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COUNTER-EXAMPLE FOR LIOUVILLE THEOREMS
FOR INDEFINITE PROBLEMS ON HALF SPACES

J. FÖLDES

Abstract. The goal of this paper is a construction of an counter example to Liouville theorems for

indefinite problems on half spaces. Since Liouville theorems are closely related to the scaling method
for elliptic and parabolic problems, our counter=example indicates that one has to impose additional
assumptions on the nodal set of nonlinearity in order to obtain a priori estimates for indefinite elliptic
problems. The counter-example is constructed by shooting method in one-dimensional case and then
extended to higher dimensions.

1. Introduction

This paper is motivated by studies of the indefinite elliptic problems of the form

−∆u = m(x)|u|p−1u, x ∈ Ω ,

u = 0 x ∈ ∂Ω ,
(1)

and the parabolic counterparts. In this context the indefinite problem means that the function m
changes sign in Ω̄. Here, and below we assume that Ω ⊂ RN is a smooth domain (of class C2,α for
some α > 0) and the problem is superlinear and subcritical, that is, 1 < p < pS , where pS := ∞
for N = 1, 2 and pS := (N + 2)/(N − 2) for N ≥ 3. The assumptions on the function m will be
specified below.
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Indefinite elliptic problems attracted a lot of attention during recent decades see e.g [1, 2, 5,
6, 7, 16] and references therein. In order to investigate their qualitative properties it is important
to obtain a priori bounds for solutions. By a priori estimates we mean estimates of the form

‖u‖X ≤ C(N, p,Ω,m) ,(2)

where X := L∞(Ω̄). We remark that analogous estimates occur in the study of blow-up rates of
solutions of parabolic problems see e.g. [9, 14, 17] and references therein.

A priori estimates can be obtained by various strategies (see [15]). In this paper we focus on the
scaling method, which often yields optimal results with respect to the exponent p, if the precise
asymptotics of the nonlinearity is known.

Let us briefly explain how the scaling method connects a priori estimates and Liouville theorems.
Detailed exposition for elliptic and parabolic problems can be found for example in [7, 9, 13]. We
are not going to discuss the optimality of assumptions, especially assumptions on the exponent p.
An interested reader can find a detailed analysis in [15], see also references therein.

In this paper the term Liouville theorem refers to the following statement. Any bounded, non-
negative solution of a given problem is trivial, that is, the solution is zero everywhere. Equivalently,
there is no non-trivial, non-negative, bounded solution of a given problem.

Before we proceed, we need the following notation:

RNc := {x = (x1, x
′) ∈ RN : x1 > c} (c ∈ R) ,

and

Ω+ := {x ∈ Ω : m(x) > 0}, Ω− := {x ∈ Ω : m(x) < 0},
Ω0 := {x ∈ Ω : m(x) = 0}.
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Assume that m is a continuous function and there are positive continuous functions α1, α2 defined
on the small neighborhood of Ω0 in Ω and γ1, γ2 > 0 such that

m(x) =

{
α1(x)[dist(x,Ω0)]γ1 x ∈ Ω+,

α2(x)[dist(x,Ω0)]γ2 x ∈ Ω− .

We assume that (2) fails, that is, we assume that for each k ∈ N there exist a solution uk of the
problem (1) and xk ∈ Ω such that

uk(xk) ≥ 2k (k ∈ N) .

After an application of doubling lemma (see [13, Lemma 5.1]), appropriate scaling, and elliptic
regularity we can distinguish the following cases.

If there is a subsequence of (xk)k∈N (denoted again (xk)k∈N) such that xk → x0 with x0 ∈ Ω̄
and x0 6∈ Ω̄0, then there must exist a bounded nonnegative function v with v(0) = 1 that solves

0 = ∆v + κvp, x ∈ RN ,(3)

or
0 = ∆v + κvp, x ∈ RNc∗ ,

v = 0, x ∈ ∂RNc∗
(4)

for some c∗ < 0, where κ ∈ {−1, 1}. However, by the results of Gidas and Spruck [10] if κ = 1
and by [4, 8] if κ = −1, the Liouville theorem holds for problem (3) and (4), provided 1 < p < pS .
Hence, v ≡ 0, which contradicts v(0) = 1.

