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LATTICE PLATONIC SOLIDS AND THEIR
EHRHART POLYNOMIAL

E. J. IONASCU

Abstract. First, we calculate the Ehrhart polynomial associated with an arbitrary cube with integer

coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart
polynomials for regular lattice tetrahedra and those for regular lattice octahedra. These relations allow
one to reduce the calculation of these polynomials to only one coefficient.

1. INTRODUCTION

In the 1960’s, Eugène Ehrhart ([14], [15]) proved that given a d-dimensional compact simplicial
complex in Rn (1 ≤ d ≤ n), denoted here generically by P, whose vertices are in the lattice Zn,
there exists a polynomial L(P, t) ∈ Q[t] of degree d, associated with P and satisfying

L(P, t) = the cardinality of {tP} ∩ Zn, t ∈ N.(1)

It is known that

L(P, t) = Vol(P)tn +
1
2

Vol(∂P)tn−1 + . . .+ χ(P),
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where Vol(P) is the usual volume of P, Vol(∂P) is the surface area of P normalized with respect
to the sublattice on each face of P and χ(P) is the Euler characteristic of P. In general, the other
coefficients are less understandable, but significant progress has been done (see [5], [27] and [28]).

In [13], Eugène Ehrhart classified the regular convex polyhedra in Z3. It turns out that only
cubes, regular tetrahedra and regular octahedra can be embedded in the usual integer lattice. We
arrived at the same result in [23] using a construction of these polyhedra from equilateral triangles.
This led us to the following simple description of all cubes in Z3. If we take an odd positive integer,
say d, and a primitive solution of the Diophantine equation a2 + b2 + c2 = 3d2 (gcd(a, b, c) = 1),
the there are equilateral triangles in any plane having equation ax + by + cz = f , which can be
parameterized in terms of two integers m and n (see [18], [19] and [22]). The side-lengths of such
a triangle are equal to d

√
2(m2 +mn+ n2). In order to rise in space from such a triangle to form

a regular tetrahedron, we needto satisfy the necessary and sufficient condition

m2 +mn+ n2 = k2 for some odd k ∈ N.(2)

If (2) is satisfied, there are two possibilities. If k is a multiple of 3, then we can complete the
triangle in both sides of the plane to a regular tetrahedron in Z3, and if k is not divisible by 3, then
we can complete the triangle in exactly one side to form a regular tetrahedron in Z3 (see Figure 1).
Every such regular tetrahedron can then be completed to a cube in Z3 with side-lengths equal to
dk. Every regular octahedron in Z3 is the dual of the double of a cube in Z3. We will make these
constructions very specific in the last section.

It is natural to ask the question that we think Ehrhart himself asked: “What is the form that
the polynomial in (1) takes for these regular lattice polyhedra?”. The purpose of this paper is to
answer this question for cubes (in a very simple way), and give some partial answers for regular
tetrahedra and octahedra.
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Figure 1. Expand an equilateral triangle.

For completeness and due credit, we include Ehrhart’s idea in [16] to characterize all cubes in
Z3. This is based on a theorem of Olinde Rodrigues: The set of 3-by-3 orthogonal matrices can be
given by four real parameters a, b, c, d, not simultaneously zero, as follows

±1
a2+b2+c2+d2

 a2+b2−c2−d2 2(bc+da) 2(bd−ca)
2(bc−da) a2−b2+c2−d2 2(cd+ba)
2(bd+ca) 2(cd−ba) a2−b2−c2+d2

 .(3)

It is clear that every cube in Z3 can be translated in such way that a vertex becomes the
origin and the three vectors defined by the three sides starting from the origin give an orthogonal
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basis for R3. Hence, we can construct a 3-by-3 orthogonal matrix from these vectors which has
rational entries. Conversely, we can construct a cube in Z3 from such an orthogonal matrix which
has rational entries. In what follows we will do this association so that the vectors (points) are
determined by the rows. The construction here is to take four integers a, b, c and d in (3), simplify
by whatever is possible and then get rid of the denominators to obtain the three vectors with integer
coordinates that determine the cube. This construction is similar to the classical parametrization
of the Heronian triangles.

