ε))

≤ C
∞∑

k=1

Tk

aTk

exp{−2
(1 + ε)2

2 + ε
(log

Tk

aTk

(LTk)α(LaTk
)(1−α))}

≤ C
∞∑

k=1

(
aTk

Tk

)ε( 1
(LTk)α(LaTk

)(1−α)

)1+ε

≤ C
∞∑

k=1

(
aTk

Tk

)ε
((

LTk

LaTk

)1−α 1
LTk

)1+ε

≤ C

∞∑
k=1

(
aTk

Tk

)ε((
LTk

LaTk

)
1

LTk

)1+ε

= C
∞∑

k=1

(
aTk

Tk

)ε 1
(LaTk

)1+ε
< ∞

and an application of Borel-Cantelli Lemma gives

lim sup
k−→∞

B(Tk, aTk
, α) ≤ 1 a.s.(19)

Notice that
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1 ≤
λ(Tk,aTk

,α)

λ(Tk+1,aTk+1 ,α)
≤ θ(20)

if k is big enough. When Tk ≤ T ≤ Tk+1, we have

lim sup
T−→∞

B(T, aT , α) ≤ lim sup
k−→∞

B(Tk+1, aTk+1 , α)
λ(Tk,aTk

,α)

λ(Tk+1,aTk+1 ,α)

≤ lim sup
k−→∞

B(Tk+1, aTk+1 , α) lim sup
k−→∞

λ(Tk,aTk
,α)

λ(Tk+1,aTk+1 ,α)
.

Now choosing θ near enough to one, (14) follows from (19) and (20). �

Proof of Lemma 2.3. We will set DT = {A(T, aT , α) ≤ 1 − ε}. Using inequality (18), for sufficiently large T ,
we have

P (DT ) ≤ P ( max
0≤i≤[ T

aT
]−1

λ(T,aT ,α)|W (i + 1)aT −W (iaT )| ≤ 1− ε)

≤

(
1−

(
aT

T (LT )α(LaT )1−α

)1−ε
)[ T

aT
]

≤ 2 exp
{
−
(

T

aT

)ε 1
(LT )α(1−ε)(LaT )(1−α)(1−ε)

}
.

Now, under condition (∗) and for all sufficiently large T ,

T

aT
≥ {(LT )α(LaT )1−α}

3−ε
ε .
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Define Tk = eaTk = k.
Therefore

∞∑
k=2

P (DTk
) ≤ 2

∞∑
k=2

exp{−(LTk)2α(LaTk
)2(1−α)} = 2

∞∑
k=2

exp

{
−
(

LTk

LaTk

)2α

(LaTk
)2
}

≤ 2
∞∑

k=2

exp{−(LaTk
)2} ≤ 2

∞∑
k=2

a−2
Tk

= 2
∞∑

k=2

(Lk)−2 < ∞

which implies by Borel-Cantelli lemma that

lim inf
k−→∞

A(Tk, aTk
, α) ≥ 1− ε, a.s.(21)

When Tk ≤ T ≤ Tk+1, we have aT − aTk
≥ 0 and by (3), it is easy to see that aT − aTk

≤ aTk

Tk
≤ δaTk

for any
δ > 0. Thus

lim inf
T−→∞

A(T, aT , α) ≥ lim inf
k−→∞

sup
0≤t≤Tk−aTk

λ(Tk+1,aTk+1 ,α)|W (t + aTk
)−W (t)|

− lim sup
T−→∞

sup
0≤t≤T−δaT

sup
0≤s≤δaT

λ(T,aT ,α)|W (t + s)−W (t)|

= lim inf
k−→∞

sup
0≤t≤Tk−aTk

λ(Tk,aTk
,α)|W (t + aTk

)−W (t)|
λ(Tk+1,aTk+1 ,α)

λ(Tk,aTk
,α)

− lim sup
T−→∞

sup
0≤t≤T−δaT

sup
0≤s≤δaT

λ(T,δaT ,α)|W (t + s)−W (t)|
λ(T,aT ,α)

λ(T,δaT ,α)
.

By Lemma 2.2 we have

lim sup
T−→∞

sup
0≤t≤T−δaT

sup
0≤s≤δaT

λ(T,δaT ,α)|W (t + s)−W (t)| ≤ 1, a.s.(22)
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We notice that

lim sup
T−→∞

λ(T,aT ,α)

λ(T,δaT ,α)
= δ.(23)

The proof of Lemma 2.3 will be completed by combining (21), (22) and (23). �

1. Csáki E., Csörgő M., Földes A. and Révész, P., How big are the increments of the local time of a Wiener process? Ann.
Probability 11 (1983), 593–608.
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