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THE CESÀRO χ2 SEQUENCE SPACES
DEFINED BY A MODULUS

N. SUBRAMANIAN

Abstract. In this paper we define the Cesàro χ2 sequence space Cesq
p

“
χ2

f

”
defined by a modulus and

exhibit some general properties of the space.

1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single sequences,
respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of positive integers.
Then, w2 is a linear space under the coordinate wise addition and scalar multiplication.

An initial work on double sequence spaces is found in Bromwich [4]. Later on, they were
investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2], Tripathy
[17], Turkmenoglu [19] and many others.
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Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : sup
m,n∈N

|xmn|tmn <∞
}
,

Cp (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn − l|tmn = 1 for some l ∈ C
}
,

C0p (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn|tmn = 1
}
,

Lu (t) :=

{
(xmn) ∈ w2 :

∞∑
m=1

∞∑
n=1

|xmn|tmn <∞

}
,

Cbp (t) := Cp (t) ∩Mu (t) and C0bp (t) = C0p (t) ∩Mu (t)

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and p − limm,n→∞
denotes the limit in the Pringsheim’s sense. In case tmn = 1 for all m,n ∈ N,Mu (t), Cp (t), C0p (t),
Lu (t), Cbp (t) and C0bp (t) are reduced to the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively.
Now, we may summarize the knowledge given in some documents related to the double sequence
spaces. Gökhan and Colak [21, 22] proved thatMu (t) and Cp (t), Cbp (t) are complete paranormed
spaces of double sequences and gave the α-, β-, γ- duals of the spaces Mu (t) and Cbp (t). Quite
recently, Zelter [23] in her PhD thesis, essentially studied both the theory of topological double
sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [24]
recently introduced the statistical convergence and Cauchy for double sequences and gave the
relation between statistical convergent and strongly Cesàro summable double sequences. Next,
Mursaleen [25] and Mursaleen and Edely [26] defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and introduced the
M -core for double sequences and determined those four dimensional matrices transforming every
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bounded double sequence x = (xjk) into one whose core is a subset of the M -core of x. More
recently, Altay and Basar [27] defined the spaces BS, BS (t), CSp, CSbp, CSr and BV of double
sequences consisting of all double series whose sequence of partial sums are in the spaces Mu,
Mu (t), Cp, Cbp, Cr and Lu, respectively, and also examined some properties of those sequence
spaces and determined the α-duals of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces
CSbp and CSr of double series. Further Basar and Sever [28] introduced the Banach space Lq
of double sequences corresponding to the well-known space `q of single sequences and examined
some properties of the space Lq. Quite recently Subramanian and Misra [29] studied the space
χ2
M (p, q, u) of double sequences and gave some inclusion relations.

Spaces that are strongly summable sequences were discussed by Kuttner [31], Maddox [32], and
others. The class of sequences which are strongly Cesàro summable with respect to a modulus
was introduced by Maddox [8] as an extension of the definition of strongly Cesàro summable
sequences. Connor [33] further extended this definition to a definition of strong A-summability
with respect to a modulus where A = (an,k) is a nonnegative regular matrix and established some
connections among strong A-summability, strong A-summability with respect to a modulus, and
A-statistical convergence. In [34] the notion of convergence of double sequences was presented by
A. Pringsheim. Also, in [35]–[38] and [39] the four dimensional matrix transformation (Ax)k,` =∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied extensively by Robison and Hamilton. This will be accomplished

by presenting the following sequence spaces:

Cesqp
(
χ2
f

)
= d (x, 0)

=

x∈χ2 := lim
m,n→∞

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n) |xmn|)
1

m+n

))pmn
 1

pmn

= 0


and
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Cesqp
(
Λ2
f

)
= d (x, 0)

=

x ∈ χ2 := sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn|)
1

m+n

))pmn
 1

pmn

<∞


where f is a modulus function. Other implications, general properties and variations will also be
presented.

