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SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF
MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF

INTEGRAL OPERATORS

C. SELVARAJ and K.R.KARTHIKEYAN

Abstract. We define a family of integral operators using multiplier transformation on the space
of normalized meromorphic functions and introduce several new subclasses using this operator. We
investigate various inclusion relations for these subclasses and some interesting applications involving
a certain class of the integral operator are also considered.

1. Introduction, Definitions And Preliminaries

Let M denote the class of functions of the form

f(z) =
1
z

+
∞∑

k=0

akz
k,(1)

which are analytic in the punctured open unit disk

U∗ = {z : z ∈ C and 0 <| z |< 1} = U \ {0}.

Received May 24, 2008.

2000 Mathematics Subject Classification. Primary 30C45, 30C60.
Key words and phrases. Meromorphic functions; Hadamard product; generalized hypergeometric functions; lin-

ear operators.



JJ J I II

Go back

Full Screen

Close

Quit

A function f ∈M is said to be in the class MS∗(γ) of meromorphic starlike functions of order
γ in U if and only if

Re
(
zf

′
(z)

f(z)

)
< −γ (z ∈ U ; 0 ≤ γ < 1).(2)

A function f ∈ M is said to be in the class MC(γ) of meromorphic convex functions of order
γ in U if and only if

Re
(

1 +
zf

′′
(z)

f ′(z)

)
< −γ (z ∈ U ; 0 ≤ γ < 1).(3)

We now define a subclass of meromorphic close-to-convex functions of order δ type γ as follows.
A function f ∈ M is said to be in the class C′

(δ, γ) if there exists a function g(z) ∈ MC(γ) such
that

Re
(
zf

′
(z)

g(z)

)
< −δ (z ∈ U ; 0 ≤ γ < 1; 0 ≤ δ < 1).(4)

Similarly, a function f ∈ M is said to be in the class K(δ, γ) if there exists a function g(z) ∈
MC(γ) such that

Re
(
z(zf

′
(z))

′

g(z)

)
< −δ (z ∈ U ; 0 ≤ γ < 1; 0 ≤ δ < 1).(5)

In recent years, several families of integral operators and differential operators were introduced
using Hadamard product (or convolution). For example, we choose to mention the Ruscheweyh
derivative [11], the Carlson-Shaffer operator [1], the Dziok-Srivastava operator [2], the Noor in-
tegral operator [9] and so on (see[3, 5, 8, 10]). Motivated by the work of N. E. Cho and K. I.
Noor [7], we introduce a family of integral operators defined on the space meromorphic functions
in the class M. By using these integral operators, we define several subclasses of meromorphic
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functions and investigate various inclusion relationships and integral preserving properties for the
meromorphic function classes introduced here.

For complex parameters α1, . . . , αq and β1, . . . , βs (βj ∈ C \ Z−0 ; Z−0 = 0,−1,−2, . . . ; j =
1, . . . , s), we define the function φ(α1, α2, . . . , αq, β1, β2, . . . , βs; z) by

φ(α1, α2, . . . , αq, β1, β2, . . . , βs; z) :=
1
z

+
∞∑

k=0

(α1)k+1 (α2)k+1 . . . (αq)k+1

(β1)k+1 (β2)k+1 . . . (βs)k+1

zk

(k + 1)!

(q ≤ s+ 1; q, s ∈ N0 := N ∪ {0}; z ∈ U),
where (x)k is the Pochhammer symbol defined by

(x)k =

{
1 if k = 0
x(x+ 1)(x+ 2) . . . (x+ k − 1) if k ∈ N0 = {1, 2, , . . .}.

Now we introduce the following operator Ip
µ(α1, α2, . . . , αq, β1, β2, . . . , βs): M→M as follows:

Let Fµ, p(z) = 1
z +

∞∑
k=0

(
k + µ+ 1

µ

)p

zk, p ∈ N0, µ 6= 0 and let F−1
µ, p(z) be defined such that

Fµ, p(z) ∗ F−1
µ, p(z) = φ(α1, α2, . . . , αq, β1, β2, . . . , βs; z).

