RESULTS ON DIMENSION THEORY AND SOME
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ABSTRACT. In this paper we introduce Gs-sequential spaces as a generalization of sequential spaces, and
obtain some product theorems for [n, m]-compact spaces and for spaces with large inductive dimension
<n.

1. INTRODUCTION

Dimension theory dates back at least to the work of P. Urysohn [11] and K. Menger [8]. Since
then many mathematicians have contributed to the development of this theory. There are three
notions of dimension of a topological space X, small inductive dimension (denoted by ind(X)),
large inductive dimension (denoted by Ind(X)) and covering dimension (denoted by dim(X)). If
ind(X) = 0, then X is called a zero-dimensional space. If dim(X) = 0, then X is called a strongly
zero-dimensional space.

In Section 2, we introduce Gs-sequential spaces as a generalization of sequential spaces, and
obtain some product theorems for [n, m]-compact spaces and for spaces with large inductive di-
mension < n. Theorems 2.9, 2.10, 2.11, 2.13 and 2.17 formulate the main results of this paper. In
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this paper, all spaces are assumed to be 77 topological spaces. For terminology not defined here,
see Engelking [3] and Willard [12].

2. PRODUCT THEOREMS

Franklin [4] introduced sequential spaces as generalization of first countable spaces. In this section,
we define Gs-sequential spaces as a generalization of sequential spaces. We also obtain some
product theorems for [n, m]-compact spaces and spaces with large inductive dimension < n.

Definition 2.1 ([4]). A subset A of a space X is called sequentially open if each sequence in
X converging to a point in A is eventually in A. A space X is called a sequential space if every
sequentially open subset of X is open.

Definition 2.2. A space X is called Gs-sequential if every sequentially open subset is a Gg-set.

Definition 2.3. Let X be an arbitrary space. The Gs-topology of X is the topology generated
by the Gs-sets of X.

Definition 2.4 ([7]). A space X is called scattered if every non-empty closed subset A of X
has an isolated point.

Definition 2.5 ([1]). A space X is called [n,m]-compact if every open cover U of X with
|| < m has a subcover of cardinality < n. If X is [n, m]-compact for all m > n, then it is called
[n, oo]-compact. [Rg,m]-compact spaces will be called simply m-compact.

Definition 2.6 ([2]). A space X is called paracompact if every open cover U of X has a locally
finite open refinement.

Definition 2.7. A mapping f from a space X onto a space Y is called o-closed if f maps closed
sets onto F,-sets.
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It is clear that every sequential space is Gs-sequential. However a Gs-sequential space may fail
to be sequential (see Arens-Fort example [10, page 54]).

Kramer [6] showed that if X is a sequential space and Y is a countably compact space, then the
projection mapping P: X X Y — X is closed. A similar theorem concerning o-closed mappings
can be obtained using Gs-sequential spaces. For this purpose we need the following lemma which
can be obtained by modifying the proof of Kramer [6, Lemma 5.3].

Lemma 2.8. Let X be a Gs-sequential space and Y be a countably compact space. Let F
be a closed subset of X XY and V be an open subset of Y. Let x be a point of X such that
F(z)={yeY |(z,y) € F} C V. Then there is a Gs-set U containing x such that z € U implies
F(z)CV.

Theorem 2.9. Let X be a Gs-sequential space and 'Y be a countably compact space. Then the
projection mapping P: X XY — X is o-closed.

The proof follows from Lemma 2.8 by taking € X — P(F) and V = ¢.

Theorem 2.10. Let f be a continuous o-closed mapping from a space X onto a space Y such
that f=1(y) is m-compact for eachy € Y. Then X is [n,m]-compact if the Gs-topology of Y is so.

Proof. Let U = {U, | « € A}, |A| < m be an open cover of X. Let I" denote the family of all
finite subsets of A. Then || < m. Since f~1(y) is m-compact, we have that for each y € Y, there
exists a finite subset v of A such that f~*(y) C U{Ua |a€7}. Let V, =Y — f(X — UaeyUa)-
Then y € V,, V, is a Gs-set and f~1(V,) C U{U, |a€~}. Thus {V, |y €T} cover of Y,
of which each element is a Gs-set, and |I'| < m. Since the Gs-topology of Y is [n, m]-compact,
{V, | v € '} has a subcover of cardinality < n. Therefore X is the union of less than n members
of {f~1(V,) |y €T}. But for each v € T, the set f~*(V,) is contained in the union of finitely
many members of ¢/. Hence X is [n, m|-compact. O



Theorem 2.11. Let X be a scattered, paracompact Hausdorff space. Then the Gs-topology of
X is paracompact.

