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SOLVABILITY OF A NONLINEAR BOUNDARY VALUE PROBLEM

S. PERES

Abstract. We study the existence and multiplicity of positive solutions of a nonlinear second or-

der ordinary differential equation with symmetric nonlinear boundary conditions where both of the

nonlinearities are of power type.

1. Introduction

We deal with the existence and number of positive solutions of the following class of boundary
value problems:

(1)

{
u′′(x) = aup(x), x ∈ (−l, l),
u′(±l) = ±uq(±l)

where p, q ∈ R a a, l > 0 are parameters.
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Our principal reference is [5] where M. Chipot, M. Fila and P. Quittner studied also the
N -dimensional version of (1): 

∆u(x) = aup(x), x ∈ Ω,
∂u

∂n
(x) = uq(x), x ∈ ∂Ω

where Ω ⊂ RN is a bounded domain, n is the unit outer normal vector to ∂Ω, N ∈ N. First of all,
they were interested in global existence and boundedness or blow-up of positive solutions of the
corresponding parabolic problem

(2)


ut = ∆u− aup in Ω× (0,∞),
∂u

∂n
= uq in ∂Ω× (0,∞),

u(·, 0) = u0 in Ω

where u0 : Ω → [0,∞) but they restricted their investigation to p, q > 1. The same problem was
independently studied in [12] for N = 1.

The results from [5] have been generalised in many directions. In [14], the behaviour of positive
solutions of (2) was examined for all p, q > 1 while sign changing solutions were considered in [6]
for p, q > 1—in that case, up and uq are replaced by |u|p−1u and |u|q−1u, respectively. Positive
solutions of the elliptic problem with −λu+ up on the right-hand side of the equation were dealt
with in [13] for λ ∈ R, p, q > 1 and later in [10] for λ ∈ R, p, q > 0, (p, q) /∈ (0, 1)2. In [11] and
[15], positive and sign changing solutions of the parabolic problem with more general nonlinearities
f(u), g(u) instead of aup, uq have been studied while f(x, u), g(x, u) were considered in [2]. Further
extensions of results from [5] can be found in [1, 3, 4, 7, 8, 9]. Finally we mention [16], which
was devoted to elliptic problems with nonlinear boundary conditions.
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In this paper, we focus only on (1) and we extend the results known for p, q > 1 to a larger
set of parameters, namely to p > −1, q ≥ 0 and p = −1, q = 0. The main results are included
in Theorems 2.6 (a nonexistence result), 4.1 (p = −1, q = 0), 5.4 (p > −1, q = 0), 6.6 (p > −1,
0 < q < p+1

2 ), 7.1 (p > −1, q = p+1
2 ) and 8.9 (p > −1, q > p+1

2 ). However, in case of p > −1,
q > p+1

2 only symmetric solutions are concerned and some small questions are left open (see the
text above Theorem 8.9). Our aim is to answer these questions in the future as well as to examine
the number of nonsymmetric solutions for p > −1, q > p+1

2 and the solvability of (1) for the values
of p and q not considered in this paper.

We use the method included in Section 3 (dealing with the case N = 1) of [5]: After considering
an appropriate initial value problem, we introduce a function L or functions L1 and L2, the so-
called time maps, the graphs of which directly determine the number of solutions of (1), so we will
need only the tools of real analysis. On the other hand, it is not so easy to examine the properties
of L, L1 and L2 because they are given by a formula that contains an improper integral, with an
upper limit, which is given only implicitly.

2. The initial value problem and the time maps

If u is a positive solution of (1), then u′(−l) < 0 < u′(l), therefore u has a stationary point
x0 ∈ (−l, l). So the function u(·+ x0) solves

(3)


u′′ = aup,

u(0) = m,

u′(0) = 0

for some m > 0. In the following theorem we summarise the facts known about the solvability of
this problem. The proof for p, q > 1 can be found in [5], for other p, q it is done analogously.
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Theorem 2.1 (for p, q > 1 see [5, pp. 53–54]). Suppose m, a > 0, p ∈ R. Then (3) has
a unique maximal solution. We will denote it by um,p,a and its domain by (−Λm,p,a,Λm,p,a).
Function um,p,a is even, strictly convex, unbounded from above and fulfils

(4) |x| = m
1−p
2

√
2a

Ip

(
um,p,a(x)

m

)
, x ∈ (−Λm,p,a,Λm,p,a)

where Ip : [1,∞)→ [0,∞) is given as

Ip(y) =


∫ y

1

√
p+ 1

V p+1 − 1
dV if p 6= −1,∫ y

1

dV√
lnV

if p = −1

and

(5) Λm,p,a =
m

1−p
2

√
2a

lim
y→∞

Ip(y)
{
<∞ if p > 1,
=∞ if p ≤ 1.

Finally, for x ∈ (−Λm,p,a,Λm,p,a) we have:

(6) |u′m,p,a(x)| =


√

2a
p+ 1

(
up+1
m,p,a(x)−mp+1

)
if p 6= −1,√

2a
(

lnum,p,a(x)− lnm
)

if p = −1.

Definition 2.2. For given p, q ∈ R, a, l > 0 denote the set of all positive symmetric (i. e.
even) and positive nonsymmetric solutions of (1) by S(l) = S(l; p, q, a) and N (l) = N (l; p, q, a),
respectively.
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Remark 2.3 ([5, pp. 53–54]). Assume p, q ∈ R, a, l > 0. Obviously, S(l) consists of all such
functions um,p,a|[−l,l] that 0 < l < Λm,p,a and u′m,p,a(l) = uqm,p,a(l). On the other hand, if l1 6= l2
are such numbers that 0 < li < Λm,p,a, u′m,p,a(li) = uqm,p,a(li) for i = 1, 2 and l1 + l2 = 2l, then
um,p,a(· − (l1 − l2)/2)|[−l,l] ∈ N (l).

Lemma 2.4 (for p, q > 1 see [5, pp. 54–55]). Let p, q ∈ R, a > 0. Then the following statements
are equivalent for arbitrary m, l > 0:

(i) l < Λm,p,a and u′m,p,a(l) = uqm,p,a(l),

(ii) the equation

(7) 0 = F(m,x) := Fp,q,a(m,x) :=


x2q

2a
− xp+1

p+ 1
+
mp+1

p+ 1
if p 6= −1,

x2q

2a
− lnx+ lnm if p = −1

with the unknown x > 0 has some solution R > m and

l =
m

1−p
2

√
2a

Ip

(
R

m

)
.

Proof. In order to derive (ii) from (i), it suffices to use (6), denote um,p,a(l) =: R > m and
realise (4) for x = l. The reversed implication is proved essentially in the same way. �

Function F(m, ·) has obviously different behaviour for p > −1, p = −1 and p < −1 as well as
for q > 0, q = 0 and q < 0. It also matters which of the exponents 2q, p+ 1 is greater. So we have
to distinguish thirteen cases shown in Figure 1.