Our approach to the classification allows us to start in terms of the side lengths. However,
Ehrhart’s construction is useful answering other questions about these objects. For instance, we
can see that there are such cubes of any side length (other than the trivial ones, multiples of the
unit cube) since every natural number can be written as a sum of four perfect squares. It turns
out that there are only odd number side lengths for irreducible cubes, i.e., a cube which is not an
integer multiple of a smaller cube in Z3.

Let us begin with some of the smallest irreducible cubes. We introduce them here by orthogonal
matrices with rational entries and define up to the usual symmetries of the space (equivalent classes
relative to the 48-order subgroup of all orthogonal matrices with entries 0 or ±1, denoted by So).
As we mentioned before, this will make a difference, the cubes are essentially determined by the
rows. Obviously, the Ehrhart polynomials are identical for all cubes in the same equivalence class
(left or right).

We will denote the Ehrhart polynomial for an irreducible cube C` of side-length ` = 2k − 1,
k ∈ N, by L(C`, t). From the general theory we have

L(C`, t) = `3t3 + λ1t
2 + λ2t+ 1, t ∈ N,(4)

where λ1 is half the sum of the areas of the faces of the cube C`, each face being normalized by
the area of a fundamental domain of the sublattice contained in that face. The coefficient λ2 is in
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general a problem (see, for example [6]), but in this case it takes a simple form as we will show in
Section 3.

For the unit cube C1 = I (the identity matrix), obviously, L(C1, t) = (t+ 1)3. There is only one
cube (right or left equivalence classes modulo So) for each ` = 2k − 1 for k = 1, 2, 3, 4, 5 and 6:

C1 = I C3 :=
1
3

 −1 2 2
2 −1 2
2 2 −1

 ,

C5 :=
1
5

 4 3 0
3 −4 0
0 0 5

 , C7 :=
1
7

 −2 6 3
3 −2 6
6 3 −2

 ,

C9 :=
1
9

 7 4 −4
4 1 8
−4 8 1

 , C11 :=
1
11

 2 9 6
9 2 −6
6 −6 7

 .

For k = 7 we have C13 :=
1
13

 −3 12 4
4 −3 12

12 4 −3

, and an extra orthogonal matrix:

Ĉ13 :=
1
13

 5 12 0
12 −5 0
0 0 13

 .
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One peculiar thing about the Ehrhart polynomials associated with these cubes so far is that there
is an unexpected factor in their factorization:

L(C3, t) = (3t+ 1)(9t2 + 1), L(C5, t) = (5t+ 1)(25t2 + 2t+ 1),

L(C7, t) = (7t+ 1)(49t2 − 4t+ 1), L(C9, t) = (9t+ 1)(81t2 − 6t+ 1),

L(C11, t) = (11t+ 1)(121t2 − 8t+ 1), L(C13, t) = (13t+ 1)(169t2 − 10t+ 1),

and
L(Ĉ13, t) = (13t+ 1)(169t2 + 2t+ 1).

This suggests that

L(C`, t) = (`t+ 1)(`2t2 + αt+ 1), t ∈ N, and some α ∈ Z.(5)

We can easily prove that this is indeed the case for cubes of a special form like C5 and Ĉ13

above. Let us consider a primitive Pythagorean triple (a, b, c) with a2 + b2 = c2. In the xy-
plane, we construct the square with vertices O(0, 0, 0), A(a, b, 0), B(a− b, a+ b, 0), and C(−b, a, 0)
(Figure 2). We then translate this face along the vector c

−→
k to form a cube of side-lengths equal

to c. Let us denote this cube by Ca,b,c. It is easy to argue that (a, b, c) is primitive because we
have no lattice points on the sides of OABC, other than its vertices. The coefficient λ1 in (4) is
equal to 1

2 (c2 + c2 + 4c) because two of the faces have to be normalized by 1 and four of the faces
have to be normalized by c( c

c ) = c. By Pick’s theorem, applied to OABC, we have

c2 =
#{points on the sides}

2
+ #{interior points of OABC} − 1

= #{interior points of OABC}+ 1.
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Figure 2. One face of the cube.

Hence the number of lattice points in the interior of OABC is c2 − 1. Therefore the number of
lattice points in Ca,b,c is (c+ 1)(c2 + 3) = c3 + c2 + 3c+ 3. The polynomial

L(Ca,b,c, t) = c3t3 + (c2 + 2c)t2 + (c+ 2)t+ 1 = (ct+ 1)(c2t2 + 2t+ 1)
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satisfies exactly the condition L(Ca,b,c, 1) = (c+ 1)(c2 + 3). So we have shown that (5) is true for
infinitely many cubes C`.