Then

Ip
µ(α1, α2, . . . , αq, β1, β2, . . . , βs)f = F−1

µ, p(z) ∗ f(z).(6)

From (6) it can be easily seen that

Ip
µ(α1, α2, . . . , αq, β1, β2, . . . , βs)f

=
1
z

+
∞∑

k=0

(
µ

k + µ+ 1

)p (α1)k+1 (α2)k+1 . . . (αq)k+1

(β1)k+1 (β2)k+1 . . . (βs)k+1

zk

(k + 1)!
.

(7)
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For convenience, we shall henceforth denote

Ip
µ(α1, α2, . . . , αq, β1, β2, . . . , βs)f = Ip

µ(α1, β1)f.(8)

For the choice of the parameters p = 0, q = 2, s = 1, the operator Ip
µ(α1, β1)f is reduced

to an operator introduced by N. E. Cho and K. I. Noor in [7] and when p = 0, q = 2, s = 1,
α1 = λ, α2 = 1, β1 = (n+1), the operator Ip

µ(α1, β1)f is reduced to an operator recently introduced
by S.-M. Yuan et. al. in [12].

It can be easily verified from the above definition of the operator Ip
µ(α1, β1)f that

z(Ip+1
µ (α1, β1)f(z))

′
= µIp

µ(α1, β1)f(z)− (µ+ 1)Ip+1
µ (α1, β1)f(z)(9)

and

z(Ip
µ(α1, β1)f(z))

′
= α1I

p
µ(α1 + 1, β1)f(z)− (α1 + 1)Ip

µ(α1, β1)f(z).(10)

By using the operator Ip
µ(α1, β1)f , we now introduce the following subclasses of meromorphic

functions:

MSp
µ(α1, β1, γ) :=

{
f : f ∈M and Ip

µ(α1, β1)f ∈MS∗(γ)
}
,

MCp
µ(α1, β1, γ) :=

{
f : f ∈M and Ip

µ(α1, β1)f ∈MC(γ)
}
,

QCp
µ(α1, β1, γ, δ) :=

{
f : f ∈M and Ip

µ(α1, β1)f ∈ C
′
(δ, γ)

}
and

QKp
µ(α1, β1, γ, δ) :=

{
f : f ∈M and Ip

µ(α1, β1)f ∈ K(δ, γ)
}
.
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We note that

f(z) ∈MCp
µ(α1, β1, γ) ⇐⇒ −zf ′(z) ∈MSp

µ(α1, β1, γ)(11)

and a similar relationship exists between the classes QCp
µ(α1, β1, γ, δ) and

QKp
µ(α1, β1, γ, δ).

In order to establish our main results, we need the following lemma which is popularly known
as the Miller-Mocanu Lemma.

Lemma 1.1 ([6]). Let u = u1 + iu2, v = v1 + i v2 and let ψ(u, v) be a complex function,
ψ : D → C, D ⊂ C× C. Suppose that ψ satisfies the following conditions

(i) ψ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re{ψ(1, 0)} > 0;
(iii) Re{ψ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D and such that v1 ≤ − (1+u2

2)
2 .

Let p(z) = 1 + p1z+ p2z
2 + p3z

3 · · · be analytic in E, such that (p(z), zp′(z)) ∈ D for all z ∈ U . If
Re{ψ(p(z), zp′(z))} > 0 (z ∈ U), then Re(p(z)) > 0 for z ∈ U .

2. Main Results

In this section, we give several inclusion relationships for meromorphic function classes, which are
associated with the integral operator Ip

µ(α1, β1)f .

Theorem 2.1. Let α1, µ > 0 and 0 ≤ γ < 1. Then

MSp
µ(α1 + 1, β1, γ) ⊂MSp

µ(α1, β1, γ) ⊂MSp+1
µ (α1, β1, γ).

Proof. To prove the first part of Theorem 2.1, let f ∈MSp
µ(α1 + 1, β1, γ) and set

z(Ip
µ(α1, β1)f(z))

′

Ip
µ(α1, β1)f(z)

+ γ = −(1− γ)p(z)(12)
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where p(z) = 1 + p1z + p2z
2 + . . . is analytic in U and p(z) 6= 0 for all z ∈ U .