JJ J I II

Go back

Full Screen

Close

Quit

Figure 1. Cases I to XIII.
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Lemma 2.5 (for p, q > 1 see [5, proofs of Lemma 3.1 and 3.2 with pp. 57–58]). Let p, q ∈ R,
a,m > 0. Function F(m, ·) has at most two zeros and both lie in (m,∞). We denote them
Rp,q,a(m) =: R(m) if there is only one zero and R1;p,q,a(m) =: R1(m) and R2;p,q,a(m) =: R2(m)
if there are two while R1(m) < R2(m).

Let us also introduce

M := Mp,q,a :=



(
2q − p− 1

2q

) 1
p+1
(
a

q

) 1
2q−p−1 if p 6= −1, q > 0, q > p+1

2
(V, VII),(

a

eq

) 1
2q

if p = −1, q > 0 (VI),(
−p+ 1

2a

) 1
p+1

if p < −1, q = 0 (VIII).

The following holds for the number of zeros:

(i) If q < 0 or q < p+1
2 or p = −1, q = 0 (cases I–III, IX–XIII), then F(m, ·) has exactly one

zero for arbitrary m > 0. Moreover, for p > −1, 0 < q < p+1
2 (case III) we have

(8) R(m) >
(
a

q

) 1
2q−p−1

.

(ii) If p > −1, q = p+1
2 (case IV), then F(m, ·) has one zero for q < a and none for q ≥ a.

(iii) If p < −1, q = 0 (case VIII), then F(m, ·) has one zero for m < M and none for m ≥M .
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(iv) If q > 0 and q > p+1
2 (cases V–VII), then F(m, ·) has two zeros for m < M , one for m = M

and none for m > M . Meanwhile,

(9) R1(m) <
(
a

q

) 1
2q−p−1

︸ ︷︷ ︸
=R(M)

< R2(m).

Moreover,

R(m) =



e
1
2am if p = −1, q = 0 (I),(
mp+1 +

p+ 1
2a

) 1
p+1 if p > −1, q = 0 (II)

or p < −1, q = 0, m < M (VIII),(
a

a− q

) 1
2q

m
if p > −1, q = p+1

2 < a (IV)
or p < −1, q = p+1

2 (X).

Proof. Investigating the behaviour of F(m, ·), we obtain the facts collected in Table 1. They
are sufficient to determine the number of zeros of F(m, ·) in cases I–IV and VIII–XIII as well as
to verify (8).

In cases V–VII, F(m, ·) has exactly one relative minimum, the value of which can be easily
calculated. So there exist two zeros if and only if this minimum is negative, what happens just for
m < M . Further, for m = M there is only one zero and for m > M there is none. The validity of
(9) is apparent.
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lim
x→0
F(m, x) monotonicity on (0,∞) lim

x→∞
F(m, x)

I. p = −1, q = 0 ∞
decreases

−∞

II. p > −1, q = 0 1
2a

+ mp+1

p+1
> 0

III. p > −1, 0 < q < p+1
2

mp+1

p+1
> 0

increases on`
0, (a/q)1/(2q−p−1)

˜
,

decreases onˆ
(a/q)1/(2q−p−1),∞

´
IV. p > −1, q = p+1

2

decreases if q < a,
is constant if q = a,

increases if q > a

−∞ if q < a,
mp+1

p+1
> 0 if q = a,

∞ if q > a

V. p > −1, q > p+1
2

decreases on`
0, (a/q)1/(2q−p−1)

˜
,

increases onˆ
(a/q)1/(2q−p−1),∞

´ ∞VI. p = −1, q > 0

∞

VII. p < −1, q > 0

VIII. p < −1, q = 0

decreases

1
2a

+ mp+1

p+1

> 0 if m > M ,
= 0 if m = M ,
< 0 if m < M

IX. p < −1, p+1
2

< q < 0

mp+1

p+1
< 0X. p < −1, q = p+1

2

XI. p < −1, q < p+1
2

XII. p = −1, q < 0
−∞

XIII. p > −1, q < 0

Table 1. The properties of F(m, ·).
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Now let us prove that each zero of F(m, ·) is greater than m. In cases I–IV and VIII–XIII it is
guaranteed by the simple fact that F(m,m) = m2q/2a > 0 for p, q ∈ R, a,m > 0. In cases V and
VII for m ≤M , we need to consider

m ≤M <

(
a

q

) 1
2q−p−1

too, similarly in case VI.
Finally, equation (7) is linear in lnx and xp+1 in cases I and II, VIII, IV, X respectively, so

explicit solutions can be found. �

Let us notice that the set of parameters p, q > 1, which was investigated in [5], forms only part
of cases III–V and we will see that more complicated and interesting things happen outside it.

Although there is no difference in the properties of F(m, ·) summarised in Table 1 between cases
IX, X and XI, it is not clear whether or not different results hold for (1) in these cases. For this
reason we have not merged them into one case.

Now, as a simple consequence of Lemma 2.5, we formulate a nonexistence result related to (1),
and afterwards we introduce the notion of the time map.

Theorem 2.6. Let p ∈ R, a > 0.

(i) If q ≤ 0 or q ≤ p+1
2 (cases I–IV and VIII–XIII), then N (l) = ∅ for all l > 0.

(ii) If p > −1, q = p+1
2 ≥ a (case IV), then S(l) = ∅ for all l > 0.

Definition 2.7. Let p, q ∈ R, a > 0 and

L(m) := Lp,q,a(m) :=
m

1−p
2

√
2a

Ip

(
Rp,q,a(m)

m

)
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for all such m that Rp,q,a(m) is defined. We introduce L1;p,q,a(m) =: L1(m) and L2;p,q,a(m) =:
L2(m) analogously. We call functions L, L1 and L2 time maps.

Using Lemmata 2.4 and 2.5, we can reformulate the statement of Remark 2.3 in the following
way:

Lemma 2.8. For all p, q ∈ R, a, l > 0:

S(l) =
{
um,p,a

∣∣
[−l,l] : L(m) = l or L1(m) = l or L2(m) = l

}
,

N (l) =


{
um,p,a

(
· ±L2(m)−L1(m)

2

)∣∣∣
[−l,l]

: L1(m)+L2(m)=2l
} if q > 0

and q > p+1
2

(V–VII),
∅ otherwise.

Thus, to determine the number of positive symmetric solutions of (1) for given p, q ∈ R, a, l > 0,
we need to calculate the limits of functions L, L1, L2 at the endpoints of their domains, to find the
intervals where the functions are monotone and finally to estimate their possible relative extrema.
For nonsymmetric solutions we execute the same with L1 + L2 if q > 0 a q > p+1

2 (cases V–VII).
Therefore, we now derive formulae for the derivatives of the time map and other functions we will
need in the rest of this article.

