
JJ J I II

Go back

Full Screen

Close

Quit

COMPARISON THEOREMS FOR HALF-LINEAR DIFFERENTIAL
EQUATIONS OF THE FOURTH ORDER

JAROŠ J.

Abstract. An identity of the Picone type for fourth-order half-linear ordinary differential operators

of the form
lα[x] ≡ (pϕ(x′′))′′ − (rϕ(x′))′ + qϕ(x)

and
Lα[y] ≡ (Pϕ(y′′))′′ − (Rϕ(y′))′ +Qϕ(y).

where ϕ(u) := |u|α−1u, α > 0, u ∈ R, and p, q, r, P,Q and R are continuous functions on a given
interval I is derived and then Sturmian comparison theory for the corresponding fourth-order equations
lα[x] = 0 and Lα[y] = 0 based on this identity is developed.

1. Introduction

The classical Picone identity (see [10]) associated with a pair of Sturm-Liouville differential equa-
tions of the form

(1) (p(t)u′)′ + q(t)u = 0

and

(2) (P (t)v′)′ +Q(t)v = 0
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where p, q, P and Q are continuous functions on a given interval I with p(t) > 0 and P (t) > 0 on
I, says that if u and v satisfy (1) and (2), respectively, and v(t) 6= 0 on I, then

(3)
d
dt

[
u

v
(pu′v − Pv′u)

]
= (Q− q)u2 + (p− P )u′2 + P

(
u′ − uv

′

v

)2

.

The Sturm-Picone comparison theorem readily follows from (3). Indeed, if we assume that Eq.
(1) has a nontrivial solution u with consecutive zeros a and b, a < b, and

(4) p(t) ≥ P (t), Q(t) ≥ q(t)

on [a, b], then integrating (3) on [a, b] we get that Eq. (2) cannot possess a solution v which is
nonzero in (a, b), except in the special case where p(t) ≡ P (t) and q(t) ≡ Q(t) and v is a constant
multiple of u on [a, b].

In [3] (see also [4]), the identity (3) was generalized to the case of the half-linear differential
equations

(5) (p(t)ϕ(u′))′ + q(t)ϕ(u) = 0

and

(6) (P (t)ϕ(v′))′ +Q(t)ϕ(v) = 0,

where ϕ(u) := |u|α−1, u ∈ R,α > 0, and p, q, P and Q are continuous functions on an interval I
with p(t) > 0 and P (t) > 0 on I.
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If u and v satisfy (5) and (6), respectively, with v(t) 6= 0 on I, then

(7)

d
dt

{
u

ϕ(v)
[
ϕ(v)pϕ(u′)− ϕ(u)Pϕ(v′)

]}
= (Q− q)|u|α+1 + (p− P )|u′|α+1

+ P

[
|u′|α+1 + α

∣∣∣∣uv′v
∣∣∣∣α+1

− (α+ 1)u′ϕ
(
uv′

v

)]
.

The half-linear generalization of Sturm-Picone comparison principle obtained previously in [1],
[9] and [11] by different methods, now easily follows from (7) if we assume that the inequalities
(4) hold on [a, b], where a and b are consecutive zeros of u, and use the Young inequality to show
that the last expression in (7) is nonnegative with the equality holding if and only if u and v are
proportional on [a, b]. Actually, the following more general result is true.

Theorem A (Leighton-type comparison). If there exists a nontrivial solution u of (5) such
that u(a) = u(b) = 0 and

(8)
∫ b

a

[
(p(t)− P (t))|u′(t)|α+1 + (Q(t)− q(t))|u(t)|α+1

]
dt ≥ 0,

then every solution v of (7) has at least one zero in (a, b) except in the special case when p(t) ≡
P (t), q(t) ≡ Q(t) and u(t) = cv(t) on [a, b] for some constant c.