If x0 ∈ Ω̄0, then the problem is more involved and was discussed in [7], see also references
therein, under the assumption Ω̄0 ⊂ Ω, that is, m does not vanish on ∂Ω. Then v with v(0) = 1
can, in addition to (3) and (4), solve

0 = ∆v + h(x1)vp, x ∈ RN ,(5)
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where h(x) = xγ1 for x > 0, h(x) = −|x|γ2 for x < 0, and γ1, γ2 are positive constants. However, by
[7, 12] the problem (5) satisfies the Liouville theorem for any continuous, nondecreasing function
h, such that

h(0) = 0, h is strictly increasing for x > 0, lim
x→∞

h(x) =∞ .(6)

Hence v ≡ 0, a contradiction to v(0) = 1. We remark that we can allow h to depend on x1 only,
since the general problem can be transformed to (5), with h satisfying (6), by an appropriate
translation and rotation.

The situation in the remaining case is more interesting. If we allow Ω̄0 ∩ ∂Ω 6= ∅, then v with
v(0) = 1 can, in addition to the cases above, solve

0 = ∆v + h(x · b)vp, x ∈ RNc∗ ,

v = 0, x ∈ ∂RNc∗ ,
(7)

where b is a unit vector, c∗ < 0, and h(x) = xγ1 for x > 0 and h(x) = −|x|γ2 for x < 0. Notice
that we cannot guarantee b = e1 := (1, 0, · · · , 0) by any rotation or translation, since the problem
is defined on the half space. In order to obtain a contradiction as above, one has to prove Liouville
theorem for (7). It follows, with additional assumptions on b and c∗, from the following result
proved in [9].

Corollary 1. Assume b 6= −e1 and c∗ ∈ R, or b = −e1 and c∗ ≥ 0. If h : R→ R is continuous,
non-decreasing function with h(x) < 0 for x < 0 such that (6) holds, then there is no non-negative,
non-trivial, bounded solution v of (7).

We remark that the result in [9] treats more general nonlinearities. If b 6= −e1, then the
assumption h(x) < 0 for x < 0 is not needed. In the case b = −e1 and c∗ ≥ 0, Liouville theorem
holds under more general assumptions on h (see [9, 17]). One might expect that Liouville theorem
will continue to be true when b = −e1 and c∗ < 0.
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However, the main result of this paper (see Proposition 1 below), shows that such Liouville
theorem does not hold. More precisely, if b = −e1, then for each c∗ < 0 there exists a bounded,
positive solution of (7). The construction of the solution u1 in one dimensional case (N = 1)
is based on the shooting method in two directions. A counter-example uN in N dimensions is
obtained by the trivial extension of the one dimensional solution, that is, uN (x) := u1(x1) for each
x = (x1, x

′) ∈ RNc∗ . Similarly, one can obtain a counter-example to parabolic Liouville theorems.
This counter-example shows that the scaling method needs additional assumptions on m, if

m(x0) = 0 for some x0 ∈ ∂Ω. For example we need to assume, as in [9], that Ω0 intersects ∂Ω
transversally.

Since one might consider more general functions m, or one might be interested in the investigated
ordinary differential equations without applications to Liouville theorems, we consider more general
problems than required by our counter-examples.

More specifically, assume that h ∈ C(R) satisfies

h(x) > 0 for x > 0, h(x) < 0 for x < 0,(8)
0∫

−∞

h(x) dx = −∞ ,

∞∫
0

h(x) dx =∞ ,(9)

there exists ε∗ > 0 such that h is non-decreasing on (−ε∗, 0).(10)

The main result of the paper is the following proposition.

Proposition 1. Let p > 1 and assume that a continuous function h satisfies (8) – (10). Then
for each a > 0 there exists a bounded, non-negative, nontrivial solution u of the problem

u′′ = h(x)|u|p−1u, x ∈ (−a,∞) ,

u(−a) = 0 .
(11)
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Moreover, u′(x) < 0 for x ≥ 0 and limx→∞ u(x) = 0.

Remark 1. The nonlinearity |u|p−1u can be replaced by a locally Lipschitz function f :
[0,∞)→ R, such that f(0) = 0, f(u) > 0 for u > 0, f is non-decreasing for u > 0, and

lim
u→∞

f(u)
u

=∞, lim
u→0+

f(u)
u

= 0 .