In the sequel of the paper we need the following inequality

(a+ b)p ≤ ap + bp(1.1)

for a, b,≥ 0 and 0 < p < 1. The double series
∑∞
m,n=1 xmn is called convergent if and only if the

double sequence (smn) is convergent, where smn =
∑m,n
i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|
1/m+n

<∞. The vector space
of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called double gai se-
quence if ((m+ n)! |xmn|)1/m+n → 0 asm,n→∞. The double gai sequences will be denoted by χ2.
Let φ = {all finite
sequences}.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is defined by
x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes the double sequence whose only non

zero term is a 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

An FK-space (or a metric space) X is said to have AK property if (=mn) is a Schauder basis
for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex
topology under which the coordinate mappings x = (xk)→ (xmn) (m,n ∈ N) are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space
(
LM
)
. Lindenstrauss and

Tzafriri [7] investigated Orlicz sequence spaces in more detail and proved that every Orlicz sequence
space `M contains a subspace isomorphic to `p (1 ≤ p <∞). Subsequently, different classes of
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sequence spaces were defined by Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and
Altin [3], Tripathy et al. [18], Rao and Subramanian [15] and many others. The Orlicz sequence
spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,∞)→ [0,∞) which is continuous,
non-decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as x → ∞.
If convexity of Orlicz function M is replaced by subadditivity of M , then this function is called
modulus function, defined by Nakano [12] and further discussed by Ruckle [16] and Maddox [8],
and many others.

An Orlicz function M is said to satisfy the ∆2-condition for all values of u if there exists a
constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0). The ∆2-condition is equivalent to M (`u) ≤
K`M (u) for all values of u and for ` > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence
space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.

The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. For M (t) = tp, (1 ≤ p <∞),
the spaces `M coincide with the classical sequence space `p.

If X is a sequence space, we give the following definitions:

(i) X
′

is the continuous dual of X;
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(ii) Xα =

{
a = (amn) :

∞∑
m,n=1

|amnxmn| <∞, for each x ∈ X

}
;

(iii) Xβ =

{
a = (amn) :

∞∑
m,n=1

amnxmn is convergent, for each x ∈ X

}
;

(iv) Xγ =

{
a = (amn) : sup

mn
≥ 1,

∣∣∣∣∣ M,N∑
m,n=1

amnxmn

∣∣∣∣∣ <∞, for each x ∈ X

}
;

(v) let X be an FK-space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X ′

}
;

(vi) Xδ =
{
a = (amn) : sup

mn
|amnxmn|1/m+n

<∞, for each x ∈ X
}

;

Xα, Xβ , Xγ are called α- (or Köthe-Toeplitz)-dual of X, β- (or generalized- Köthe-Toeplitz)-dual
of X, γ-dual of X, δ-dual of X, respectively. Xα was defined by Gupta and Kamptan [20]. It
is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ does not hold, since the sequence of partial
sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [30]
as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent, null and bounded scalar valued single se-

quences, respectively. The difference space bvp of the classical space `p was introduced and studied
in the case 1 ≤ p ≤ ∞ by Basar and Altay in [42] and in the case 0 < p < 1 by Altay and Basar
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in [43]. The spaces c (∆), c0 (∆), `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ sup
k≥1
|∆xk| and ‖x‖bvp

=

( ∞∑
k=1

|xk|p
)1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce the following
difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1)− (xm+1n − xm+1n+1) = xmn − xmn+1 − xm+1n +
xm+1n+1 for all m,n ∈ N.

2. Definitions and Preliminaries

Cesqp
(
χ2
f

)
and Cesqp

(
Λ2
f

)
denote the Pringscheims sense of Cesàro double gai sequence space of

modulus and Pringscheims sense of Cesàro double analytic sequence space of modulus, respecc-
tively.

Definition 2.1. A modulus function was introduced by Nakano [12]. We recall that a modulus
f is a function from [0,∞)→ [0,∞) such that

(1) f (x) = 0 if and only if x = 0,
(2) f (x+ y) ≤ f (x) + f (y) for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|), it follows from here

that f is continuous on [0,∞).
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Definition 2.2. Let A =
(
amnk,`

)
denote a four dimensional summability method that maps

the complex double sequences x into the double sequence Ax where the k, `-th term to Ax is as
follows:

(Ax)k` =
∞∑
m=1

∞∑
n=1

amnk` xmn.