Lemma 2.9 (for p, q > 1 see [5, proofs of Theorem 3.1 and Lemma 3.5]). Assume p, q ∈ R,
a > 0. Let R be one of the functions R, R1, R2 and suppose that its domain is an interval, denote
it by I. Let L ∈ {L,L1, L2} be the corresponding time map. Then R,L ∈ C∞(I) and the following
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formulae hold for m ∈ I:

R′(m) =
(

m

R(m)

)p 1
1− q

aR2q−p−1(m)
,(10) (

R(m)
m

)′
=

2q − p− 1
2amp+2

R2q(m)R′(m),(11) (
Ip

(
R(m)
m

))′
=

2q − p− 1√
2a

m
p−3
2

Rq−p(m)
1− q

aR2q−p−1(m)
,(12)

L′(m) =
1− p
2m
L(m) +

2q − p− 1
2amp+1

Rq(m)R′(m),(13)

L′′(m) = − p+ 1
2m
L′(m) +

2q − p− 1
2am2p+1

·
(

(q − 1)
q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

(14)

Proof. The C∞-smoothness of R and the formula for its derivative follows from the implicit
function theorem due to Lemma 2.5. If R ∈ {R1, R2} (cases V–VII), then (9) is used as well. The
other formulae can be derived from (10) in such a way as it is done in [5] for p > 1. �

Now we introduce some further functions, the relation of which to the time maps will be seen
from the subsequent lemma. They will be used in the proofs of Lemmata 6.5 and 8.6.

Definition 2.10. Let p, q ∈ R, p 6= 1, a > 0 and

K(m) := Kp,q,a(m) :=
2q − p− 1
(p− 1)a

Rq−pp,q,a(m)

1− q
aR

2q−p−1
p,q,a (m)
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for all such m that Rp,q,a(m) is defined. We introduce K1;p,q,a(m) =: K1(m) and K2;p,q,a(m) =:
K2(m) analogously.

Lemma 2.11. Assume p, q ∈ R, p 6= 1, a > 0. Let R be one of functions R, R1, R2 and
suppose that its domain is an interval, denote it by I. Let L ∈ {L,L1, L2} and K ∈ {K,K1,K2}
be the corresponding functions. Then K ∈ C∞(I) and the following holds for all m ∈ I:

L′(m) = 0 ⇐⇒ L(m) = K(m),

K′(m) =
2q − p− 1

(p− 1)am2p

(
(q − 1)

q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

Proof. Both of the assertions can be proved using Lemma 2.9. �

Remark 2.12. Let p, q ∈ R, a > 0 and letR, L and I have the same meaning as in Lemma 2.11.
It follows from (10) that R has no stationary point. So it can be seen from (13) that if p = 1 (the
case not dealt with in Lemma 2.11), then either L′ ≡ 0 (for q = 1) or L has no stationary point
(for q 6= 1).

In the subsequent sections we will look for extrema of L, among other things. So assume now
only p 6= 1. If m ∈ I is a stationary point of L, then L′′(m) = 0 (the case when it is more difficult
to determine whether there is an extremum) if and only if

(15) q =
p+ 1

2
or (q − 1)qR2q−p−1(m) = (p− q)a.

Let us notice that it is also a necessary and sufficient condition under that K′(m)=0 holds. Thus:

(i) If q = p+1
2 or p = q = 0, then K′ ≡ 0.

(ii) If q = 0, p 6= 0,−1 or q = 1, then K has no stationary point.
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(iii) If q 6= 0, 1, p+1
2 , then (15) is equivalent to

R2q−p−1(m) =
(p− q)a
(q − 1)q

,

which can hold for at most one m ∈ I due to the strict monotonicity of R. Therefore, if
(p, q) does not belong to cases V–VII, then K = K has at most one stationary point, which
will be denoted by m = mp,q,a (see Lemma 6.5). On the other hand, if q > 0, p+1

2 (cases
V–VII), then R1 and R2 have disjoint ranges (due to (9)), so at most one of K1 and K2

can have a stationary point, which will be denoted by m = mp,q,a as well (see Definition 8.2
and Lemmata 8.3 (ii), 8.6, 8.7).

3. Properties of function Ip

The first lemma introduces the first two terms of the asymptotic expansion of Ip(y) (see Theo-
rem 2.1) for y → 1. In the next theorem we show explicit formulae of Ip for special values of p.
However, the most important statement of this section is Lemma 3.4, which gives the asymptotic
expansion of Ip(y) for y → ∞, p > −1. It is essential for investigating the behaviour of the
time maps in many cases but was not needed in [5] for p, q > 1. Afterwards we also derive the
corresponding asymptotic expansion for p = −1.

We will use standard asymptotic notations: If f , g are functions defined in some punctured
neighbourhood of a point a ∈ R ∪ {±∞}, then

f(x) ∼ g(x), x→ a means lim
x→a

f(x)
g(x)

= 1,
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f(x) = o(g(x)), x→ a means lim
x→a

f(x)
g(x)

= 0,

f(x) = O(g(x)), x→ a means lim sup
x→a

∣∣∣∣f(x)
g(x)

∣∣∣∣ <∞.
Lemma 3.1. For arbitrary p ∈ R we have

Ip(y) = 2
√
y − 1

(
1− p

12
(y − 1) + o(y − 1)

)
, y → 1.

Proof. Suppose p 6= −1. Then

Ip(y) =
∫ y−1

0

fp(x) dx

where

fp(x) =

√
p+ 1

(1 + x)p+1 − 1
=

1√
x

1√
1 + p

2x+ o(x)
=

1√
x
− p

4
√
x+ o(

√
x), x→ 0.

(We used the Maclaurin polynomial of y 7→ (1 + y)α for α = p+ 1 and α = − 1
2 .) So it suffices to

integrate the obtained asymptotic expansion from 0 to y − 1.
The case p = −1 is analogous. �

Definition 3.2. For all s ≥ 0 set

ps := −2s− 1
2s+ 1

.
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Thus, {
pn
}∞
n=0

=
(
1,− 1

3 ,−
3
5 ,−

5
7 , . . .

)
,{

pn+ 1
2

}∞
n=0

=
(
0,− 1

2 ,−
2
3 ,−

3
4 , . . .

)
.

The integral Ip can be explicitly calculated for these values.

Theorem 3.3. Let n ∈ N ∪ {0}. Then

(16) Ipn+1/2(y) = 2
√
n+ 1 Ĩn

(
y

1
n+1 − 1

)
, y ≥ 1

where

Ĩn(z) =
√
z

n∑
k=0

1
2k + 1

(
n

k

)
zk, z ≥ 0

and

(17) Ipn
(y) =

√
2(2n+ 1) În

(
y

2
2n+1

)
, y ≥ 1

where

În(z) =
(2n− 1)!!

(2n)!!

(
ln
(√
z +
√
z − 1

)
+

√
1− 1

z

n∑
k=1

(2k − 2)!!
(2k − 1)!!

zk

)
, z ≥ 1.

(We set (−1)!! := 1.)

Proof. Using the substitution√
V pn+1/2 − 1 =

√
V

1
n+1 − 1 =: u
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and denoting ∫ √z
0

(
u2 + 1

)n du =: Ĩn(z),

we obtain (16). The integral Ĩn(z) can be calculated by the binomial theorem.
By the substitutions

V pn+1 = V
2

2n+1 =:
1

cos2 v
, v ∈

[
0, π2

)
, sin v =: u

we obtain (17) with

În(z) =
∫ √1− 1

z

0

du
(1− u2)n+1

.