If we extend f as a locally Lipschitz function to whole R such that f(u) < 0 for u < 0, then the
arguments are the same as for f(u) = |u|p−1 =∞.

If the assumption
∞∫
0

h(x) dx =∞

is removed, Proposition 1 still holds true without the statement limx→∞ u(x) = 0.

If the problem is scale invariant, then the proof can be simplified and we can also address the
question of uniqueness.

Proposition 2. If h(x) = sign(x)|x|α for some α > 0, then the solution in Proposition 1 is
unique.

The following corollary states a counter-example to Liouville theorem for indefinite problems
on half spaces. It shows that Corollary 1 cannot be improved. A counterexample is given by a
function v(x1, · · · , xN ) = u(x1), where u is a function from Proposition 1.

Corollary 2. If b = −e1, c∗ < 0, and h satisfies (8) – (10), then the problem (7) possesses a
bounded, nonnegative solution.
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2. Proof of Proposition 1 and Proposition 2

Let us prove Proposition 1 first. Fix ξ ∈ (0,∞). Let uk : (τk, Tk)→ R be the solution of the initial
value problem

u′′k = h(x)|uk|p−1uk , x ∈ (τk, Tk) ,

uk(0) = ξ , u′k(0) = k ,
(12)

where (τk, Tk) is the maximal existence interval of uk. By a standard theory, −∞ ≤ τk < 0 <
Tk ≤ ∞.

Remark 2. In the first part of the proof we show that for each ξ > 0, there exists a unique
k(ξ) such that (12) has a decreasing positive solution on (0,∞), hence Tk =∞. Although we use a
shooting method, there are other approaches, mentioned in this remark, that yield partial results
for solutions on (0,∞).

Decay at infinity. If h(x) = |x|α for some α > 0, then one can proceed as in [11, Theorem 2.1]
and obtain that for 1 < p < pS , every solution u of (12) with Tk = ∞ satisfies u(x) ≤ C|x|−

2+α
p−1

and |u′| ≤ C|x|−
p+1+α
p−1 for each x > 1. Observe that [11] discusses problem with h(x) = −|x|α,

but one can easily modify the proof of [11, Lemma 2.1] by replacing Liouville theorem of Gidas
and Spruck [10] by ones in [4, 8].

Variational approach. Let X be the Banach space of functions with finite norm

‖u‖X :=

1
2

∞∫
0

(u′(x))2 dx

 1
2

+

 1
p+ 1

∞∫
0

h(x)|u(x)|p+1 dx

 1
p+1

.
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Then it is easy to check that the functional

F [u] :=
1
2

∞∫
0

(u′(x))2 dx+
1

p+ 1

∞∫
0

h(x)|u(x)|p+1 dx

is coercive, strictly convex, and continuous. Moreover, the set Mξ := {u ∈ X : u(0) = ξ} is convex
and closed (therefore weakly closed) so there exists a unique global minimizer of F on Mξ. The
minimizer satisfies Euler-Lagrange equation (12) on (0,∞) for some k(ξ). Also u is positive, as
F [u] = F [|u|] and every non-negative, non-trivial solution of (12) is positive. Notice that this
method also implies the decay of the minimizer at infinity.

However, the variational approach guarantees the uniqueness of the solution in the space X
only, but we cannot guarantee u ∈ X a priori. Also, it gives merely existential result and it does
not specify how k depends on ξ, which will be important in the second part of the proof.

Fowler transformation. If h(x) = |x|α, one can proceed as in [3] and transform the problem
by Fowler transformation X(t) := −xu′u−1, Z(t) := x1+αup(u′)−1, and x = et. Then X and Z
satisfy

X ′ = X[X + Z + 1],

Z ′ = Z[(1 + α)− pX − Z] .
(13)

The existence of solutions of (12) on (0,∞) is equivalent to the existence of heteroclinic trajectories
connecting equilibria (0, 0), ( 2+α

p−1 ,−
p+1+α
p−1 ) of the system (13). This approach yields very precise

asymptotic behavior of u: −XZ = x2+αup−1 → (2+α)(p+1+α)
(p−1)2 as x→∞ (and analogous expression

for u′).
However, since this method does not apply readily to general h and the proof of the existence of
heteroclinic orbits is not elementary, we rather use other approach.
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We prove the existence of solutions for (12) by shooting method. Notice that this method
applies to general h and no decay of u is required. Moreover, it allows us to derive more precise
information on dependence of k on ξ.