The situation in the case of fourth-order linear differential equations of the form

(9) (p(t)u′′)′′ + q(t)u = 0

and

(10) (P (t)v′′)′′ +Q(t)v = 0
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is more complicated. If u is a nontrivial solution of [9] on an interval [a, b] satisfying

(11) u(a) = u′(a) = u(b) = u′(b) = 0

and if

(12) p(t) ≥ P (t), q(t) ≥ Q(t) for t ∈ [a, b]

then, in general, it is not true that an arbitrary solution v of [10] (or any of its derivatives) has a
zero in [a, b]. This is the consequence of the result of Leighton and Nehari (see [8]) which asserts
that if Q(t) < 0 for t ≥ a and v is a solution of [10] generated by the initial conditions

v(a) ≥ 0, v′(a) ≥ 0, v′′(a) ≥ 0 and (Pv′′)′(a) ≥ 0

(but not all zero), then

v(t) > 0, v′(t) > 0, v′′(t) > 0 and (Pv′′)′(t) > 0

for all t > a. Thus, neither the solution v itself nor any of its derivatives v′, v′′ and (Pv′′)′ can
vanish at the point greater than a.

However, a sort of the Sturm-Picone comparison result can be obtained for [9] and [10] if we
consider only solutions v of [10] for which v′ and (Pv′′)′ have opposite signs.

Theorem B. Let u be a nontrivial solution of [9] satisfying (11). If v is a solution of [10]
for which v′ and (Pv′′)′ have opposite signs and if the inequalities (12) hold on [a, b], then v, v′ or
(Pv′′)′ has a zero in [a, b].
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(See [5].) The key tool in proving the above theorem was the Picone-type identity which asserts
that if u and v are solutions of [9] and [10], respectively, and none of v and v′ vanish in I, then

(13)

d
dt

{
u′

v′
[
v′pu′′−u′Pv′′

]
− u

v

[
v(pu′′)′ − u(Pv′′)′

]}
= (p− P )u′′2 + (q −Q)u2 − v′(Pv′′)′

(
u′

v′
− u

v

)2

+ P

(
u′′ − u′v′′

v′

)2

.

The following comparison theorem of the Leighton type concerning the more general fourth-
order linear differential equations

(14) (p(t)u′′)′′ − (r(t)u′)′ + q(t)u = 0

and

(15) (P (t)v′′)′′ − (R(t)v′)′ +Q(t)v = 0

can be obtained as a special case of the results in [7].

Theorem C. Suppose that there exists a nontrivial solution of (14) which satisfies (12) and

(16)
∫ b

a

[
(p− P )u2 + (r −R)u′2 + (q −Q)u′′2

]
dt ≥ 0.

If v satisfies (15) with P (t) ≥ 0 in (a, b),

(17) v′[R(t)v′ − (P (t)v′′)′] ≥ 0 and R(t)v′ − (P (t)v′′)′ 6= 0 in (a, b)

then at least one of v and v′ has a zero in [a, b].
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The purpose of this paper is to generalize the identity (13) to the case of half-linear differential
equations of the fourth order and use it in proving comparison theorems of the Sturm-Picone and
Leighton type.

For related results concerning the linear case see also [6] and [12].

2. Main results

Consider the operators

(18) lα[x] ≡ (p(t)ϕ(x′′))′′ − (r(t)ϕ(x′))′ + q(t)ϕ(x)

and

(19) Lα[y] ≡ (P (t)ϕ(y′′))′′ − (R(t)ϕ(y′))′ +Q(t)ϕ(y)

where p, r, q, P , R andQ are continuous functions defined on [a, b] ⊂ I and ϕ[u] := |u|αsgn u, α > 0,
as before.

Let Dlα(I) (resp. DLα
(I)) denote the set of all continuous functions x (resp. y) defined on I

such that x (resp. y) is two times continuously differentiable on I and also (rϕ(x′))′ and (pϕ(x′′))′′

(resp. (Rϕ(y′))′ and (Pϕ(y′′))′′) exist and are continuous on I.
Denote by Φα the form defined for u, v ∈ R and α > 0 by

(20) Φα(u, v) := uϕ(u) + αvϕ(v)− (α+ 1)uϕ(v).

It follows from the Young inequality that Φα(u, v) ≥ 0 for all u, v ∈ R and the equality holds if
and only if u = v.