Then by applying the identity (10), we obtain

α1

Ip
µ(α1 + 1, β1)f(z)
Ip
µ(α1, β1)f(z)

=
z(Ip

µ(α1, β1)f(z))
′

Ip
µ(α1, β1)f(z)

+ (α1 + 1)

= −(1− γ)p(z)− γ + (α1 + 1).
(13)

By logarithmically differentiating both sides of the equation (13), we get

z(Ip
µ(α1 + 1, β1)f(z))

′

Ip
µ(α1 + 1, β1)f(z)

=
z(Ip

µ(α1, β1)f(z))
′

Ip
µ(α1, β1)f(z)

+
(1− γ)zp

′
(z)

(1− γ)p(z) + γ − (α1 + 1)

= −γ − (1− γ)p(z) +
(1− γ)zp

′
(z)

(1− γ)p(z) + γ − (α1 + 1)
.

Now we form the equation ψ(u, v) by choosing u = p(z) = u1 + iu2, v = zp
′
(z) = v1 + i v2 ,

ψ(u, v) = (1− γ)u− (1− γ)v
(1− γ)u+ γ − (α1 + 1)

.(14)

Then clearly, ψ(u, v) is continuous in

D =
(

C \
{
α1 + 1− γ

1− γ

})
× C

and (1, 0) ∈ D with Re
(
ψ(1, 0)

)
> 0.

Moreover, for all (iu2, v1) ∈ D such that

v1 ≤ −1
2
(1 + u2

2),
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we have

Reψ(iu2, v1) = Re
{

−(1− γ)v1
(1− γ) iu2 + γ − (α1 + 1)

}
=

(1− γ)(α1 + 1− γ)v1
(γ − α1 − 1)2 + (1− γ)2u2

2

≤ − (1− γ)(1 + u2
2)(α1 + 1− γ)

2[(γ − 1− α1)2 + (1− γ)2u2
2]
< 0.

Therefore ψ(u, v) satisfies the hypothesis of the Miller-Mocanu Lemma. This shows that if
Reψ(p(z), zp′(z)) > 0 (z ∈ U), then Re(p(z)) > 0 (z ∈ U), that is if f(z) ∈ MSp

µ(α1 + 1, β1, γ)
then f(z) ∈MSp

µ(α1, β1, γ).
To prove the second inclusion relationship asserted by Theorem 2.1, let f ∈ MSp

µ(α1, β1, γ)
and put

− (1− γ)s(z) = γ +
z(Ip+1

µ (α1, β1)f(z))
′

Ip+1
µ (α1, β1)f(z)

(15)

where the function s(z) is analytic in U with s(0) = 1. Then using the arguments to those detailed
above with (9), it follows that MSp

µ(α1, β1, γ) ⊂MSp+1
µ (α1, β1, γ), which completes the proof of

the Theorem 2.1. �

Theorem 2.2. Let α1, µ > 0 and 0 ≤ γ < 1. Then

MCp
µ(α1 + 1, β1, γ) ⊂MCp

µ(α1, β1, γ) ⊂MSp+1
µ (α1, β1, γ).
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Proof. We observe that

f(z) ∈MCp
µ(α1 + 1, β1, γ) ⇐⇒ Ip

µ(α1 + 1, β1)f(z) ∈MC(γ)
⇐⇒ −z(Ip

µ(α1 + 1, β1)f(z))′ ∈MS∗(γ)
⇐⇒ Ip

µ(α1 + 1, β1)(−zf ′(z)) ∈MS∗(γ)
⇐⇒ −zf ′(z) ∈MSp

µ(α1 + 1, β1, γ)

=⇒ −zf
′
(z) ∈MSp

µ(α1, β1, γ)

⇐⇒ Ip
µ(α1, β1)(−zf(z))′ ∈MS∗(γ)

⇐⇒ −z(Ip
µ(α1, β1)f(z))′ ∈MS∗(γ)

