COMPARISON THEOREMS FOR HALF-LINEAR DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER

JAROŠ J

Abstract. An identity of the Picone type for fourth-order half-linear ordinary differential operators of the form

$$
l_{\alpha}[x] \equiv\left(p \varphi\left(x^{\prime \prime}\right)\right)^{\prime \prime}-\left(r \varphi\left(x^{\prime}\right)\right)^{\prime}+q \varphi(x)
$$

and

$$
L_{\alpha}[y] \equiv\left(P \varphi\left(y^{\prime \prime}\right)\right)^{\prime \prime}-\left(R \varphi\left(y^{\prime}\right)\right)^{\prime}+Q \varphi(y) .
$$

where $\varphi(u):=|u|^{\alpha-1} u, \alpha>0, u \in R$, and p, q, r, P, Q and R are continuous functions on a given interval I is derived and then Sturmian comparison theory for the corresponding fourth-order equations $l_{\alpha}[x]=0$ and $L_{\alpha}[y]=0$ based on this identity is developed.

1. Introduction

The classical Picone identity (see [10]) associated with a pair of Sturm-Liouville differential equations of the form

Go back

$$
\begin{equation*}
\left(p(t) u^{\prime}\right)^{\prime}+q(t) u=0 \tag{1}
\end{equation*}
$$

and
(2)

$$
\left(P(t) v^{\prime}\right)^{\prime}+Q(t) v=0
$$

Received January 9, 2011.
2010 Mathematics Subject Classification. Primary 34C10.
Key words and phrases. Picone's identity; half-linear differential equation; fourth order.
The research was supported by the Slovak grant agency VEGA No. 1/0481/08.

* 4 4 $|\bullet|>$

Go back

Full Screen

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{u}{v}\left(p u^{\prime} v-P v^{\prime} u\right)\right]=(Q-q) u^{2}+(p-P) u^{\prime 2}+P\left(u^{\prime}-u \frac{v^{\prime}}{v}\right)^{2} \tag{3}
\end{equation*}
$$

The Sturm-Picone comparison theorem readily follows from (3). Indeed, if we assume that Eq. (1) has a nontrivial solution u with consecutive zeros a and $b, a<b$, and

$$
\begin{equation*}
p(t) \geq P(t), \quad Q(t) \geq q(t) \tag{4}
\end{equation*}
$$

on $[a, b]$, then integrating (3) on $[a, b]$ we get that Eq. (2) cannot possess a solution v which is nonzero in (a, b), except in the special case where $p(t) \equiv P(t)$ and $q(t) \equiv Q(t)$ and v is a constant multiple of u on $[a, b]$.

In [3] (see also [4]), the identity (3) was generalized to the case of the half-linear differential equations

$$
\begin{equation*}
\left(p(t) \varphi\left(u^{\prime}\right)\right)^{\prime}+q(t) \varphi(u)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P(t) \varphi\left(v^{\prime}\right)\right)^{\prime}+Q(t) \varphi(v)=0 \tag{6}
\end{equation*}
$$

where $\varphi(u):=|u|^{\alpha-1}, u \in R, \alpha>0$, and p, q, P and Q are continuous functions on an interval I with $p(t)>0$ and $P(t)>0$ on I.
(7)

If u and v satisfy (5) and (6), respectively, with $v(t) \neq 0$ on I, then

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac { u } { \varphi (v) } \left[\varphi(v) p \varphi\left(u^{\prime}\right)\right.\right. & \left.\left.-\varphi(u) P \varphi\left(v^{\prime}\right)\right]\right\} \\
= & (Q-q)|u|^{\alpha+1}+(p-P)\left|u^{\prime}\right|^{\alpha+1} \tag{7}\\
& +P\left[\left|u^{\prime}\right|^{\alpha+1}+\alpha\left|\frac{u v^{\prime}}{v}\right|^{\alpha+1}-(\alpha+1) u^{\prime} \varphi\left(\frac{u v^{\prime}}{v}\right)\right]
\end{align*}
$$

The half-linear generalization of Sturm-Picone comparison principle obtained previously in [1], [9] and [11] by different methods, now easily follows from (7) if we assume that the inequalities (4) hold on $[a, b]$, where a and b are consecutive zeros of u, and use the Young inequality to show that the last expression in (7) is nonnegative with the equality holding if and only if u and v are proportional on $[a, b]$. Actually, the following more general result is true.