Proof. Let U be a cover of X by Gs-sets. Let
F={x€ X |z €U and U is open implies U cannot be covered by a

o-locally finite open refinement of /}.

Obviously F' is closed. Suppose F' # ¢. Since X is scattered, F' has an isolated point x. Thus
there exists an open set V' C X such that VN F = {x}. Choose U* € U such that z € U*.
Without loss of generality we can assume that U* = ({V,, |n=1,2,...} where V,, is open for
eachn =1,2,...,and V,41 C V,iu1 CV,, CV. Foreachn =1,2,..., (V, = V1) C X - F.
Therefore each y € (V,, — V,,41) has a neighborhood M,, which can be covered by a o-locally finite
open refinement of Y.

Now M = {My ly € (V, — Vn+1)} is an open cover of V,, — V;,41. Since V,, — V,,41 is closed and
X is paracompact, M has a locally finite (in X) open (in X) refinement, say H,, = {H, | @ € A, }.
For each a@ € A,,, H, is covered by a o-locally finite open refinement of U, say Jio, A% Let
BY = {H,NA|Aec A?} and K = {B|Be B, acA,}. Then K is a locally finite open
refinement of U, because if x € X, there exists an open set N, such that N, N H, = ¢ for all
except finitely many indices, say a1, a2, ..., a,. Each one of the collections B;"*, B;*, ..., By" is
locally finite. Hence for each j = 1,2,...,n, there exists an open set Wf and each Wf intersects
at most finitely many members of B”. Hence W} N...N W/ N N, is an open neighborhood of z
which intersects finitely many members of .

Now J;2, K% is an open o-locally finite open refinement of ¢ which covers Vs, = V1. Con-
sequently, (U,—; Uie; K ) U{U*} is an open o-locally finite open refinement of & which covers
V. This contradicts the fact that x € V. Thus F' = ¢. Therefore, for each x € V, there is an
open neighborhood G, of = such that G, can be covered by a o-locally finite open refinement of
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U. Since X is paracompact, {G; | € X} has a locally finite open refinement {Dg | 8 € '} where
for each 3 € I', Dy is covered by a o-locally finite open refinement of U, say |J;-, C’Z’-G .

Let G; = {C |C e C;-B , B € I‘}. Then it is easy to see that G; is locally finite. Therefore

U;’il G; is a o-locally finite open refinement of & which covers X. Hence the Gs-topology of X is
paracompact. O

Theorem 2.12 ([5]). Let X be an [n,co]-compact scattered space. Then the Gs-topology of X
is [n, 0o]-compact.

The proof follows by a similar method used in Theorem 2.11.

Theorem 2.13. Let Y be an m-compact space and X be a Gs-sequential scattered space. Then
X XY is [n,m]-compact if X is [n,c0]-compact.

Proof. By Theorem 2.9, the projection mapping P: X x Y — X is closed. By Theorem 2.10,

X XY is [n, m]-compact. O

Definition 2.14. An open (closed) rectangle in X x Y is a set of the form U x V where U is
an open (closed) subset of X and V is an open (closed) subset of Y.

The following definition was introduced by Nagata [9] to study the dimension of the products.

Definition 2.15. Let X and Y be two spaces. Then the product space X x Y is called an
F-product if whenever H and K are disjoint closed sets in X x Y, then there is an open cover
U={Uy|aeA}of X xY and a closed cover F = {F, |« € A} of X XY such that:

(i) F consists of closed rectangles and U consists of open rectangles.

(if) U is o-locally finite.

(i) Fo C U, for all @ € A.



(iv) U refines {(X xY)—H, (X xY) - K}.

Kramer [6] proved that if X is sequential, paracompact and Hausdorff while Y is countably
compact and normal, then X X Y is an F-product.
In case X is a Gs-sequential space, we have the following theorems

Theorem 2.16. Let X be a Gs-sequential, paracompact, scattered and Hausdorff space. Let Y
be a countably compact normal space. Then X XY is an F-product.

The proof follows from Theorem 2.11 and a similar technique used in the proof of the above
Theorem of Kramer.

Nagata [9] showed that if X and Y are non-empty with Ind(X) < n while Ind(Y) < m and
X XY is a totally normal F-product, then Ind(X x Y) < n+ m. Using this result together with
Theorem 2.16, we get the following theorem.

Theorem 2.17. Suppose X and Y are given as in Theorem 2.16. If Ind(X)<n, Ind(Y) <m
and X XY is a totally normal, then Ind(X xY) < n + m.
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