Claim 1. If u′k(x0) ≥ 0 and uk(x0) > 0 for some x0 > 0, then u′k(x) > 0 for each x > x0 and
limx→Tk uk(x) =∞.

Proof. By (8), u′′k(x0) = h(x0)upk(x0) > 0, and therefore u′k(x) > u′k(x1) > u′k(x0) ≥ 0, for each
x > x1 > x0 sufficiently close to x0. If u′k(x) > u′k(x1) > 0 for each x > x1, Claim 1 follows.

Otherwise, there exists the smallest x2 > x1 with u′k(x2) = u′k(x1). Then u′k(x) > 0 on
[x1, x2], and consequently uk(x) > 0 on [x1, x2]. Moreover, for each x ∈ [x1, x2] one has u′′k(x) =
h(x)upk(x) > 0, that is, uk is strictly convex on [x1, x2], a contradiction to u′k(x2) = u′k(x1). �

Claim 2. If uk(x0) ≤ 0 for some x0 > 0, then uk(x) < 0 for each x > x0 and limx→Tk uk(x) =
−∞.

Proof. Let x∗ := inf{x > 0 : uk(x) = 0}. Since uk(0) = ξ > 0, x∗ is well defined and x∗ > 0.
Suppose that there is x1 > x∗ such that uk(x1) ≥ 0. Then either u ≥ 0 on [x∗, x1], or u has a
negative minimum at x2 ∈ [x∗, x1]. In the first case x∗ is a local minimizer of u. By the uniqueness
of solutions of initial value problems one has u ≡ 0, a contradiction to u(0) = ξ > 0. In the second
case u′′k(x2) = h(x2)|uk|p−1uk(x2) < 0, a contradiction. Hence, x0 = x∗ and u < 0 on (x0,∞).

Finally, since u′′k = h(x)|u|p−1u(x) < 0 for each x ∈ (x0,∞), uk is concave on (x0,∞) and the
second statement follows. �

Denote

K0 := {k : uk(x) ≤ 0 for some x ≥ 0} ,
K2 := {k : uk(x) ≥ 2ξ for some x ≥ 0} .
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Claim 3. The sets K0 and K2 are non-empty, open, and disjoint. Moreover (−∞,−2ξ−Hξp) ⊂
K0, where H := supx∈[0,1] h(x).

Proof. From Claim 1 it follows that (0,∞) ⊂ K2 6= ∅. If k ∈ K0, then limx→Tk uk(x) = −∞
and if k ∈ K2, then u′k(x) > 0 and u(x) > 0 for some x > 0, and therefore limx→Tk uk(x) = ∞.
Thus K0 ∩ K2 = ∅.

If k0 ∈ K0, then, by Claim 2, there exists x1 > 0 such that uk0(x1) < −1. The continuous
dependence of solutions on initial data implies uk(x1) < −1 for any k sufficiently close to k0.
Thus, K0 is open.

Analogously if k0 ∈ K2, then by Claim 1 there is x0 such that uk0(x0) > 3ξ. Then the continuous
dependence of solutions on the initial data yields uk(x0) > 3ξ for any k sufficiently close to k0.
Thus, K2 is open as well.

Finally, we show the second statement, which also implies K0 6= ∅. Fix k < −2ξ − Hξp and
suppose that there is the smallest x0 ∈ [0, 1] with u′k(x0) = −ξ. Without loss of generality assume
u ≥ 0 on [0, x0], otherwise k ∈ K0 and there is nothing to prove. Then uk(x) ≤ uk(0) = ξ on
(0, x0). However,

u′k(x0) = u′k(0) +

x0∫
0

u′′k(x) dx = k +

x0∫
0

h(x)upk(x) dx ≤ k +Hξp < −ξ ,

a contradiction.
Hence, u′k(x) < −ξ on [0, 1], and therefore uk(x) ≤ 0 for some x ∈ [0, 1]. �

Denote

M := R \ (K0 ∩ K2)
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and note that by Claim 3, M 6= ∅. Also, by Claim 1, u′k < 0 in (0,∞) for each k ∈ M , and
therefore

0 ≥ u′k(x) = u′k(0) +

x∫
0

u′′k(t) dt = k +

x∫
0

h(t)upk(t) dt ≥ k + upk(x)

x∫
0

h(t) dt ,

and therefore

0 < uk(x) ≤ (−k)
1
p

 x∫
0

h(t) dt

− 1
p

(14)

and the decay of u follows from (9). Also, (14) implies k 6= 0 for each ξ > 0. Moreover, it yields a
decay rate of u, which is however not optimal for h(x) = xα.

Claim 4. M = {k∗}.

Proof. Suppose that there are k1, k2 ∈ M with k1 > k2. Then for a sufficiently small x0 > 0,
one has

uk1(x0)− uk2(x0) > 0 and (uk1 − uk2)′(x) > 0 (x ∈ [0, x0]) .
Since limx→∞ uk1(x)−uk2(x) = 0, there exists the smallest x1 > x0 with u′k1(x1) = u′k2(x1). Then
uk1(x) > uk2(x) for x ∈ (x0, x1); however,

u′k1(x1) = u′k1(x0) +

x1∫
x0

u′′k1(x) dx = u′k1(x0) +

x1∫
x0

h(x)upk1(x) dx

> u′k2(x0) +

x1∫
x0

h(x)upk2(x) dx = u′k2(x0) +

x1∫
x0

u′′k2(x) dx = u′k2(x1) ,



JJ J I II

Go back

Full Screen

Close

Quit

a contradiction. �

Define the function k : (0,∞)→ (−∞, 0) such that k(ξ) is the unique k for which the problem
(12) has a bounded positive solution on (0,∞). Let uξ be the solution of such problem:

u′′ξ = h(x)upξ , x ∈ (τξ,∞) ,

uξ(0) = ξ , u′ξ(0) = k(ξ) ,
(15)

where τξ defines the existence time of uξ. Recall that uξ is decreasing and decays to 0 as x→∞.
Notice that the subscript now indicates the value of uξ(0) rather than u′ξ(0).

Claim 5. The function k : (0,∞) → (−∞, 0) is a continuous, strictly decreasing with
limξ→∞ k(ξ) = −∞, and limξ→0+ k(ξ) = 0.

Proof. First, let us prove continuity. For a contradiction suppose that there is a sequence (ξn)n∈N
with limn→∞ ξn = ξ0 ∈ (0,∞) such that k(ξ0) 6=limn→∞ k(ξn)=: M . Let u be the solution of the
problem (12) with u′(0) = k replaced by u′(0) = M . Since M 6= k(ξ0), the solution is either not
bounded above or not positive. Thus, by Claim 1 and Claim 2 there exists x0 such that either
u(x0) < −2 or u(x0) > 3ξ0. The continuous dependence of solutions on initial conditions yields
that uξn(x0) < −2 or uξn(x0) > 2ξn for sufficiently large n. This contradicts the definition of
k(ξn), and proves that k is continuous.

Next, we prove monotonicity of k. Fix ξ1, ξ2 ∈ (0,∞). Subtracting equations (15) for uξ1 and
uξ2 , multiplying by uξ1 − uξ2 and integrating on the interval [0, x], we obtain

x∫
0

(u′′ξ1 − u
′′
ξ2)(uξ1 − uξ2) dt =

x∫
0

h(t)[upξ1 − u
p
ξ2

](uξ1 − uξ2) dt ,
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where we do not indicate the dependence of uξi on t. An integration by parts and positivity of h
yield for any x > 1

(u′ξ1 − u
′
ξ2)(uξ1 − uξ2)(x)− (u′ξ1 − u

′
ξ2)(uξ1 − uξ2)(0)

=

x∫
0

(u′ξ1 − u
′
ξ2)2 dt+

x∫
0

h(t)[upξ1 − u
p
ξ2

](uξ1 − uξ2) dt ≥ Cξ1,ξ2 ,

where Cξ1,ξ2 > 0 whenever ξ1 6= ξ2 and Cξ1,ξ2 is independent of x > 1. Since uξi (i = 1, 2) decays
monotonically to 0, one has