Such transformation is said to be nonnegative if amnk` is nonnegative.

The notion of regularity for two dimensional matrix transformations was presented by Silverman
[40] and Toeplitz [41]. Following Silverman and Toeplitz, Robison and Hamilton presented the
following four dimensional analog of regularity for double sequences in which they both added an
adiditional assumption of boundedness. This assumption was made because a double sequence
which is P -convergent is not necessarily bounded.

Definition 2.3. Let p ∈ [1,∞) and q be a double gai sequence of positive real numbers such
that

Qij =
i∑

m=0

j∑
n=0

qmn, i, j ∈ N,

Cesqp
(
χ2
f

)
= d (x, 0)

=

x∈χ2 := lim
m,n→∞

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n) |xmn|)
1

m+n

))pmn
 1

pmn

= 0


If qmn = 1 for all m,n ∈ N, then Cesqp

(
χ2
f

)
reduces to Cesp

(
χ2
f

)
, and if f (x) = x, then Cesqp

(
χ2
f

)
reduces to Cesqp

(
χ2
)
.
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Definition 2.4. Let p ∈ [1,∞) and q be a double analytic sequence of positive real numbers
such that

Qij =
i∑

m=0

j∑
n=0

qmn, i, j ∈ N,

Cesqp
(
Λ2
f

)
= d (x, 0)

=

x ∈ χ2 := sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn|)
1

m+n

))pmn
 1

pmn

<∞

 .

If qmn = 1 for all m,n ∈ N, then Cesqp
(

Λ2
f

)
reduces to Cesp

(
Λ2
f

)
, and if f (x) = x, then Cesqp

(
Λ2
f

)
reduces to Cesqp

(
Λ2
)
.

The space Cesqp
(
χ2
f

)
is a metric space with the metric

d (x, y)

= inf

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn−ymn|)
1

m+n

))pmn
 1

pmn

≤ 1


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The space Cesqp
(

Λ2
f

)
is a metric space with the metric

d (x, y)

= inf

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn − ymn|)
1

m+n

))pmn
 1

pmn

≤ 1

 .

3. Main Results

Proposition 3.1. Let x, y ∈ Cesqp
(
χ2
f

)
. Then for any ε > 0 and L > 0, there exists δ > 0

such that (d (x+ y, 0) , 0)pmn = d (x, 0)pmn + ε, whenever d (x, 0)p ≤ L and d (y, 0)pmn ≤ δ.

Proof. For any fix ε > 0,

d (x+ y, 0)pmn =
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn + ymn|)
1

m+n

))pmn

≤
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

))pmn
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≤ (1− β)
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+ (β)
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

· (β)
∞∑
i=1

∞∑
j=1

 1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

)
β

pmn

≤
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+
β

2

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

2qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

· β
2

∞∑
i=1

∞∑
j=1

 1
Qij

i∑
m=1

j∑
n=1

2qmnf
(

((m+ n)! |ymn|)
1

m+n

)
β

pmn

≤ d (x, 0)pmn +
ε

2

+
(

2
β

)pmn−1 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

))pmn

≤ d (x, 0)pmn +
ε

2
+
ε

2
≤d (x, 0)pmn + ε.
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Proposition 3.2. For every p = (pmn),[
Cesqp

(
Λ2
f

)]β
=
[
Cesqp

(
Λ2
f

)]α
=
[
Cesqp

(
Λ2
f

)]γ
=
[
Cesqp

(
η2
f

)]β
,

where [
Cesqp

(
η2
f

)]
=

⋂
N∈N−{1}

x = xmn :
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|N

m+n
pmn

)) 1
pmn

<∞

 .

Proof. First we show that
[
Cesqp

(
η2
f

)]
⊂
[
Cesqp

(
Λ2
f

)]β
.