Integrating În(z) by parts, we can derive the recurrent relation

În(z) =
2n− 1

2n

(
În−1(z) +

1
2n− 1

√
1− 1

z
zn
)
,

from which the formula in the theorem follows. �

We will also use the following special cases of (17) and (16):

(18)

I1(y) =
√

2 ln
(
y +

√
y2 − 1

)
,

I0(y) = 2
√
y − 1,

I−1/2(y) =
2
√

2
3
√√

y − 1
(√
y + 2

)
.



JJ J I II

Go back

Full Screen

Close

Quit

Lemma 3.4. For k ∈ N ∪ {0} and p ∈ (−1,∞) r {pk} put

bk(p) :=
(2k − 1)!!

(2k)!!
2

(2k + 1)(p− pk)
=

(2k − 1)!!
(2k)!!

1
p−1
2 + k(p+ 1)

and for p > −1 set
Bp :=

∑
k∈N∪{0}
pk 6=p

bk(p) ∈ R.

Then the following holds for y →∞:

(i) If p > 1, then
Ip(y)√
p+ 1

= Bp + o(1).

(ii) If pn+1 < p < pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n∑
k=0

(−bk(p))︸ ︷︷ ︸
>0

y
1−p
2 −k(p+1)︸ ︷︷ ︸

>0

+Bp + o(1).

(iii) If p = pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n−1∑
k=0

(−bk(p))︸ ︷︷ ︸
>0

y
1−p
2 −k(p+1)︸ ︷︷ ︸

>0

+
(2n− 1)!!

(2n)!!
ln y +Bp + o(1).

Furthermore, the function p 7→ Bp belongs to C∞ on each of intervals (p0,∞), (p1, p0), (p2, p1),
. . . and decreases on each of them while

lim
p→p0+

Bp =∞, lim
p→∞

Bp = 0
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and for all n ∈ N we have:

lim
p→pn+1+

Bp =∞, Bpn+1/2 = 0, lim
p→pn−

Bp = −∞.

Proof. It consists of

1. expressing Ip(y) as the sum of a series (see (19)),

2. proving the finiteness of Bp and verifying statements (i), (ii), (iii)

3. and examining the properties of the function p 7→ Bp.

1. Let p > −1 and y ≥ 1. The substitution V := x−1/(p+1) gives:

Ip(y)√
p+ 1

=
1

p+ 1

∫ 1

1/yp+1

1√
1− x

x−
1
2−

1
p+1 dx.

Using the Maclaurin series of the function x 7→ 1/
√

1− x, we get that

Ip(y)√
p+ 1

=
1
p+1

∫ 1

1/yp+1

( ∞∑
k=0

(2k−1)!!
(2k)!!

xk−
1
2−

1
p+1

)
dx.

Levi’s monotone convergence theorem allows us to exchange the order of integration and
summation, resulting in

(19)
Ip(y)√
p+ 1

=
∞∑
k=0

ak,p(y)
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where

ak,p(y) =


bk(p)

(
1− y

1−p
2 −k(p+1)

)
if p 6= pk,

(2k − 1)!!
(2k)!!

ln y if p = pk.

2. It is obvious that for all k ∈ N ∪ {0} and p > −1, ak,p is increasing, positive on (1,∞) and

(20) lim
y→∞

ak,p(y) =

{
bk(p) if p > pk,

∞ if p ≤ pk.

Now let m ∈ N ∪ {0} and p > pm. Stirling’s formula (n! ∼
√

2πn(n/e)n for n → ∞)
implies that

bk(p) ∼ 1√
π(p+ 1)k3/2

, k →∞,

which guarantees the convergence of
∑∞
k=m bk(p) (and also the finiteness of Bp). We are

going to prove that

(21) lim
y→∞

∞∑
k=m

ak,p(y) =
∞∑
k=m

bk(p)

because statement (i) follows from (19) and (21) with m = 0 while statements (ii), (iii) from
(19) and (21) with m = n+ 1.

The inequality “≤” in (21) is clear from (20) and the increase of ak,p. In order to prove
the opposite inequality, let us choose any ε > 0. We have that

n0∑
k=m

bk(p) >
∞∑
k=m

bk(p)− ε

2
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for some n0 ≥ m. The positivity of ak,p on (1,∞) together with (20) yields that there exists
a number K > 1 such that

∞∑
k=m

ak,p(y) >
n0∑
k=m

ak,p(y) >
n0∑
k=m

bk(p)− ε

2

for all y > K. Joining the last two inequalities, we obtain (21).

3. The decrease of p 7→ Bp on intervals (p0,∞), (p1, p0), (p2, p1), . . . follows immediately from
the decrease of functions bk on these intervals.

Let us now prove that (p 7→ Bp) ∈ C∞((−1,∞) r
⋃∞
n=0{pn}). We will use the

C∞-smoothness of functions bk. If we choose arbitrary m,n ∈ N∪{0} and [α, β] ⊆ (pn,∞),
then applying the Weierstraß criterion, we can verify that

∑∞
k=n(bk)(m) converges uniformly

on [α, β], therefore we can differentiate it term by term. So the sum of
∑∞
k=n bk belongs

to C∞([α, β]), thus also to C∞((pn,∞)), from which the C∞-smoothness of the function
p 7→ Bp on (−1,∞) r

⋃∞
n=0{pn} follows.

The one-sided limits of p 7→ Bp in p0, p1, . . . are found easily. They—together with
its continuity and decrease on (pn+1, pn)—guarantee the existence of a unique point p∗n ∈
(pn+1, pn) such that Bp∗n = 0. Statement (ii) gives the expansion

Ip
n+ 1

2
(y) = 2

√
n+1

n∑
k=0

1
2n−2k+1

(2k−1)!!
(2k)!!

(
y

1
n+1

) 1
2+n−k

+
Bpn+1/2√
n+1

+ o(1)
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for y → ∞. On the other hand, from (16), using the binomial theorem and the Maclaurin
polynomial of x 7→

√
1 + x of degree n, we obtain that

Ip
n+ 1

2
(y) =

√
z · 2
√
n+ 1

√
1− 1

z

n∑
i=0

1
2i+ 1

(
n

i

)
(z−1)i

=
n∑
k=0

cn,kz
1
2+n−k +O

(
1√
z

)
for z = y1/(n+1) →∞ and some constants cn,k, k = 0, 1, . . . n. Consequently, p∗n = pn+1/2.

Finally, in order to find limp→∞Bp, we employ the uniform convergence of
∑∞
k=0 bk on

(α,∞) for α > 1, and so we exchange the order of the limit and the sum. �

The following assertions will be needed only in the proofs of Lemmata 8.7 and 8.8.

Theorem 3.5. The mapping (y, p) 7→ Ip(y) is continuous on [1,∞)×R. Furthermore, p 7→ Ip(y)
is decreasing on R for any y > 1.

Proof. Let us express Ip(y) as

Ip(y) =
∫ y

1

f(V, p) dV

where

f(V, p) =


√

p+ 1
V p+1 − 1

if p 6= −1, V > 1,

1√
lnV

if p = −1, V > 1.

Function f is continuous in both variables and is decreasing in V , consequently it is continuous (on
(1,∞)×R). Similarly, if we prove the continuity of p 7→ Ip(y) for all y > 1 (for y = 1 it is evident),
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then using the continuity and increase of Ip for any p ∈ R, we will have that (y, p) 7→ Ip(y) is
continuous.