Theorem A (Leighton-type comparison). If there exists a nontrivial solution u of (5) such that $u(a)=u(b)=0$ and

$$
\begin{equation*}
\int_{a}^{b}\left[(p(t)-P(t))\left|u^{\prime}(t)\right|^{\alpha+1}+(Q(t)-q(t))|u(t)|^{\alpha+1}\right] \mathrm{d} t \geq 0 \tag{8}
\end{equation*}
$$

then every solution v of (7) has at least one zero in (a, b) except in the special case when $p(t) \equiv$ $P(t), q(t) \equiv Q(t)$ and $u(t)=c v(t)$ on $[a, b]$ for some constant c.

The situation in the case of fourth-order linear differential equations of the form

$$
\begin{equation*}
\left(p(t) u^{\prime \prime}\right)^{\prime \prime}+q(t) u=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P(t) v^{\prime \prime}\right)^{\prime \prime}+Q(t) v=0 \tag{10}
\end{equation*}
$$

is more complicated. If u is a nontrivial solution of [9] on an interval $[a, b]$ satisfying

$$
\begin{equation*}
u(a)=u^{\prime}(a)=u(b)=u^{\prime}(b)=0 \tag{11}
\end{equation*}
$$

and if

$$
\begin{equation*}
p(t) \geq P(t), \quad q(t) \geq Q(t) \quad \text { for } \quad t \in[a, b] \tag{12}
\end{equation*}
$$

then, in general, it is not true that an arbitrary solution v of [10] (or any of its derivatives) has a zero in $[a, b]$. This is the consequence of the result of Leighton and Nehari (see [8]) which asserts that if $Q(t)<0$ for $t \geq a$ and v is a solution of [10] generated by the initial conditions

$$
v(a) \geq 0, \quad v^{\prime}(a) \geq 0, \quad v^{\prime \prime}(a) \geq 0 \quad \text { and } \quad\left(P v^{\prime \prime}\right)^{\prime}(a) \geq 0
$$

(but not all zero), then

$$
v(t)>0, \quad v^{\prime}(t)>0, \quad v^{\prime \prime}(t)>0 \quad \text { and } \quad\left(P v^{\prime \prime}\right)^{\prime}(t)>0
$$

for all $t>a$. Thus, neither the solution v itself nor any of its derivatives $v^{\prime}, v^{\prime \prime}$ and $\left(P v^{\prime \prime}\right)^{\prime}$ can vanish at the point greater than a.

However, a sort of the Sturm-Picone comparison result can be obtained for [9] and [10] if we consider only solutions v of $[10]$ for which v^{\prime} and $\left(P v^{\prime \prime}\right)^{\prime}$ have opposite signs.

Theorem B. Let u be a nontrivial solution of [9] satisfying (11). If v is a solution of [10] for which v^{\prime} and $\left(P v^{\prime \prime}\right)^{\prime}$ have opposite signs and if the inequalities (12) hold on $[a, b]$, then v, v^{\prime} or $\left(P v^{\prime \prime}\right)^{\prime}$ has a zero in $[a, b]$.
(See [5].) The key tool in proving the above theorem was the Picone-type identity which asserts that if u and v are solutions of [9] and [10], respectively, and none of v and v^{\prime} vanish in I, then

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{u^{\prime}}{v^{\prime}}\left[v^{\prime} p u^{\prime \prime}-u^{\prime} P v^{\prime \prime}\right]-\frac{u}{v}\left[v\left(p u^{\prime \prime}\right)^{\prime}-u\left(P v^{\prime \prime}\right)^{\prime}\right]\right\} \\
&=(p-P) u^{\prime \prime 2}+(q-Q) u^{2}-v^{\prime}\left(P v^{\prime \prime}\right)^{\prime}\left(\frac{u^{\prime}}{v^{\prime}}-\frac{u}{v}\right)^{2} \tag{13}\\
&+P\left(u^{\prime \prime}-\frac{u^{\prime} v^{\prime \prime}}{v^{\prime}}\right)^{2} .
\end{align*}
$$

The following comparison theorem of the Leighton type concerning the more general fourthorder linear differential equations

$$
\begin{equation*}
\left(p(t) u^{\prime \prime}\right)^{\prime \prime}-\left(r(t) u^{\prime}\right)^{\prime}+q(t) u=0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P(t) v^{\prime \prime}\right)^{\prime \prime}-\left(R(t) v^{\prime}\right)^{\prime}+Q(t) v=0 \tag{15}
\end{equation*}
$$

can be obtained as a special case of the results in [7].