Let x ∈
[
Cesqp

(
η2
f

)]
and y ∈

[
Cesqp

(
Λ2
f

)]β
. Then we can find a positive integer N such that(

|ymn|1/m+n
)

< max

1, sup
m,n≥1

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|ymn|

1
m+n

)pmn

) 1
pmn

 < N

for all m,n.
Hence we may write∣∣∣∣∣∑

m,n

xmnymn

∣∣∣∣∣ ≤∑
m,n

|xmnymn| ≤
∑
mn

(f (|xmnymn|)) ≤
∑
m,n

(
f
(
|xmn|Nm+n

))
.
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Since x ∈ Cesqp
(
η2
f

)
. The series on the right side of the above inequality is convergent, whence

x ∈ Cesqp
(

Λ2
f

)
. Hence

[
Cesqp

(
η2
f

)]
⊂
[
Cesqp

(
Λ2
f

)]β
.

Now we show that
[
Cesqp

(
Λ2
f

)]β
⊂
[
Cesqp

(
η2
f

)]
.

For this, let x ∈
[
Cesqp

(
Λ2
f

)]β
and suppose that x /∈

[
Cesqp

(
Λ2
f

)]
. Then there exists a positive

integer N > 1 such that
∑
m,n (f (|xmn|Nm+n)) =∞.

If we define ymn = Nm+nSgnxmn m,n = 1, 2, · · · , then y ∈
[
Cesqp

(
Λ2
f

)]
.

But, since ∣∣∣∣∣∑
m,n

xmnymn

∣∣∣∣∣ =
∑
mn

(f (|xmnymn|)) =
∑
m,n

(
f
(
|xmn|Nm+n

))
=∞,

we get x /∈
[
Cesqp

(
Λ2
f

)]β
, which contradicts the assumption x ∈

[
Cesqp

(
Λ2
f

)]β
. Therefore x ∈[

Cesqp
(
η2
f

)]
and

[
Cesqp

(
Λ2
f

)]β
=
[
Cesqp

(
η2
f

)]
.

(ii)and (iii) can be shown in a similar way of (i). Therefore, we omit it. �

Proposition 3.3. Let p = (pmn) be a Cesàro space of double analytic modulus sequence of
strictly positive real numbers pmn. Then

(i) Cesqp
(

Λ2
f

)
is a paranormed space with

g (x) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|

1
m+n

)) pmn
M


1

pmn

(3.1)
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if and only if h = inf pmn > 0, where M = max (1, H) and H = sup pmn.
(ii) Cesqp

(
Λ2
f

)
is a complete paranormed linear metric space if the condition p in (3.1) is

satisfied.

Proof. The proof of (i). Sufficiency. Let h > 0. It is trivial that g (θ) = 0 and g (−x) = g (x).
The inequality g (x+ y) ≤ g (x) + g (y) follows from the inequality (3.1), since pmn/M ≤ 1

for all positive integers m,n. We also may write g (λx) ≤ max
(
|λ| , |λ|h/M

)
g (x), since |λ|pmn ≤

max
(
|λ|h , |λ|M

)
for all positive integers m,n and for any λ ∈ C, the set of complex numbers.

Using this inequality, it can be proved that λx → θ, when x is fixed and λ → 0, or λ → 0 and
x→ θ, or λ is fixed and x→ θ.

Necessity. Let Cesqp
(

Λ2
f

)
be a paranormed space with the paranorm

g (x) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|

1
m+n

)) pmn
M


1

pmn

and suppose that h = 0. Since |λ|pmn/M ≤ |λ|h/M = 1 for all positive integers m,n and λ ∈ C such
that 0 < |λ| ≤ 1, we have

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (|λ|)

) pmn
M


1

pmn

= 1.
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Hence it follows that

g (λx) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (|λ|)

) pmn
M


1

pmn

= 1

for x = (α) ∈ Cesqp
(

Λ2
f

)
as λ→ 0. But this contradicts the assumption Cesqp

(
Λ2
f

)
is a paranormed

space with g (x) .

The proof of (ii) is clear. �

Corollary 3.4. Cesqp
(

Λ2
f

)
is a complete paranormed space with the natural paranorm if and

only if Cesqp
(

Λ2
f

)
= Cesq

(
Λ2
f

)
.

Proposition 3.5. For every p = (pmn) , Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
&Cesqp

(
Λ2
f

)
.