The following lemma can be verified by a direct computation.
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Lemma. If x ∈ Dlα(I) and y ∈ DLα
(I) on an interval I and if none of y and y′ vanish in I,

then

(21)

d
dt

{
x′

ϕ(y′)
[
ϕ(y′)pϕ(x′′)− ϕ(x′)Pϕ(y′′)

]
− x

ϕ(y)
[
ϕ(y)(pϕ(x′′))′ − ϕ(x)(Pϕ(y′′))′

]
− x

ϕ(y)
[
ϕ(y)rϕ(x′)− ϕ(x)Rϕ(y′)

]}
=

x

ϕ(y)
{
ϕ(x)Lα[y]− ϕ(y)lα[x]

}
+ (q −Q)|x|α+1 + (r −R)|x′|α+1 + (p− P )|x′′|α+1

+ PΦα

(
x′′,

x′y′′

y′

)
+ y′

[
Rϕ(y′)− (Pϕ(y′′))′

]
Φα

(
x′

y′
,
x

y

)
.

Theorem 1 (Leighton-type comparison). If there exists a nontrivial u ∈ Dlα([a, b]) such that

(22)
∫ b

a

ulα[u]dt ≤ 0,

(23) u(a) = u′(a) = u(b) = u′(b) = 0

and

(24) Vα[u] ≡
∫ b

a

[
(p− P )|u′′|α+1 + (r −R)|u′|α+1 + (q −Q)|u|α+1

]
dt ≥ 0,
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then for any v ∈ DLα
([a, b]) satisfying

(25) vLα[v] ≥ 0 in (a, b), P (t) ≥ 0,

(26)
v′
[
R(t)ϕ(v′)− (P (t)ϕ(v′′))′

]
≥ 0,

R(t)ϕ(v′)− (P (t)ϕ(v′′))′ 6= 0 in (a, b),

v or v′ has a zero in [a, b].

Proof. Suppose to the contrary that there exists a function v ∈ DLα
([a, b]) satisfying the in-

equality (25) in (a, b) such that v(t) 6= 0 and v′(t) 6= in [a, b]. Integrating the identity (21) where
x = u and y = v on [a, b], we obtain

(27) 0 ≥ Vα[u] +
∫ b

a

v′
[
R(t)ϕ(v′)− (P (t)ϕ(v′′))′

]
Φα

(
u′

v′
,
u

v

)
dt ≥ 0.

Thus, we get ∫ b

a

v′
[
R(t)ϕ(v′)− (P (t)ϕ(v′′))′

]
Φα

(
u′

v′
,
u

v

)
dt = 0.

The assumption (26) implies that Φα(u′/v′, u/v) ≡ 0 in (a, b) which means that u = cv on [a, b] for
some nonzero constant c. Since u(a) = u(b) = 0 and v(t) 6= 0 on [a, b], this leads to a contradiction.
The proof is complete. �

Corollary (Sturm-Picone comparison). If

(28) p(t) ≥ P (t) > 0, r(t) ≥ R(t) and q(t) ≥ Q(t)

on [a, b] and there exists a nontrivial solution u of

(29) (p(t)ϕ(u′′))′′ − (r(t)ϕ(u′))′ + q(t)ϕ(u) = 0, a < t < b,
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satisfying (23), then for any solution v of the majorant equation

(30) (P (t)ϕ(v′′))′′ − (R(t)ϕ(v′))′ +Q(t)ϕ(v) = 0, a < t < b,

satisfying (26) in (a, b), v or v′ must have a zero in [a, b].

3. Disconjugacy criterion

Consider Eq. (29) in an interval I. Two points a, b ∈ I are called conjugate with respect to (29) if
there exists a nontrivial solution u ∈ Dlα([a, b]) satisfying (23). Eq. (29) is called disconjugate on
I if no two points of I are conjugate with respect to (29).

The following disconjugacy criterion for Eq. (29) is an immediate consequence of Theorem 1.

Theorem 2. Eq. (29) is disconjugate on I if there exist a half-linear differential operator Lα
defined by (19) and a function v ∈ DLα

(I) satisfying

(31) p(t) ≥ P (t) ≥ 0, r(t) ≥ R(t) and q(t) ≥ Q(t) in I,

(32) vLα[v] ≥ 0 in I, v(t) 6= 0 in I,

and

(33) v′
[
R(t)ϕ(v′)− (P (t)ϕ(v′′))′

]
> 0 in I.
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