Go back

Full Screen
Theorem C. Suppose that there exists a nontrivial solution of (14) which satisfies (12) and

$$
\begin{equation*}
\int_{a}^{b}\left[(p-P) u^{2}+(r-R) u^{\prime 2}+(q-Q) u^{\prime \prime 2}\right] \mathrm{d} t \geq 0 \tag{16}
\end{equation*}
$$

If v satisfies (15) with $P(t) \geq 0$ in (a, b),

$$
\begin{equation*}
v^{\prime}\left[R(t) v^{\prime}-\left(P(t) v^{\prime \prime}\right)^{\prime}\right] \geq 0 \quad \text { and } \quad R(t) v^{\prime}-\left(P(t) v^{\prime \prime}\right)^{\prime} \neq 0 \quad \text { in } \quad(a, b) \tag{17}
\end{equation*}
$$

then at least one of v and v^{\prime} has a zero in $[a, b]$.

The purpose of this paper is to generalize the identity (13) to the case of half-linear differential equations of the fourth order and use it in proving comparison theorems of the Sturm-Picone and Leighton type.

For related results concerning the linear case see also [6] and [12].

2. Main results

Consider the operators

$$
\begin{equation*}
l_{\alpha}[x] \equiv\left(p(t) \varphi\left(x^{\prime \prime}\right)\right)^{\prime \prime}-\left(r(t) \varphi\left(x^{\prime}\right)\right)^{\prime}+q(t) \varphi(x) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\alpha}[y] \equiv\left(P(t) \varphi\left(y^{\prime \prime}\right)\right)^{\prime \prime}-\left(R(t) \varphi\left(y^{\prime}\right)\right)^{\prime}+Q(t) \varphi(y) \tag{19}
\end{equation*}
$$

where p, r, q, P, R and Q are continuous functions defined on $[a, b] \subset I$ and $\varphi[u]:=|u|^{\alpha} \operatorname{sgn} u, \alpha>0$, as before.

Let $D_{l_{\alpha}}(I)$ (resp. $\left.D_{L_{\alpha}}(I)\right)$ denote the set of all continuous functions x (resp. y) defined on I such that x (resp. y) is two times continuously differentiable on I and also $\left(r \varphi\left(x^{\prime}\right)\right)^{\prime}$ and $\left(p \varphi\left(x^{\prime \prime}\right)\right)^{\prime \prime}$ (resp. $\left(R \varphi\left(y^{\prime}\right)\right)^{\prime}$ and $\left.\left(P \varphi\left(y^{\prime \prime}\right)\right)^{\prime \prime}\right)$ exist and are continuous on I.

Denote by Φ_{α} the form defined for $u, v \in \mathbb{R}$ and $\alpha>0$ by

$$
\begin{equation*}
\Phi_{\alpha}(u, v):=u \varphi(u)+\alpha v \varphi(v)-(\alpha+1) u \varphi(v) . \tag{20}
\end{equation*}
$$

It follows from the Young inequality that $\Phi_{\alpha}(u, v) \geq 0$ for all $u, v \in \mathbb{R}$ and the equality holds if and only if $u=v$.

The following lemma can be verified by a direct computation.