Proof. The proof of (i). First, we show that Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
. We know that[

Cesqp
(
χ2
f

)]
⊂ Cesqp

(
Λ2
f

)
.[

Cesqp
(

Λ2
f

)]β
⊂
[
Cesqp

(
χ2
f

)]β
. But

[
Cesqp

(
Λ2
f

)]β
= Cesqp

(
η2
f

)
by Proposition 3.2. Therefore,

Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
.(3.2)

The proof of (ii). Now we show that
[
Cesqp

(
χ2
f

)]β
& Cesqp

(
Λ2
f

)
.
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Let y = (ymn) be an arbitrary point
[
Cesqp

(
χ2
f

)]β
. If y is not Cesqp

(
Λ2
f

)
, then for each natural

number q, we can find an index mpnq such that ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmqnqf
((

(mq + nq)!
∣∣ymqnq

∣∣) 1
mq+nq

))pmn
 1

pmn

> q

for (1, 2, 3, · · · ). Define x = {xmn} by ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn >

) q
1

m+n

for (mn) = (mqnq) and some q ∈ N; and ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) = 0, otherwise.

Then x is Cesqp
(
χ2
f

)
, but for infinitely mn, ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |ymnxmn|)pmn)
1

pmn

) > 1.(3.3)

Consider the sequence z = {zmn} , where

Q11 (q11f (2!z11)pmn)pmn = Q11 (q11f (2!x11)pmn)pmn − s
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with

s =

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ;

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmn|)pmn)
1

pmn

)
=

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) .

The z is a point of Cesqp
(
χ2
f

)
. Also ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmn|)pmn)
1

pmn

) = 0.

Hence z is in Cesqp
(
χ2
f

)
. But, by the equation (3.3), ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmnymn|)pmn)
1

pmn

)
does not converge and so

∑∑
xmnymn diverges. Thus, the sequence y would not be

[
Cesqp

(
χ2
f

)]β
.

This contradiction proves that
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[
Cesqp

(
χ2
f

)]β ⊂ Cesqp
(
Λ2
f

)
.(3.4)

If we now choose f = id, where id is the identity and

1
Q1j

(q1n ((m+ n)!y1n)) =
1
Q1j

(q1n ((m+ n)!x1n))

and
1
Qij

(qmn ((m+ n)!ymn)) =
1
Qij

(qmn ((m+ n)!xmn)) = 0, (m, i > 1)

for all n, j, then obviously x ∈ Cesqp
(
χ2
f

)
and y ∈ Cesqp

(
Λ2
f

)
, but∑∑

xmnymn =∞.(3.5)

Hence y /∈
[
Cesqp

(
χ2
f

)]β
.

From (3.4) and (3.5), we are granted
[
Cesqp

(
χ2
f

)]β
& Cesqp

(
Λ2
f

)
. �

Proposition 3.6. In Cesqp
(
χ2
f

)
weak convergence does not imply strong convergence.

Proof. Assume that weak convergence implies strong convergence Cesqp
(
χ2
f

)
. Then, we would

have
[
Cesqp

(
χ2
f

)]ββ
= Cesqp

(
χ2
f

)
[see Wilansky]. But[

Cesqp
(
χ2
f

)]ββ &
[
Cesqp

(
Λ2
f

)]β
= Cesqp

(
η2
f

)
.



JJ J I II

Go back

Full Screen

Close

Quit

Thus
[
Cesqp

(
χ2
f

)]ββ
6= Cesqp

(
χ2
f

)
. Hence weak convergence does not imply strong convergence in

Cesqp
(
χ2
f

)
. �

Proposition 3.7. Let f be an modulus function which satisfies the ∆2-condition. Then
Cesqp

(
χ2
)
⊂ Cesqp

(
χ2
f

)
.

Proof. Let

x ∈ Cesqp
(
χ2
)
.(3.6)

Then  ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmn (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ ε
for sufficiently large m,n and every ε > 0. ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ f (ε)

(because f is non-decreasing). This implies ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ Kf (ε) < (ε)
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(by the ∆2-condition, for some K > 0 and by defining f (ε) < ε
K ).

lim
m,n→∞

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn
 1

pmn

=0.(3.7)

Hence

x ∈ Cesqp
(
χ2
f

)
.(3.8)

From (3.6) and (3.8), we get Cesqp
(
χ2
)
⊂ Cesqp

(
χ2
f

)
. �

Proposition 3.8.
[
Cesqp

(
Λ2
f

)]β
& Cesqp

(
χ2
f

)
.