For this purpose, it will be important to know the behaviour of f(V, ·). We can derive that for
any p 6= −1 and V > 1:

∂

∂p

1
f2(V, p)

> 0 ⇐⇒ lnV p+1 +
1

V p+1
− 1 > 0,

which can be equivalently written as lnx < x−1 for x := 1/V p+1 ∈ (0, 1)∪ (1,∞). Thus, 1/2(V, ·)
is increasing on R, therefore f(V, ·) is decreasing and the second assertion of the lemma holds.

Now choose arbitrary y > 1, p0 ∈ R. Since f(·, p0) is an integrable majorant of {f(·, p)}p≥p0
and f(V, ·) is continuous, we have the continuity of p 7→ Ip(y) on [p0,∞). �

Lemma 3.6. For every y > 1, n ∈ N:

I−1(y) =
n−1∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y
+O

(
y

lnn+1/2 y

)
, y →∞.

Proof. Set

In(y) :=
∫ y

e

dV

lnn+1/2 V
for all N ∈ N ∪ {0} and y > 1. Integrating by parts, we can derive the recurrent relation

In(y) =
y

lnn+1/2 y
− e +

2n+ 1
2

In+1(y).

Using it n times, we obtain

I−1(y) = I0(y) +
∫ e

1

dV√
lnV

=
n−1∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y
+Rn(y)
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where

Rn(y) =
∫ e

1

dV√
lnV

−
n−1∑
k=0

(2k − 1)!!
2k

e +
(2n− 1)!!

2n
In(y) ∼ (2n− 1)!!

2n
y

lnn+1/2 y

for y →∞, which can be proved using l’Hôpital’s rule. �

Notice that although Lemma 3.6 gives an asymptotic expansion, the corresponding series
∞∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y

diverges for all y > 1.

4. Case I (p = −1, q = 0)

This case is the simplest one since from Lemma 2.5 it directly follows that

L(m) =
m√
2a

I−1

(
e

1
2a

)
, m > 0.

Thus, the time map, which determines the relation between m = u(0) and l for u ∈ S(l), is linear.
So substituting into Lemma 2.8, we obtain the following theorem:

Theorem 4.1. Assume p = −1, q = 0, a > 0. Then for arbitrary l > 0:

S(l) =

{
um,−1,a

∣∣
[−l,l] : m =

√
2a

I−1

(
e

1
2a

) l} ,
N (l) = ∅.
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5. Case II (p > −1, q = 0)

In this section we answer the question of the solvability of (1) for

(22) p > −1, q = 0, a > 0

finding limm→0 L(m), limm→∞ L(m) and proving the monotonicity of L. However, let us first
summarise the properties of R that will be used in the subsequent lemmata.

Lemma 5.1. Let (22) hold. Then R′ > 0 and

lim
m→0

R(m) =
(
p+ 1

2a

) 1
p+1

,

R(m) = m

(
1 +

1
2amp+1

+ o

(
1

mp+1

))
, m→∞.

Proof. It suffices to use the explicit formula for R(m) given by Lemma 2.5. �

Lemma 5.2. Assume (22). Then

lim
m→0

L(m) =


∞ if p ≥ 1,

2
1− p

(
p+ 1

2a

) 1
p+1

=: Lp,0,a(0) =: L(0) if p ∈ (−1, 1),

lim
m→∞

L(m) =


0 if p > 0,
1
a

if p = 0,

∞ if p ∈ (−1, 0).
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Proof. For p > 1 and p = 1, limm→0 L(m) is easily found using Lemma 5.1 and (5). In the case
of p ∈ (−1, 1), it is of type ∞∞ :

lim
m→0

L(m) = lim
m→0

Ip
(R(m)

m

)
√

2am
p−1
2

and we calculate it by l’Hôpital’s rule, (12) and Lemma 5.1.
According to Lemmata 5.1 and 3.1:

L(m) ∼
√

2
a
m

1−p
2

√
R(m)
m
− 1, m→∞

while
R(m)
m
− 1 ∼ 1

2amp+1
, m→∞.

Connecting these two expansions, we obtain that L(m) ∼ 1
amp for m→∞ and the second assertion

follows. �

Lemma 5.3. Let (22) hold. Then:

(i) If p > 0, then L′ < 0.

(ii) If p = 0, then L ≡ 1
a .

(iii) If −1 < p < 0, then L′ > 0.

Proof.

(i) Firstly, let us consider p > 0. Due to (13), the case p ≥ 1 is clear. So let 0 < p < 1.
If L has a stationary point m0 > 0, then L′′(m0) > 0 according to (14) and Lemma 5.1,
thus it is a point of strict relative minimum. Therefore, either L has no stationary point
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or it has exactly one, which is a point of global minimum. However, the second possibility
contradicts the fact that limm→∞ L(m) = 0 (Lemma 5.2).

(ii) For p = 0, Lemma 2.5 gives the formula R(m) = m+ 1
2a , so L(m) = 1

a according to (18).

(iii) Finally, let us have p ∈ (−1, 0) and let us proceed as for p ∈ (0, 1). Now L attains a strict
relative maximum in each of its stationary points. On the other hand, limm→∞ L(m) =∞
so the only possibility is that L′ > 0 on (0,∞). �

From the results of the last two lemmata (which are summarised in Figure 2), applying
Lemma 2.8, we obtain the main statement of this section:

Theorem 5.4. Assume (22) and l > 0. Then N (l) = ∅ and the following holds for positive
symmetric solutions of (1):

If p ≥ 1, then |S(l)| = 1 and L is decreasing. (Recall that L(u(0)) = l for any u ∈ S(l).)
If p = 0, then (1) has a solution only for l = 1

a , namely

S
(

1
a

)
=
{
x 7→ a

2
x2 +m, x ∈ [−l, l] : m > 0

}
.

If p < 1 and p 6= 0, then

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise

and L is strictly monotone. (See Lemma 5.2 about L(0) and limm→∞ L(m).)

The last question we will answer in this section is whether L·,0,a(0) is monotone.
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Figure 2. The relation between m = u(0) and l for u ∈ S(l) in case II (p > −1, q = 0, a > 0) according to
Lemmata 2.8, 5.2 and 5.3. See also Theorem 5.4.
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Lemma 5.5. Suppose that (22) holds, let p be the unique solution of the equation p3−7p−2 = 0
in (−1, 0) and set

a :=
p+ 1

2
e

2
3−p−2 ∈

(
1

2e2
,

1
e

)
.

Then:

(i) If a > a, then ∂
∂pLp,0,a(0) > 0 for p ∈ (−1, 1).

(ii) If a = a, then ∂
∂pLp,0,a(0) > 0 for p ∈ (−1, 1) r {p} and ∂

∂pLp,0,a(0)|p=p = 0.

(iii) If 0 < a < a, then p 7→ Lp,0,a(0) has two stationary points: p1 = p1(a) ∈ (−1, p) and
p2 = p2(a) ∈ (p, 1) while ∂

∂pLp,0,a(0) > 0 for p ∈ (−1, p1) ∪ (p2, 1) and ∂
∂pLp,0,a(0) < 0 for

p ∈ (p1, p2).