Proposition 1.1. Given a primitive Pythagorean triple, a2 + b2 = c2, the cubes in the class of

Ca,b,c :=
1
c

 a b 0
−b a 0

0 0 c

 have the same Ehrhart polynomial given by

L(Cc, t) = (ct+ 1)(c2t2 + 2t+ 1), t ∈ N.

This proposition follows easily from the general theory since the polytope is a product of a
square and a segment. The general formula is proved in Section 3. Section 2 is basically dealing
with the second coefficient in (4). In Section 4, we look at the Ehrhart polynomial for regular
tetrahedra and regular octahedra with lattice vertices.

2. The coefficient λ1

Let us prove the following well known lemma (see the acknowledgement note) which we include
here for completeness.

Lemma 2.1. For n ∈ N, n ≥ 2, let a1, a2, . . . , an be n integers such that gcd(a1, a2, . . . , an) =
1. Then the determinant of the lattice L of points (x1, x2, . . . , xn) ∈ Zn in the hyperplane a1x1 +
. . .+ anxn = 0 is given by

√
a2
1 + a2

2 + . . .+ a2
n.

Proof. We define p = a2
1 +a2

2 + . . .+a2
n and consider the sublattice L of points (x1, x2, . . . , xn) ∈

Zn such that a1x1 + . . .+anxn = 0 (mod p). Since gcd(a1, a2, . . . , an) = 1, the index of L in Zn is p
and hence the determinant of L is p. On the other hand, a basis for L can be obtained by appending
a basis for the lattice L by the vector (a1, a2, . . . , an) whose length is

√
p and which is perpendicular

to all other basis vectors. Therefore, the determinant of the lattice L is p√
p =
√
p. �
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Let us now assume that we have an arbitrary cube in Z3,

C` =
1
`

 a1 b1 c1
a2 b2 c2
a3 b2 c3

 ,(6)

with ai, bi and ci integers such that aiaj + bibj + cicj = δi,j`
2 for all i, j in {1, 2, 3}. We define

di := gcd(ai, bi, ci). It is clear that di are divisors of `. Let us also introduce the numbers d′i = `
di

,
i = 1, 2, 3. Then, we have the following expression for the first coefficient in (4).

Theorem 2.2. The coefficient λ1 is given by

λ1 = `(d1 + d2 + d3)where di := gcd(ai, bi, ci), i ∈ {1, 2, 3}.(7)

Proof. We use Lemma 2.1 for each of the faces of the cube. Opposite faces will have the same
contribution. Say we take a face containing the points (a1, b1, c1) and (a2, b2, c2). The irreducible
normal vector to this face is clearly 1

d3
(a3, b3, c3). The area of a fundamental domain here is given

by
√

1
d2
3
(a2

3 + b23 + c23) = D3. By the general theory λ1 = 1
2 (2 `2

d′
1

+ 2 `2

d′
2

+ 2 `2

d′
3
) = `(d1 +d2 +d3). �

Naturally, at this point, the question is whether or not it is possible to have all of the di’s bigger
than one. It turns out that this is possible and as before, in our line of similar investigations, the
first ` is ` = 1105 = 5(13)(17)

C1105 =
1

1105

 −65 156 1092
420 1015 −120

1020 −408 119

 .(8)
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Corollary 2.3. For a matrix C` as in (6) such that the C−1
` in the same equivalence class

modulo So, we have

d1 + d2 + d3 = gcd(a1, a2, a3) + gcd(b1, b2, b3) + gcd(c1, c2, c3).(9)

Proof. The Ehrhart polynomial must be the same for the corresponding cubes in the same
equivalence class. �

We believe that this corollary applies to all ` < 1105, and of course to a lot of other cases, but
we do not have a proof of this fact. A counterexample to the hypothesis of this corollary is given
by the matrix given in (8). In this case, d1 + d2 + d3 = 35 and gcd(a1, a2, a3) + gcd(b1, b2, b3) +
gcd(c1, c2, c3) = 7.