44 4 \quad •
Go back

Full Screen

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left\{\frac{x^{\prime}}{\varphi\left(y^{\prime}\right)}\left[\varphi\left(y^{\prime}\right) p \varphi\left(x^{\prime \prime}\right)-\varphi\left(x^{\prime}\right) P \varphi\left(y^{\prime \prime}\right)\right]\right. \\
& \quad-\frac{x}{\varphi(y)}\left[\varphi(y)\left(p \varphi\left(x^{\prime \prime}\right)\right)^{\prime}-\varphi(x)\left(P \varphi\left(y^{\prime \prime}\right)\right)^{\prime}\right] \\
&\left.\quad-\frac{x}{\varphi(y)}\left[\varphi(y) r \varphi\left(x^{\prime}\right)-\varphi(x) R \varphi\left(y^{\prime}\right)\right]\right\} \\
&= \frac{x}{\varphi(y)}\left\{\varphi(x) L_{\alpha}[y]-\varphi(y) l_{\alpha}[x]\right\} \\
&+(q-Q)|x|^{\alpha+1}+(r-R)\left|x^{\prime}\right|^{\alpha+1}+(p-P)\left|x^{\prime \prime}\right|^{\alpha+1} \\
&+P \Phi_{\alpha}\left(x^{\prime \prime}, \frac{x^{\prime} y^{\prime \prime}}{y^{\prime}}\right)+y^{\prime}\left[R \varphi\left(y^{\prime}\right)-\left(P \varphi\left(y^{\prime \prime}\right)\right)^{\prime}\right] \Phi_{\alpha}\left(\frac{x^{\prime}}{y^{\prime}}, \frac{x}{y}\right) .
\end{aligned}
$$

Theorem 1 (Leighton-type comparison). If there exists a nontrivial $u \in D_{l_{\alpha}}([a, b])$ such that

$$
\begin{gather*}
\int_{a}^{b} u l_{\alpha}[u] \mathrm{d} t \leq 0 \tag{22}\\
u(a)=u^{\prime}(a)=u(b)=u^{\prime}(b)=0 \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{V}_{\alpha}[u] \equiv \int_{a}^{b}\left[(p-P)\left|u^{\prime \prime}\right|^{\alpha+1}+(r-R)\left|u^{\prime}\right|^{\alpha+1}+(q-Q)|u|^{\alpha+1}\right] \mathrm{d} t \geq 0 \tag{24}
\end{equation*}
$$

then for any $v \in D_{L_{\alpha}}([a, b])$ satisfying

$$
\begin{equation*}
v L_{\alpha}[v] \geq 0 \quad \text { in } \quad(a, b), \quad P(t) \geq 0, \tag{25}
\end{equation*}
$$

$$
\begin{align*}
& v^{\prime}\left[R(t) \varphi\left(v^{\prime}\right)\right.\left.-\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime}\right] \geq 0, \tag{26}\\
& R(t) \varphi\left(v^{\prime}\right)-\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime} \neq 0 \quad \text { in } \quad(a, b),
\end{align*}
$$

v or v^{\prime} has a zero in $[a, b]$.
Proof. Suppose to the contrary that there exists a function $v \in D_{L_{\alpha}}([a, b])$ satisfying the inequality (25) in (a, b) such that $v(t) \neq 0$ and $v^{\prime}(t) \neq$ in $[a, b]$. Integrating the identity (21) where $x=u$ and $y=v$ on $[a, b]$, we obtain

$$
\begin{equation*}
0 \geq V_{\alpha}[u]+\int_{a}^{b} v^{\prime}\left[R(t) \varphi\left(v^{\prime}\right)-\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime}\right] \Phi_{\alpha}\left(\frac{u^{\prime}}{v^{\prime}}, \frac{u}{v}\right) \mathrm{d} t \geq 0 . \tag{27}
\end{equation*}
$$

Thus, we get

$$
\int_{a}^{b} v^{\prime}\left[R(t) \varphi\left(v^{\prime}\right)-\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime}\right] \Phi_{\alpha}\left(\frac{u^{\prime}}{v^{\prime}}, \frac{u}{v}\right) \mathrm{d} t=0 .
$$

The assumption (26) implies that $\Phi_{\alpha}\left(u^{\prime} / v^{\prime}, u / v\right) \equiv 0$ in (a, b) which means that $u=c v$ on $[a, b]$ for some nonzero constant c. Since $u(a)=u(b)=0$ and $v(t) \neq 0$ on $[a, b]$, this leads to a contradiction. The proof is complete.