Furthermore, for all a > 0 we have

lim
p→−1+

Lp,0,a(0) = 0, lim
p→1−

Lp,0,a(0) =∞.

Proof. The limits of Lp,0,a(0) can be easily calculated. We also have that

∂

∂p
Lp,0,a(0) > 0 ⇐⇒ ln

p+ 1
2a
− (p+ 1)2

1− p
− 1 =: ψa(p) < 0.

So we need to examine the properties of ψa. It is not difficult to derive that

ψ′a(p) > 0 ⇐⇒ p3 − 7p− 2 =: ω(p) > 0.

Since ω is decreasing on (−1, 1) and ω(0) < 0 < limp→−1 ω(p), it has a unique zero p ∈ (−1, 0).
It means that ψa increases on (−1, p] and decreases on [p, 1). However, limp→−1+ ψa(p) =
limp→1− ψa(p) = −∞, thus L·,0,a(0) has the properties from parts (i), (ii) or (iii) if ψa(p) < 0,
ψa(p) = 0 or ψa(p) > 0, respectively.
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Using that ω(p) = 0, we obtain:

ψa(p) = ln
p+ 1

2a
+

2
3− p

− 2 = 0 ⇐⇒ a = a.

Furthermore, a 7→ ψa(p) is decreasing, so really ψa(p) < 0 for a > a and ψa(p) > 0 for a ∈ (0, a).
It remains to check that a ∈ ( 1

2e2 ,
1
e ). However, it can be directly proved that ψa < 0 for a ≥ 1

e , so
a < 1

e and ψa(0) ≥ 0 and consequently ψa(p) > 0 for a ≤ 1
2e2 , so a > 1

2e2 . �

Let us mention that p ≈ −0.289 and using Cardano’s formula one can also derive that

p = 2

√
7
3

cos
arccos 3

√
3

7
√

7
− 2π

3
.

6. Case III (p > −1, 0 < q < p+1
2 )

A part of case III was already examined in [5] (see Lemma 6.2). For the rest we will need the
asymptotic expansions of R(m) for m → 0 and m → ∞ (Lemma 6.1) and also Lemma 3.4. We
will deal only with

(23) p > −1, 0 < q <
p+ 1

2
, a > 0.

Lemma 6.1. Let (23) hold. Then R′ > 0 and

R(m)
R(0)

= 1− mp+1

(2q − p− 1)Rp+1(0)
+ o
(
mp+1

)
, m→ 0

R(m)
m

= 1 +
1
2a
m2q−p−1 +

4q − p
8a2

m2(2q−p−1) + o
(
m2(2q−p−1)

)
, m→∞
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where

R(0) = Rp,q,a(0) = lim
m→0

R(m) =
(

2a
p+ 1

) 1
2q−p−1

.

Proof. It is clear from (10) and Lemma 2.5 (i) that R′ > 0, so R has a positive and finite limit
(denoted by R(0)) at 0, the value of which can be obtained from the equality

0 = lim
m→0

F(m,R(m)) =
Rp+1(0)

2a

(
R2q−p−1(0)− 2a

p+ 1

)
.

Now we will look for such c, d > 0 that

R(m)
R(0)

− 1 ∼ cmd, m→ 0.

So let us calculate the following limit using l’Hôpital’s rule and (10):

lim
m→0

R(m)
R(0) − 1

md
= − p+ 1

(2q − p− 1)dRp+1(0)
lim
m→0

mp+1−d.

It should be positive and finite, determining the value of c. Therefore, we have d = p+ 1 and c is
also given as in the lemma.

The decrease of m 7→ R(m)/m ≥ 1 (see (11)) guarantees the existence of its positive and finite
limit at ∞. So we can use l’Hôpital’s rule and (10) to derive that

A := lim
m→∞

R(m)
m

= lim
m→∞

(
m

R(m)

)p
=

1
Ap

.

Consequently, A = 1. The asymptotic expansion of R(m)/m for m→∞ can be also found by the
method of undetermined coefficients, which we used for m→ 0. However, let us show an iterative
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method borrowed from [5, proof of Lemma 3.3]: Multiplying the equality F(m,R(m)) = 0 (see
(7)) by (p+ 1)/mp+1 and expressing R(m)/m from it, we obtain:

(24)
R(m)
m

=

(
1 +

p+ 1
2a

m2q−p−1

(
R(m)
m

)2q
) 1

p+1

.

The expression (R(m)/m)2q on the right-hand side can be replaced by 1 + o(1), so

R(m)
m

=
(

1 +
p+ 1

2a
m2q−p−1 + o

(
m2q−p−1

)) 1
p+1

= 1 +
1
2a
m2q−p−1 + o

(
m2q−p−1

)
(We used the Maclaurin polynomial of x 7→ (1 + x)1/(p+1).) Now let us insert the asymptotic
expansion we have just obtained in the right-hand side of (24) again. It yields

R(m)
m

=
(

1 +
p+ 1

2a
m2q−p−1 +

(p+ 1)q
2a2

m2(2q−p−1) + o
(
m2(2q−p−1)

)) 1
p+1

,

which can be rewritten in the form from the lemma.
Let us remark that we could use this iterative method in the case of m → 0 as well. We only

would replace (24) by

R(m) = R(0)
(

1− mp+1

Rp+1(m)

) 1
2q−p−1

,

which can be derived from the equality F(m,R(m)) = 0 multiplying it by (p+ 1)/Rp+1(m). �

Lemma 6.2 (for p, q > 1 see [5, Theorem 3.1]). If (23) holds and p ≥ 1, then

lim
m→0

L(m) =∞, L′ < 0 on (0,∞), lim
m→∞

L(m) = 0.

Proof. The proof from [5] for p, q > 1 is also valid for p > 1 and the case p = 1 is similar. �
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In the next two lemmata we find the limits of L—denoted by L(0) and L(∞)—for p < 1. For
the proof of Lemma 6.5 it is also necessary to know the sign of L−L(0) and L−L(∞) near 0 and
∞, respectively, for certain values of p, q.

Lemma 6.3. Assume (23) and p < 1. Then

lim
m→0

L(m) =
2

1− p

(
p+ 1

2a

) q−1
2q−p−1

=: Lp,q,a(0) =: L(0)

and furthermore, L > L(0) in some neighbourhood of 0 for − 1
3 < p ≤ 0 and L < L(0) in some

neighbourhood of 0 for 0 < p < 1.

Proof. The limm→0 L(m) is found the in same way as in Lemma 5.2. So choose any p ∈ (− 1
3 , 1)

and let us calculate the second term of the asymptotic expansion of L(m) for m → 0, which will
allow us to determine whether L < L(0) or L > L(0) near 0. Lemma 6.1 yields:

R(m) = R(0)
(
1 +O

(
mp+1

))
= R(0)

(
1 + o

(
m

1−p
2

))
.

Joining it with the expansion of Ip(y) from Lemma 3.4, we obtain:

L(m) = L(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
.