3. The coefficient λ2

The main idea in calculating the coefficient a2 is to take advantage of the fact that every cube
defined by (6) can be used to form a fundamental domain (wandering set) W for the space, under
integer translations along the vectors −→α = (a1, b1, c1),

−→
β = (a2, b2, c2) and −→γ = (a3, b3, c3), i.e.,

R3 =
◦⋃

i,j,k∈Z
(W + i−→α + j

−→
β + k−→γ ),

where
◦⋃

means a union of mutually disjoint sets.
The fundamental domain W that we will consider here, associated with a generic cube as in

Figure 3, is the set of all points formed by the interior points of the cube to which we add the
points of the faces OAEC, OADB and OBFC except the (closed) edges AD, DB, BF, FC, CE, and
EA. It is easy to see that such a set is indeed a wandering set. We were informed that this notion
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Figure 3. Wandering set determined by the cube.

is known as well as the half-open fundamental parallelepiped for the cone formed by −→α ,
−→
β and −→γ .

In our setting we think of −→α ,
−→
β and −→γ as the vectors

−→
OA,

−−→
OB and

−−→
OC.

We will need to use the following well known result fact.
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Theorem 3.1 (Ehrhart-Macdonald Reciprocity Law). Given a compact simplicial lattice com-
plex P (as before) of dimension n, then

L(
◦
P , t) = (−1)nL(P,−t), t ∈ N,

where
◦
P denotes the interior of P , as usual.

With the notation from the previous section, we have the following result.

Theorem 3.2. The coefficient λ2 is equal to d1 + d2 + d3.

Proof. Let us denote by k the number of lattice points in W . For n ∈ N, the number of lattice
points in

◦⋃
i,j,k∈{1,2,...,n}

(W + i−→α + j
−→
β + k−→γ ),

is equal to n3k. On the other hand, this number is equal to L(C`, n) + K, where K is the
number of lattice points on three big faces of nC. It is easy to see that K is O(n2), and so
k = limn→∞

1
n3 (L(C`, n) +O(n2)) = `3.

Hence, according to Theorem 3.1, the number of lattice points in the interior of C` is `3 − λ1 +
λ2 − 1. So the number of lattice points on the boundary of C` is 2λ1 + 2. Let us denote by σ the
number of lattice points on the interior of the sides OA, OB and OC. Then we have

2λ1 + 2 = 2[k − (`3 − λ1 + λ2 − 1)] + 2σ + 6 ⇒ λ2 = σ + 3.

Since σ = (d1 − 1) + (d2 − 1) + (d3 − 1), the claim follows. �

Putting these facts together we obtain the following theorem.
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Theorem 3.3. Given a cube C` constructed from a matrix as in (6), its Ehrhart polynomial is
given by

L(C`, t) = (`t+ 1)[`2t2 + (d1 + d2 + d3 − `)t+ 1], t ∈ N.(10)

There are some natural questions at this point. One of them is: “What is the maximum number
of lattice points that can be contained in a lattice cube of side lengths `?” We have the following
corollary to the above theorem.

Corollary 3.4. Given a cube C` constructed from a matrix as in (6), the maximum of lattice
points inside or on the boundary of this cube cannot be more than (`+ 1)3. This value is attained
for the cube `C1.

Proof. Since di is a divisor of `, we have di ≤ `, so the corollary follows from (10). �

What is the maximum of lattice points contained in an irreducible cubes of sides `? This is a
more complicated problem which depends heavily on ` and relates to the number of irreducible
cubes (their Ehrhart polynomials, in fact) of sides `.

4. Regular tetrahedra and regular octahedra

We remind the reader that a cube in space (Figure 4) is determined by an orthogonal matrix
as in (6) by taking its vertices O (the origin), A, B, C, D, E, F and G whose position vectors
are
−→
OA = −→α = (a1, b1, c1),

−−→
OB =

−→
β = (a2, b2, c2),

−−→
OC = −→γ = (a3, b3, c3),

−−→
OD = −→α +

−→
β ,

−−→
OF =

−→
β +−→γ ,

−−→
OE = −→γ +−→α and

−−→
OG = −→α +

−→
β +−→γ .