0 = lim inf
x→∞

(u′ξ1 − u
′
ξ2)(uξ1 − uξ2)(x) ≥ (u′ξ1 − u

′
ξ2)(uξ1 − uξ2)(0) + Cξ1,ξ2

= (k(ξ1)− k(ξ2))(ξ1 − ξ2) + Cξ1,ξ2 ,

and the strict monotonicity follows.
From Claim 3 and the negativity of k it follows that 0 > k(ξ) ≥ −2ξ −Hξp, and the statement

limξ→0+ k(ξ) = 0 follows.
We finish the proof by showing that k(ξ) ≤ − ξ2 for large ξ. Otherwise, there exists large ξ

such that k(ξ) > − ξ2 and the convexity of uξ yields that u′ξ(x) > − ξ2 for each x ∈ [0, 1]. Hence,
uξ(x) > ξ

2 for each x ∈ [0, 1]. Since uξ is a nonincreasing function

0 ≥ u′ξ(1) = u′ξ(0) +

1∫
0

u′′ξ (t) dt

= k(ξ) +

1∫
0

h(t)upξ(t) dt ≥ −ξ
2

+
(
ξ

2

)p 1∫
0

h(t) dt ,
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a contradiction for sufficiently large ξ. �

Claim 6. For each ξ > 0, there exists x∗ < 0 such that uξ(x∗) = 0.

Proof. For a contradiction assume uξ(x) > 0 for each x ∈ (τξ, 0). Since u′′ξ (x) = h(x)upξ < 0,
uξ is concave on (τξ, 0). Therefore, 0 ≤ uξ(x) ≤ ξ + u′ξ(0)x for each x ∈ (τξ, 0), and in particular
τξ = −∞.

Next, we show that u′ξ(x0) > 0 for some x0 < 0. If not, then uξ decreases on (−∞, 0) and
uξ(x) ≥ uξ(0) = ξ for all x < 0. However,

0 ≥ u′ξ(x) = u′ξ(0)−
0∫
x

u′′ξ (s) ds = k(ξ)−
0∫
x

h(s)upξ(s) ds

≥ k(ξ)− ξp
0∫
x

h(s) ds ,

a contradiction to (9) for large negative x.
Thus u′ξ(x0) > 0 for some x0 < 0, and since uξ is concave, u′ξ(x) ≥ u′ξ(x0) > 0 for each x < x0.

Hence, uξ(x∗) = 0 for some x∗ < 0, a contradiction. �

Denote a(ξ) := sup{x < 0 : uξ(x) = 0}. By Claim 6, a is well defined and negative for each ξ.
Also, the continuous dependence of k on ξ implies the continuity of a.

Claim 7. The range of a is (−∞, 0), that is, R := {a(ξ) : ξ ∈ (0,∞)} = (−∞, 0).

Proof. By the continuity of a is suffices to prove supR = 0 and infR = −∞.
First, for a contradiction assume max{supR,−ε∗} =: −ε < 0, where ε∗ was defined in (10). We

show that for a sufficiently large ξ, u′ξ(x) = 0 for some x ∈ [− ε4 , 0]. For a contradiction suppose
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u′ξ(x) < 0 for each x ∈ [− ε4 , 0]. Then, uξ decreases on [− ε4 , 0], and by (10), u′′ξ = h(x)upξ increases
on [− ε4 , 0].

If u′ξ(x) ≥ k(ξ)
2 for some x ∈ (− ε8 , 0), then the increasing second derivative of uξ yields u′ξ(x) = 0

for some x ∈ [− ε4 , 0], a contradiction. Otherwise u′ξ(x) < k(ξ)
2 for all x ∈ (− ε8 , 0), and therefore

uξ

(
−ε

8

)
≥ −k(ξ)

2
ε

8
+ ξ ≥ − ε

16
k(ξ).