⇐⇒ Ip
µ(α1, β1) ∈MC(γ)

⇐⇒ f(z) ∈MCp
µ(α1, β1, γ)

and

f(z) ∈MCp
µ(α1, β1, γ) ⇐⇒ −zf ′(z) ∈MSp

µ(α1, β1, γ)

=⇒ −zf
′
(z) ∈MSp+1

µ (α1, β1, γ)

⇐⇒ −z(Ip+1
µ (α1, β1)f(z))′ ∈MS∗(γ)

⇐⇒ f(z) ∈MCp+1
µ (α1, β1, γ)

which evidently proves Theorem 2.2. �

Theorem 2.3. Let α1, µ > 0 and 0 ≤ γ, δ < 1. Then

QCp
µ(α1 + 1, β1, γ, δ) ⊂ QCp

µ(α1, β1, γ, δ) ⊂ QCp+1
µ (α1, β1, γ, δ).
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Proof. We begin proving that

QCp
µ(α1 + 1, β1, γ, δ) ⊂ QCp

µ(α1, β1, γ, δ).

Let f(z) ∈ QCp
µ(α1 + 1, β1, γ, δ). Then, in view of the definition of the function class

QCp
µ(α1 + 1, β1, γ, δ), there exists a function q ∈MC(γ) such that

Re
(
z(Ip

µ(α1 + 1, β1)f(z))
′

q(z)

)
< −δ.

Choose the function g(z) such that q(z) = Ip
µ(α1 + 1, β1)g(z), then

g ∈MCp
µ(α1 + 1, β1, γ) and Re

(
z(Ip

µ(α1 + 1, β1)f(z))
′

Ip
µ(α1 + 1, β1)g(z)

)
< −δ.(16)

We next put

z(Ip
µ(α1, β1)f(z))

′

Ip
µ(α1, β1)g(z)

+ δ = −(1− δ)p(z),(17)
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where p(z) = 1 + c1z + c2z
2 + . . . is analytic in U and p(z) 6= 0 for all z ∈ U . Thus, by using the

identity (10), we have

z(Ip
µ(α1 + 1, β1)f(z))′

Ip
µ(α1 + 1, β1)g(z)

=
Ip
µ(α1 + 1, β1)(zf ′(z))
Ip
µ(α1 + 1, β1)g(z)

=
z[Ip

µ(α1, β1)(zf ′(z))]′ + (α1 + 1)Ip
µ(α1, β1)(zf ′(z))

z(Ip
µ(α1, β1)g(z))′ + (α1 + 1)Ip

µ(α1, β1)g(z)

=

z[Ip
µ(α1,β1)(zf ′(z))]′

Ip
µ(α1,β1)g(z)

z(Ip
µ(α1,β1)g(z))′

Ip
µ(α1,β1)g(z)

+(α1+1)
+

(α1+1)Ip
µ(α1,β1)(zf ′(z))

Ip
µ(α1,β1)g(z)

z(Ip
µ(α1,β1)g(z))′

Ip
µ(α1,β1)g(z)

+(α1+1)
.

(18)

Jack [4] showed that g ∈MC(γ) implies that g ∈MS∗(σ) where

σ =
2γ − 1 +

√
9− 4γ + 4γ2

4
.

Since g(z) ∈MCp
µ(α1 +1, β1, γ) and MCp

µ(α1 +1, β1, γ) ⊂MCp
µ(α1, β1, γ), for some σ we can set

z(Ip
µ(α1, β1)g(z))′

Ip
µ(α1, β1)g(z)

+ σ = −(1− σ)H(z)
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where H(z) = h1(x, y) + ih2(x, y) and Re
(
H(z)

)
= h1(x, y) > 0, (z ∈ U). Then

z(Ip
µ(α1 + 1, β1)f(z))′

Ip
µ(α1 + 1, β1)g(z)

=

z[Ip
µ(α1, β1)(zf ′(z))]′

Ip
µ(α1, β1)g(z)

−σ − (1− σ)H(z) + (α1 + 1)

−
(α1 + 1)

[
δ + (1− δ)p(z)

]
−σ − (1− σ)H(z) + (α1 + 1)

.