In [23], we rediscovered Ehrhart’s characterization ([13]) of all regular polyhedra which can be
imbedded in Z3. Only the cubes, the tetrahedra and octahedra exist in Z3 and there are infinitely
many in each class. We have constructed all of these equilateral triangles. In general, once a
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tetrahedron is constructed, this can be always completed to a cube. Vice versa, for a cube given
by (6), there are two regular tetrahedra as shown in Figure 4, which are in the same equivalence
class, modulo the orthogonal matrices with entries ±1, denoted earlier by S0. Regular octahedra
can be obtained by doubling the coordinates of the cube C` and then taking the centers of each
face. This procedure is exhaustive. An octahedron in the same class can be obtained by simply
taking the vertices whose position vectors are ±−→α , ±

−→
β and ±−→γ . We will use the notations T`

and O` for the tetrahedra and octahedra constructed this way from C`. Since we are interested
in irreducible T` and O`, we may assume that ` is odd. The T` and O` have side-lengths equal to
`
√

2. From the general Ehrhart theory (see [3]), we have

L(T`, t) =
`3

3
t3 + µ1t

2 + µ2t+ 1, L(O`, t) =
4`3

3
t3 + ν1t

2 + ν2t+ 1.(11)

Let us first look at some of the examples of the smallest side-lengths.

T1 :=

 1 1 0
0 1 1
1 0 1

 , O1 :=

 1 0 0
0 1 0
0 0 1

 with

L(T1, t) =
t3

3
+ t2 +

5t
3

+ 1 and L(O1, t) =
4
3
t3 + 2t2 +

8t
3

+ 1.

For the next side-lengths,

T3 :=

 1 1 4
1 4 1
4 1 1

 , O3 :=

 −1 2 2
2 −1 2
2 2 −1

 with

L(T3, t) = 9t3 +
9
2
t2 +

13t
2

+ 1 and L(O3, t) = 36t3 + 9t2 − t+ 1.
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Figure 4. A cube determines two tetrahedra.

These polynomials were computed with the help of a computer.

4.1. The coefficients µ1 and ν1

From the general theory we know that these coefficients can be computed in terms of the areas of
faces and normalized by the area of the fundamental domains of the sub-lattice of Z3 corresponding
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to that face. Since the number of faces for O` is twice as big as T` and basically the parallel faces
are in the same equivalence class, we have ν1 = 2µ1.

Let us introduce the divisors

D1 = gcd(a1 + a2 + a3, b1 + b2 + b3, c1 + c2 + c3),

D2 = gcd(a1 + a2 − a3, b1 + b2 − b3, c1 + c2 − c3),

D3 = gcd(a1 − a2 + a3, b1 − b2 + b3, c1 − c2 + c3) and

D4 = gcd(−a1 + a2 + a3,−b1 + b2 + b3,−c1 + c2 + c3).

(12)

Let us observe that the vectors −→α +
−→
β +−→γ , −→α +

−→
β −−→γ , −→α −

−→
β +−→γ , −−→α +

−→
β +−→γ are vectors

normal to the faces of the T`. By Lemma 2.1, we see that the area of each fundamental domain
corresponding to a face of T` is given by one of the numbers `

√
3

Di
.

Proposition 4.1. The coefficients µ1 and ν1 in (11) are given by

µ1 =
ν1
2

=
`(D1 +D2 +D3 +D4)

4
.(13)

This explains the coefficients of t2 in the next examples which were obtained by brute force counting
using Maple:

T5 :=

 7 −1 0
4 3 5
3 −4 5

 , O5 :=

 4 3 0
3 −4 0
0 0 5

 with

L(T5, t) =
125
3
t3 + 5t2 +

1
3
t+ 1 and L(O5, t) =

500
3
t3 + 10t2 +

16
3
t+ 1.
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4.2. The coefficients µ2 and ν2

Let us observe that the cube in Figure 4 can be decomposed into four triangular pyramids OABC,
DABG, FCGB and EGCA, which can be translated and some reflected into the origin to form half
of O` and the regular tetrahedron T`. We remind the reader of a notation we used in the proof of
Theorem 3.2 where we denoted by σ the number of lattice points on the interior of the edges OA,
OB and OC. We showed that σ = d1 + d2 + d3 − 3.

Let us balance the number M of the lattice interior points of C` using the above decomposition.
According to Theorem 3.3, and Theorem 3.1 we have

M = −L(C`,−1) = (`− 1)(`2 − d1 − d2 − d3 + `+ 1)

= `3 − (d1 + d2 + d3)(`− 1)− 1.