Since uξ decreases on [− ε4 , 0], uξ(x) ≥ uξ(− ε8 ) ≥ − ε
16k(ξ) for each x ∈ (− ε4 ,−

ε
8 ). Moreover,

0 > u′ξ

(
−ε

4

)
= u′ξ(0)−

0∫
− ε4

u′′ξ (t) dt = k(ξ)−
0∫

− ε4

h(t)upξ(t) dt

≥ k(ξ)−

− ε8∫
− ε4

h(t)
(
−εk(ξ)

16

)p
dt = k(ξ)− cε|k(ξ)|p ,

where cε > 0, a contradiction for a sufficiently large k(ξ) (and by Claim 5, for sufficiently large ξ).
Let bξ := sup{x < 0 : u′ξ(x) = 0}. We showed that bξ ≥ − ε4 for any sufficiently large ξ. Let

Uξ := uξ(bξ), then Uξ ≥ ξ since uξ decreases on (bξ, 0). Assume that there exists x ∈ (− ε2 , bξ)
such that uξ(x) < Uξ/2. Then the concavity of uξ yields that uξ(x) < 0 for some x ∈ (−ε, bξ), a
contradiction to the definition of ε. Hence, uξ(x) > Uξ/2 for each x ∈ (− ε2 , bξ). However, by the
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Taylor’s theorem

0 < uξ

(
−ε

2

)
= uξ(bξ) + u′ξ(bξ)(−

ε

2
− bξ)−

bξ∫
− ε2

(
−ε

2
− t
)
u′′ξ (t) dt

= Uξ +

bξ∫
− ε2

(ε
2

+ t
)
h(t)upξ(t) dt ≤ Uξ +

Upξ
2p

− ε4∫
− ε2

(ε
2

+ t
)
h(t) dt = Uξ + cεU

p
ξ ,

where cε < 0, a contradiction for sufficiently large Uξ, and therefore ξ. We have showed supR = 0.
Assume M := infR > −∞. First, we claim limξ→0+ uξ(bξ) = 0, where bξ was defined above.

Otherwise, there is a sequence (ξn)n∈N converging to 0 such that limn→∞ uξn(bξn) =: δ > 0. Since
uξ is concave, uξn(bξn) ≤ ξn+k(ξn)bξn , and therefore bξn < (uξn(bξn)−ξn)/k(ξn) (recall k(ξ) < 0).
By Claim 5, k(ξn)→ 0− as n→∞ and uξn(bξn)− ξn → δ. Thus bξn → −∞ as n→∞. Since uξ
decreases on (bξ, 0), it is positive there, and consequently M ≤ a(ξn) ≤ bξn → −∞, a contradiction.
Therefore, uξ(bξ)→ 0 as ξ → 0+.

Since uξ is concave, uξ increases on (a(ξ), bξ). Hence, uξ(x) ≤ uξ(bξ) for each x ∈ (a(ξ), bξ).
Then, again by the Taylor’s theorem

0 = uξ(a(ξ)) = uξ(bξ) + u′ξ(bξ)(a(ξ)− bξ)−
bξ∫

a(ξ)

(a(ξ)− t)u′′ξ (t) dt

= uξ(bξ)−
bξ∫

a(ξ)

(a(ξ)− t)h(t)up(t) dt ≥ uξ(bξ)− upξ(bξ)
bξ∫

a(ξ)

(a(ξ)− t)h(t) dt

≥ uξ(bξ)− upξ(bξ)
0∫

−M

(−M − t)h(t) dt = uξ(bξ)− cMupξ(bξ) ,
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where cM > 0, a contradiction for small uξ(bξ) (that is, small ξ). �

This finishes the proof of Proposition 1. �

Proof of Proposition 2. It is trivial to check, that assumptions (8)–(10) are satisfied for h(x) =
sign(x)|x|α, and therefore all claims in the proof of Proposition 1 holds true. In particular, for
each a < 0 there exists a solution of (11). Fix a and two bounded, positive, nontrivial, solutions
u, v of (11). Notice, by the scale invariance, that vλ(x) = λ

2+α
p−1 v(λx) satisfies the equation in (11)

and vλ is a positive bounded function.
Without loss of generality assume u(0) ≤ v(0). Then there exists λ ∈ (0, 1] such that vλ(0) =

u(0). Moreover, Claim 4 yields that v′λ(0) = u′(0), and consequently u = vλ by the uniqueness of
the initial value problem. If λ 6= 1, then 0 = u(−a) = vλ(−a) = λ

2+α
p−1 v(−λa) > 0, a contradiction.

Thus, λ = 1 and u = v, the uniqueness follows. �
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