(19)

We thus find from (17) that

z(Ip
µ(α1, β1)f(z))′ = −Ip

µ(α1, β1)g(z)
[
δ + (1− δ)p(z)

]
.(20)

Upon differentiating both sides of (20) with respect to z, we have

z
[
z(Ip

µ(α1, β1)f(z))′
]′

Ip
µ(α1, β1)g(z)

= − (1− δ)zp′(z)

+
[
σ + (1− σ)H(z)

][
δ + (1− δ)p(z)

]
.

(21)

By substituting (21) in (19), we obtain

z(Ip
µ(α1 + 1, β1)f(z))′

Ip
µ(α1 + 1, β1)g(z)

+ δ = −
{

(1− δ)p(z)− (1− δ)zp′(z)
σ + (1− σ)H(z)− (α1 + 1)

}
.

We now choose u = p(z) = u1 + iu2 and v = zp′(z) = v1 + i v2, we define the function ψ(u, v) by

ψ(u, v) = (1− δ)u− (1− δ)v
σ + (1− σ)H(z)− (α1 + 1)

(22)
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where (u, v) ∈ D = (C \ D∗)× C and

D∗ =
{
z : z ∈ C and Re(H(z)) = h1(z) ≥ 1 +

α1

1− σ

}
.

It is easy to see that ψ(u, v) is continuous in D and (1, 0) ∈ D with Re
(
ψ(1, 0)

)
> 0.

Moreover, for all (iu2, v1) ∈ D such that

v1 ≤ −1
2
(1 + u2

2),

we have

Reψ(iu2, v1) = Re
{

−(1− δ)v1
(1− σ)H(z) + σ − (α1 + 1)

}
=

(1− δ)v1
[
(α1 + 1)− (1− σ)h1(x, y)− σ

][
(1− σ)h1(x, y) + σ − α1 − 1

]2 +
[
(1− σ)h2(x, y)

]2
≤ −

(1− δ)(1 + u2
2)

[
(α1 + 1)− (1− σ)h1(x, y)− σ

]
2
[
(1− σ)h1(x, y) + σ − α1 − 1

]2 + 2
[
(1− σ)h2(x, y)

]2
< 0.

Therefore ψ(u, v) satisfies the hypothesis of the Miller-Mocanu Lemma.Thisshows that if
Reψ(p(z), zp′(z)) > 0, (z ∈ U), then Re(p(z)) > 0, (z ∈ U), that is if f(z) ∈ QCp

µ(α1 + 1, β1, γ, δ)
then f(z) ∈ QCp

µ(α1, β1, γ, δ).
Using the arguments similar to those detailed above, we can prove the second part of the

inclusion. We therefore choose to omit the details involved. �

Using arguments similar to those detailed in Theorem 2.2, we can prove
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Theorem 2.4. Let α1, µ > 0 and 0 ≤ γ, δ < 1. Then

QKp
µ(α1 + 1, β1, γ, δ) ⊂ QKp

µ(α1, β1, γ, δ) ⊂ QKp+1
µ (α1, β1, γ, δ).

3. Inclusion Properties Involving the Operator Lc

In this section, we examine the closure properties involving the integral operator Lc(f) defined by

Lc(f) =
c

zc+1

z∫
0

tcf(t) dt, (f ∈M, c > 0).(23)

In order to obtain the integral-preserving properties involving the integral Lc(f), we need the
following lemma which is popularly known as the Jack’s Lemma.

Lemma 3.1 ([4]). Let w(z) be a nonconstant analytic function in U with w(0) = 0. If |w(z)|
attains its maximum value on the circle |z| = r < 1 at z0, then z0w

′(z0) = kw(z0), where k is a
real number and k ≥ 1.

Theorem 3.2. Let c, α1, µ > 0 and 0 ≤ γ < 1. If f ∈ MSp
µ(α1, β1, γ), then Lc(f) ∈

MSp
µ(α1, β1, γ).