As we know, Bp > 0 for p ∈ (− 1
3 , 0) and Bp < 0 for p ∈ (0, 1), guaranteeing the validity of the

statement of the lemma for these values of p.
It remains to examine p = 0. In that case we can use (18). So

L(m) = L(0)
√

1 +
2q

1− 2q
(2a)

1
1−2qm+ o(m) = L(0) +

2q
1− 2q

(2a)
q

1−2q︸ ︷︷ ︸
>0

m+ o(m)
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due to Lemma 6.1. �

Lemma 6.4. If (23) holds and p < 1, then

lim
m→∞

L(m) =


0 if q < p,

1
a if q = p,

∞ if q > p

and furthermore, L > 1
a in some neighbourhood of ∞ for q = p.

Proof. The proof of the first statement does not differ from that of Lemma 5.2. So let q = p
and join the expansions of Lemmata 3.1 and 6.1 for m→∞:

L(m) =
1
a

√
1 +

3p
4a
mp−1 + o

(
mp−1

)(
1− p

24a
mp−1 + o

(
mp−1

))
=

1
a

+
p

3a2
mp−1 + o

(
mp−1

)
.

Since p ∈ (0, 1) and hence p
3a2 > 0, L > 1

a near ∞ indeed. �

Lemma 6.5. Suppose that (23) holds and for q > |p| set

m := mp,q,a :=
(

(p+ q)(2q − p− 1)
2q(q − 1)

) 1
p+1
(
a(q − p)
q(1− q)

) 1
2q−p−1

.

(i) If p < 1, q ≤ p, then L′ < 0 on (0,∞).

(ii) If p > 0, q > p, then L has a stationary point m0;p,q,a =: m0 ∈ (0,m] while L′ < 0 on
(0,m0), L′ > 0 on (m0,∞).

(iii) If p ≤ 0, q > −p, then L′ > 0 on (0,∞) r {m}.
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(iv) If q ≤ −p, then L′ > 0 on (0,∞).

Proof. It is similar to the proof of Lemma 5.3. So suppose that m0 > 0 is a stationary point of
L. From (14) it is clear that L′′(m0) has the same sign as

(1− q) q
a
R2q−p−1(m0) + p− q =: %p,q,a(m0) =: %(m0).

Therefore, if q ≤ p, then L has at most one stationary point and if it has some, then it attains a
strict relative minimum there. However, L cannot increase near∞ (see Lemma 6.4), thus statement
(i) holds.

In the rest of the proof we will deal with q > p. We have

L′′(m0) > 0 ⇐⇒ R(m0) <
(
a(q − p)
q(1− q)

) 1
2q−p−1

=: Rp,q,a =: R

and
R > R(0) ⇐⇒ (2q − p− 1)(p+ q) < 0 ⇐⇒ q > −p.

Since (R(0),∞) is the range of R, each stationary point of L is a point of strict relative maximum
for q ≤ −p and statement (iv) follows due to Lemma 6.4.

We will suppose q > −p from now on (together with q > p), thus − 1
3 < p < 1. Consequently,

L′′(m0) > 0 ⇐⇒ m0 < R−1(R) = R

(
1− p+ 1

2a
R

2q−p−1
) 1

p+1

= m.

So Lemma 6.4 guarantees that L does not attain any relative extremum in (m,∞). Furthermore,
if p ≤ 0, then no point of relative extremum lies in (0,m) as well (see Lemma 6.3), as it is stated
in (iii). On the other hand, if p > 0, then a similar consideration shows that L has exactly one
relative extremum, which is a global minimum attained at some point m0 ∈ (0,m] and in case
of m0 < m, m may be a stationary point of L as well. In order to complete the verification of
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statement (ii), let us show that L cannot have two stationary points for 0 < p < 1, q > p: From
Lemma 2.11 we see that K ′(m) has the opposite sign to %(m) for any m > 0. Consequently K
decreases on (0,m]. However, if L had a relative minimum at some point m0 ∈ (0,m) and m were
another stationary point of L, we would have K(m0) = L(m0) < L(m) = K(m) (see Lemma 2.11),
a contradiction to K(m0) > K(m). �

The properties of L ascertained in this section are summarised in Figure 3, which shows all the
possible graphs of L with the corresponding sets of parameters in the (p, q)-plane, distinguished
by colours. (Note that although we have not ruled out in Lemma 6.5 the possibility that m is a
stationary point of L for p ≤ 0, q > −p, it has no influence on the number of solutions of (1).)
Using Lemma 2.8 , we can state the main result of this section. Recall that L(u(0)) = l for any
u ∈ S(l) and see also Lemmata 6.2, 6.3, 6.4 and 6.5 concerning L(0), limm→∞ L(m) and m0.

Theorem 6.6. Assume (23) and l > 0. Then N (l) = ∅ and the following holds for the positive
symmetric solutions of (1):

If p > 0 and q > p, then

|S(l)| =


2 if l ∈ (L(m0), L(0)),

1 if l ∈ {L(m0)} ∪ [L(0),∞),
0 otherwise

and L decreases on (0,m0] and increases on [m0,∞), see Figure 3.
In all the other cases,

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise

and L is strictly monotone, see Figure 3.
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7. Case IV (p > −1, q = p+1
2 )

In this case we have from Lemma 2.5 that the time map is defined only for q < a and is given by

L(m) =
1√
2a

Ip

((
a

a− q

) 1
2q

︸ ︷︷ ︸
=:rq,a

)
m

1−p
2 , m > 0.

Thus, it is a bijection of (0,∞) onto (0,∞) for p 6= 1 and a constant function for p = 1. Namely,
we can use (18) to derive that

L1,1,a(m) =
1√
a

ln
√
a+ 1√
a− 1

=
1

2
√
a

ln
(√

a+ 1√
a− 1

)2

=
1

2
√
a

ln
√
a+ 1√
a− 1

.

Furthermore, solving (3) for p = 1, we obtain that um,1,a(x) = m ch(
√
ax). So according to

Lemma 2.8, we can state the following:

Theorem 7.1. Let p > −1, q = p+1
2 , a > 0. Then for arbitrary l > 0:

S(l) =



{
um,p,a

∣∣
[−l,l] : m =

( √
2a

Ip(rq,a)
l

) 2
1−p

}
if p 6= 1, q < a,

{
x 7→ m ch(

√
ax), x ∈ [−l, l] : m > 0

} if p = 1, a > 1,
l = 1

2
√
a

ln
√
a+1√
a−1

,

∅ otherwise,

N (l) = ∅.
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8. Case V (p > −1, q > p+1
2 ), symmetric solutions

Recall that due to Lemma 2.5, we have the following time maps in case V: L1 < L2 defined on
(0,M) and L defined on {M}. In this section we describe their behaviour for

(25) p > −1, q >
p+ 1

2
, a > 0.

Lemma 8.1 (for p > 1 see [5, p. 57 and Lemma 3.3]). Assume (25). Then R′1 > 0 while

lim
m→0

R1(m)
m

= 1, lim
m→M

R1(m) = R(M) =
(
a

q

) 1
2q−p−1

and R′2 < 0 while

lim
m→0

R2(m) =
(

2a
p+ 1

) 1
2q−p−1

=: R2;p,q,a(0) =: R2(0), lim
m→M

R2(m) = R(M).