Proof. Let (xmn) ∈
[
Cesqp

(
Λ2
f

)]β
∑∑

|xmnymn| <∞(3.9)

for all (ymn) ∈
[
Cesqp

(
Λ2
f

)]β
. Assume that (xmn) /∈ Cesqp

(
χ2
f

)
. Then there exists a sequence of

positive integers

f (|xmr+nr
|) > 1(

(mr + nr!2)(mr+nr)
) , (r = 1, 2, 3, · · · ) .

Take

ymr+nr
=

 (2 (mr + nr)!)
mr+nr for r = 1, 2, 3, · · · ,

ymr+nr
= 0 otherwise.
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Then (ymn) ∈
[
Cesqp

(
Λ2
f

)]
. But

∑∑
|xmnymn| =

∞∑
r=1

|xmr+nr
ymr+nr

| = f

( ∞∑
r=1

|xmr+nr
ymr+nr

|

)
> 1 + 1 + 1 + · · · .

We know that the infinite series 1 + 1 + 1 + . . . diverges. Hence
∑∑

|xmnymn| diverges. This
contradicts (3.9). Hence (xmn) ∈ Cesqp

(
χ2
f

)
. Therefore,[

Cesqp
(
Λ2
f

)]β ⊂ Cesqp
(
χ2
f

)
.(3.10)

If we now choose p = (pmn), it is a constant f = id, where id is the identity and

1
Q1j

(q1n ((1 + n)!y1n)) =
1
Q1j

(q1n ((1 + n)!x1n)) and

1
Qij

(qmn ((m+ n)!ymn)) =
1
Qij

(qmn ((m+ n)!xmn)) = 0

where (m, i > 1) for all n, j, then obviously x ∈ Cesqp
(
χ2
f

)
and y ∈ Cesqp

(
Λ2
f

)
, but∑∑

xmnymn =∞.(3.11)

Hence y /∈
[
Cesqp

(
χ2
f

)]β
.

From (3.10) and (3.1), we are granted
[
Cesqp

(
Λ2
f

)]β
& Cesqp

(
χ2
f

)
. �
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Proposition 3.9. Let
(

Cesqp
(
χ2
f

))∗
denote the dual space of Cesqp

(
χ2
f

)
. Then we have

(
Cesqp

(
χ2
f

))∗
=

Cesqp
(

Λ2
f

)
.

Proof. We recall that

x = =mn =


0, 0, . . . 0, 0, . . . 0
0, 0, . . . 0, 0, . . . 0
...
0, 0, . . . 1

(m+n)! , 0, . . . 0
0, 0, . . . 0, 0, . . . 0



with 1
(m+n)! in the (m,n)th position and zero otherwise, with

x = =mn


 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn
 1

pmn



=


0, 0, . . . 0, 0, . . . 0
...
0, 0, . . .

(
(m+n)!
(m+n)!

)
, 0, . . . 0

0, 0, . . . 0, 0, . . . 0

 =


0, 0, . . . 0, 0, . . . 0
0, 0, . . . 0, 0, . . . 0
...
0, 0, . . . 11/m+n, 0, . . . 0
0, 0, . . . 0, 0, . . . 0


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which is a Cesqp
(
χ2
f

)
sequence. Hence =mn ∈ Cesqp

(
χ2
f

)
. Let us take f (x) =

∑∞
m=1

∑∞
n=1 xmnymn

with x ∈ Cesqp
(
χ2
f

)
and f ∈

(
Cesqp

(
χ2
f

))∗
. Take x = (xmn) = =mn ∈ Cesqp

(
χ2
f

)
. Then

|ymn| ≤ ‖f‖ d (=mn, 0) <∞ for each m,n.

Thus (ymn) is a bounded sequence and hence an Cesàro double analytic sequence of modulus. In

other words y ∈ Cesqp
(

Λ2
f

)
. Therefore

(
Cesqp

(
χ2
f

))∗
= Cesqp

(
Λ2
f

)
. �
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