Corollary (Sturm-Picone comparison). If

$$
\begin{equation*}
p(t) \geq P(t)>0, \quad r(t) \geq R(t) \quad \text { and } \quad q(t) \geq Q(t) \tag{28}
\end{equation*}
$$

on $[a, b]$ and there exists a nontrivial solution u of

$$
\begin{equation*}
\left(p(t) \varphi\left(u^{\prime \prime}\right)\right)^{\prime \prime}-\left(r(t) \varphi\left(u^{\prime}\right)\right)^{\prime}+q(t) \varphi(u)=0, \quad a<t<b, \tag{29}
\end{equation*}
$$

satisfying (23), then for any solution v of the majorant equation

$$
\begin{equation*}
\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime \prime}-\left(R(t) \varphi\left(v^{\prime}\right)\right)^{\prime}+Q(t) \varphi(v)=0, \quad a<t<b, \tag{30}
\end{equation*}
$$

satisfying (26) in $(a, b), v$ or v^{\prime} must have a zero in $[a, b]$.

3. Disconjugacy criterion

Consider Eq. (29) in an interval I. Two points $a, b \in I$ are called conjugate with respect to (29) if there exists a nontrivial solution $u \in D_{l_{\alpha}}([a, b])$ satisfying (23). Eq. (29) is called disconjugate on I if no two points of I are conjugate with respect to (29).

The following disconjugacy criterion for Eq. (29) is an immediate consequence of Theorem 1.
Theorem 2. Eq. (29) is disconjugate on I if there exist a half-linear differential operator L_{α} defined by (19) and a function $v \in D_{L_{\alpha}}(I)$ satisfying

$$
\begin{gather*}
p(t) \geq P(t) \geq 0, \quad r(t) \geq R(t) \quad \text { and } \quad q(t) \geq Q(t) \quad \text { in } \quad I, \tag{31}\\
v L_{\alpha}[v] \geq 0 \quad \text { in } \quad I, \quad v(t) \neq 0 \quad \text { in } \quad I, \tag{32}
\end{gather*}
$$

and

$$
\begin{equation*}
v^{\prime}\left[R(t) \varphi\left(v^{\prime}\right)-\left(P(t) \varphi\left(v^{\prime \prime}\right)\right)^{\prime}\right]>0 \quad \text { in } \quad I . \tag{33}
\end{equation*}
$$

1. Elbert A., A half-linear second order differential equation, Colloquia Mathematica Societatis János Bolyai, Qualitative Theory of Differential Equations, Szeged, 30 (1979), 153-180.
2. Jaroš J., Comparison theorems for half-linear equations of fourth order, EQUADIFF 9, Conference on Differential Equations and Their Applications, August 25-29, 1997, Abstracts and Enlarged Abstracts (Ed. by Z. Došlá, J. Kalas, J. Vosmanský), Masaryk University, Brno, p. 233.
3. Jaroš J. and Kusano T., On forced second order half-linear equations, Proceedings of the Symposium on the Structure and Methods of Functional Differential Equations, RIMS, Kokyuroku 984, Kyoto University, 1997, 191-197 (in Japanese).
4. \qquad , A Picone-type identity for second order half-linear differential equations, Acta Math. Univ. Comenianae LXVIII (1999), 137-151.
5. Kreith K., A comparison theorem for fourth order differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 46 (1969), 664-666.
6. \qquad , A Picone identity for fourth order differential equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52 (1972), 455-456.
7. Kusano T. and Yoshida N., Picone's identity for ordinary differential operators of even order, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 524-530.
8. Leighton W. and Nehari Z., On the oscillation of solutions of selfadjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325-377.
9. Li H. J. and Yeh C. C., Sturmian comparison theorem for half-linear second-order differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1193-1204.
10. Picone M., Sui valori eccezionali di un parametro da cui dipende un' equazione differenziale ordinaria del second ordine, Ann. Scuola Nom. Pisa II (1910), 1-141.
Go back

Full Screen
11. Mirzov J. D., On some analogs of Sturm's and Kneser's theorems for nonlinear systems, J. Math. Anal. Appl. 53 (1976), 418-425.
12. Tanigawa T. and Yoshida N., Picone identities for ordinary differential equations of fourth order, Math. J. Toyama Univ. 27 (2004), 91-99.

Go back

Full Screen

Close

Quit

Jaroš J., Faculty of Mathematics, Physics and Informatics, Comenius University Mlynska dolina, 84248 Bratislava, Slovak Republic, e-mail: Jaroslav.Jaros@fmph.uniba.sk