Proof. From definition of Lc(f) and the linearity of operator Ip
µ(α1, β1)f we have

z(Ip
µ(α1, β1)Lc(f))′ = cIp

µ(α1, β1)f(z)− (c+ 1)Ip
µ(α1, β1)Lc(f).(24)

Suppose that f(z) ∈MSp
µ(α1, β1, γ) and let

z(Ip
µ(α1, β1)Lcf(z))′

Ip
µ(α1, β1)Lcf(z)

= −1 + (1− 2γ)w(z)
1− w(z)

,(25)
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where w(0) = 1. Then by applying (24) in (25), we have

Ip
µ(α1, β1)f(z)

Ip
µ(α1, β1)Lcf(z)

=
c− (c+ 2− 2γ)w(z)

c[1− w(z)]
,

which upon logarithmic differentiation yields

z(Ip
µ(α1, β1)f(z))′

Ip
µ(α1, β1)f(z)

= − 1 + (1− 2γ)w(z)
1− w(z)

+
zw′(z)

1− w(z)

− (c+ 2− 2γ)zw′(z)
c− (c+ 2− 2γ)w(z)

.

Thus we have
z(Ip

µ(α1, β1)f(z))′

Ip
µ(α1, β1)f(z)

+ γ =
(γ − 1)[1 + w(z)]

1− w(z)
+

zw′(z)
1− w(z)

− (c+ 2− 2γ)zw′(z)
c− (c+ 2− 2γ)w(z)

.

(26)

Now, assuming that
max
|z|≤|z0|

|w(z)| = |w(z0)| = 1 (z0 ∈ U),

and applying Jack’s Lemma 3.1, we have

z0w
′(z0) = kw(z0) (k ≥ 1).(27)

If we set w(z0) = ei θ, (θ ∈ R) in (26) and observe that

Re
(

(γ − 1)
[
1 + w(z0)

]
1− w(z0)

)
= 0.
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then we obtain

Re
(
z0(Ip

µ(α1, β1)f(z0))′

Ip
µ(α1, β1)f(z0)

+ γ

)
= Re

(
z0w

′(z0)
1− w(z0)

− (c+ 2− 2γ)z0w′(z0)
c− (c+ 2− 2γ)w(z0)

)
= Re

(
− 2(1− γ)k ei θ

(1− ei θ)
[
c− (c+ 2− 2γ) ei θ

])
=

2k(1− γ)(c+ 1− γ)
c2 − 2c(c+ 2− 2γ) cos θ + (c+ 2− 2γ)2

≥ 0,

which obviously contradicts the hypothesis f(z) ∈ MSp
µ(α1, β1, γ). Consequently, we can deduce

that |w(z)| < 1 (z ∈ U) which in view of (25) proves the integral-preserving property asserted by
Theorem 3.2. �

Theorem 3.3. Let c, α1, µ > 0 and 0 ≤ γ < 1. If f ∈ MCp
µ(α1, β1, γ), then Lc(f) ∈

MCp
µ(α1, β1, γ).

Proof. We observe that

f(z) ∈MCp
µ(α1, β1, γ) ⇐⇒ −zf ′(z) ∈MSp

µ(α1, β1, γ)

=⇒ Lc

(
− zf ′(z)

)
∈MSp

µ(α1, β1, γ)

⇐⇒ −z(Lcf(z))′ ∈MSp
µ(α1, β1, γ)

⇐⇒ Lcf(z) ∈MCp
µ(α1, β1, γ).

which completes the proof of the Theorem 3.3. �

Next, we derive an inclusion property which is obtained by using (24) and the same techniques
as in the proof of the Theorem 2.3.
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Theorem 3.4. Let c, α1, µ > 0 and 0 ≤ γ < 1. If f ∈ QCp
µ(α1, β1, γ, δ) then so is Lc(f).

Finally, we obtain Theorem 3.5 below by using (24) and the same techniques as in the proof of
the Theorem 3.3.

Theorem 3.5. Let c, α1, µ > 0 and 0 ≤ γ < 1. If f ∈ QKp
µ(α1, β1, γ, δ) then so is Lc(f).
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