Part of the lattice points counted in M are in the regular tetrahedron which are counted by
L(T`, 1) = `3

3 + µ1 + µ2 + 1, from which we need to subtract the number of lattice points on the
interior of its sides, which we will denote by τ and subtract 4 for its vertices. The rest of the points
counted in M is in the interior of the four pyramids. If we multiply this number by two and add
the number of lattice points in the interior of the cube faces of the cube less τ , we get the number
of interior points of O` minus 2σ + 1. The number of lattice interior points of the cube faces is
equal to 2λ1 + 2− 4σ − 8. In other words, we have

2(M − `3

3
− µ1 − µ2 − 1 + τ + 4) + 2λ1 + 2− 4σ − 8− τ

=
4`3

3
− ν1 + ν2 − 1− (2σ + 1).

Taking into account that ν1 = 2µ1 and λ1 = (d1 + d2 + d3)` = (σ + 3)`, this can be simplified to

ν2 + 2µ2 = 6 + τ.(14)



JJ J I II

Go back

Full Screen

Close

Quit

We close this section concluding what we have shown.

Theorem 4.1. For a regular tetrahedron T` and a regular octahedron O` constructed as before
from an orthogonal matrix with rational coefficients as in (6), the coefficients µ2 and ν2 in (11)
satisfy

ν2 + 2µ2 = (d1 + d2 + d3 + d4 + d5 + d6),(15)

where d1, d2, d3 are defined as before and d4 = gcd(a1−a2, b1− b2, c1− c2), d5 = gcd(a1−a3, b1−
b3, c1 − c3) and d6 = gcd(a3 − a2, b3 − b2, c3 − c2).

We have tried to find another relation that will help us find the two coefficients but it seems
there is not an easy way to avoid, what are called in [3], the building blocks of the lattice-point
enumeration, the Dedekind sums. These numbers require a little more computational power and
we are wonder if a shortcut doesn’t really exist. One would expect that the answer to our questions
for such regular objects is encoded in the coordinates of their vertices in a relatively simple way.
We leave this problem to the interest of a reader.

Acknowledgment. The author wishes to express his sincere appreciation for the anonymous
referee’s constructive report which informed us about the general formulation of Lemma 2.1 and
its proof.

1. Athanasiadis C. A., Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J.
reine angew. Math. 583 (2005), 163–174.

2. Barvinok A., Computing the Ehrhart quasi-polynomial of a rational simplex, Mathematics of Computation, 75
(2006), 1449–1466.



JJ J I II

Go back

Full Screen

Close

Quit

3. Beck M. and Robins S., Computing the Continuous Discretely: Integer-Point Enumeration in Poly-

hedra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2007; also available at

http://math.sfsu.edu/beck/ccd.html

4. Beck M., Diaz R. and Robins S., The Frobenius problem, rational polytopes, and Fourier-Dedekind sums,

Journal of Number Theory 96 (2002), 1–21.

5. Berline N. and Vergne M., Local Euler-Maclaurin formula for polytopes, Mosc. Math. J. 7(3) (2007), 355–386.
6. Diaz R. and Robins S., The Ehrhart polynomial of a lattice polytope, Ann. of Math. 145 (1997) 503–518.

7. Braun B. J., Ehrhart Theory for Lattice Polytopes, Ph. D. Thesis, 2007.
8. , An Ehrhart Series Formula For Reflexive Polytopes, Electronic Journal of Combinatorics, 13(1)

(2006), N 15.
9. Braun B. J. and Develin M., Ehrhart Polynomial Roots and Stanley’s Non-negativity Theorem, Integer Points

in Polyhedra–Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contem-
porary Mathematics 452 (2008), 67–78.

10. Brion M. and Vergne M., Lattice Points in Simple Polytopes, Journal of the American Mathematical Society
10(2) (1997), 371–392.

11. Chandler R. and Ionascu E. J., A characterization of all equilateral triangles in Z3, Integers, Art. 8 (2008),
A19.

12. Chen B., Weight Functions, Double Reciprocity Laws, and Formulas for Lattice Polyhedra, Proceedings of the
National Academy of Sciences of the United States of America 95(16) (1998), 9093–9098.
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