Moreover,

R2(m)
R2(0)

= 1− mp+1

(2q−p−1)Rp+1
2 (0)

− 2q+p

2(2q−p−1)2R2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

)
for m→ 0.

Proof. It is clear from Lemma 2.5 (iv) and (10) that R′1 > 0 and R′2 < 0. The limits of R1(m),
R1(m)/m and R2(m) can be calculated in the same way as in [5] for p > 1 and the derivation of
the asymptotic expansion of R2(m) for m → 0 does not differ from that of R(m) for m → 0 and
m→∞ in the proof of Lemma 6.1. �
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Definition 8.2. For p, q, a satisfying (25) and q < |p| set

m := mp,q,a :=
(

(p+ q)(2q − p− 1)
2q(q − 1)

) 1
p+1
(
a(p− q)
q(q − 1)

) 1
2q−p−1

.

Lemma 8.3 (for p > 1 see [5, Lemmata 3.1, 3.4, 3.3, 3.2 and 3.5]). If (25) holds, then

lim
m→M

L1(m) = L(M), lim
m→M

L′1(m) =∞,

lim
m→0

L1(m) =


0 if q > p,

1
a if q = p,

∞ if q < p

and the following holds concerning the monotonicity of L1:

(i) If q ≥ p, then L′1 > 0.

(ii) If q < p, then there exists such a point m0;p,q,a =: m0 ∈ [m,M) that

L′1 < 0 on (0,m0), L′1 > 0 on (m0,M).

Proof. It does not differ from the proof that can be found in [5] for p, q > 1. �

Lemma 8.4 (for p > 1 see [5, Lemmata 3.1, 3.4 and 3.3]). If (25) holds, then

lim
m→M

L2(m) = L(M), lim
m→M

L′2(m) = −∞,

lim
m→0

L2(m) =


∞ if p ≥ 1,

2
1− p

(
p+ 1

2a

) q−1
2q−p−1

=: L2;p,q,a(0) =: L2(0) if p ∈ (−1, 1).
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Proof. The limits at M can be calculated in the same way as it was done in [5] for p, q > 1
while the proof of the second part of the lemma is essentially the same as that of Lemma 5.2. �

Lemma 8.5. Suppose that (25) holds. Then

(i) if 0 ≤ p < 1 or q < −p or p ≥ − 1
2 , q = −p, then L2 < L2(0) in some neighbourhood of 0

(ii) and if p < 0, q > −p or p < − 1
2 , q = −p, then L2 > L2(0) in some neighbourhood of 0.

(We recommend the reader to draw a picture about these two sets in the (p, q)-plane.)

Proof. We use the asymptotic expansions of Ip(y) and R2(m) from Lemmata 3.4 and 8.1, re-
spectively and our goal is to find the second term of the asymptotic expansion of L2(m) for m→ 0
and to determine its sign. However, as we will see, it has eight different forms depending on the
value of p and q.

All the asymptotic expansions in this proof will concern y →∞ and m→ 0.

1. For − 1
3 < p < 1 the expansion of L2(m) looks like that of L(m) and is derived in the same

way as in the proof of Lemma 6.3.

2. If p = − 1
3 , then writing Bp + o(1) as O(1) and R2(m) as R2(0)(1 +O(m2/3)), we obtain:

L2(m) =
1
2

√
3
a
R

2/3
2 (m) +

1
2
√

3a
m2/3 ln

R2(m)
m

+O(m2/3)

= L2(0) +
1

2
√

3a
m2/3 ln

1
m

+O
(
m2/3

)
.

3. Now let −1 < p < − 1
3 . In general, we have the expansion

Ip(y)√
p+ 1

=
2

1− p
y

1−p
2 − 1

3p+ 1
y−

3p+1
2 + %p(y)
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for some function %p, which is given by different formulae depending on p and will be
specified later. It can be derived from Lemma 8.1 that

R
1−p
2

2 (m) = R
1−p
2

2 (0)

(
1− 1− p

2(2q − p− 1)Rp+1
2 (0)

mp+1

− (1− p)(4q + 3p+ 1)

8(2q − p− 1)2R2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

))
and

R
− 3p+1

2
2 (m) = R

− 3p+1
2

2 (0)
(

1 +
3p+ 1

2(2q − p− 1)Rp+1
2 (0)

mp+1 + o
(
mp+1

))
,

which yield:

(26)
L2(m) = L2(0) + Cp,q,am

p+1 +Dp,q,am
2(p+1)

+

√
p+ 1

2a
m

1−p
2 %p

(
R2(m)
m

)
+ o
(
m2(p+1)

)
where

Cp,q,a = − 2(p+ q)
(3p+ 1)(2q − p− 1)Rp+q2;p,q,a(0)


> 0 if q > −p,
= 0 if q = −p,
< 0 if q < −p,

Dp,q,a = − 8q + p− 1
4(2q − p− 1)2Rq+2p+1

2;p,q,a (0)
.
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Using that %p(y) = o(y−(3p+1)/2) and R2(m) = O(1), we can rewrite (26) in the form

L2(m) = L2(0) + Cp,q,am
p+1 + o

(
mp+1

)
,

thus further calculation are needed for q = −p.
(a) Let us consider −q = p ∈ (− 3

5 ,−
1
3 ). Since %p(y) = Bp + o(1) and O(m2(p+1)) =

o(m(1−p)/2), we have

L2(m) = L2(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
from (26). According to Lemma 3.4, Bp < 0 for p ∈ (− 1

2 ,−
1
3 ) and Bp > 0 for

p ∈ (− 3
5 ,−

1
2 ). In the case p = − 1

2 the expansion from Lemma 3.4 does not suffice
for us but we can use (18) together with√

R2(m) = 4a−
√
m− m

4a
+ o(m)

to derive that

L2(m) =
16a
3

√
1−
√
m

2a
− m

16a2
+ o(m)

(
1 +
√
m

4a
− m

16a2
+ o(m)

)
= L2(0)− m

a
+ o(m).

(b) If −q = p = − 3
5 , then inserting %p(y) = 3

8 ln y +O(1) and R2(m) = O(1) in (26), we
obtain that

L2(m) = L2(0) +
3

8
√

5a
m4/5 ln

1
m

+O
(
m4/5

)
.
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(c) Finally, for −q = p ∈ (−1,− 3
5 ) we have

%p(y) = − 3
4(5p+ 3)

y−
5p+3

2 + o
(
y−

5p+3
2

)
,

which together with R2(m) = R2(0) + o(1) and (26) yields

L2(m) = L2(0) +
2p(p+ 1)

(5p+ 3)(3p+ 1)2Rp+1
2 (0)︸ ︷︷ ︸

>0

m2(p+1) + o
(
m2(p+1)

)
. �

The next three lemmata deal with the monotonicity and the stationary points of L2.

Lemma 8.6. Assume (25). The following holds:

(i) If p ≥ 0 or p ≥ − 1
2 , q = −p, then

L′2 < 0 on (0,M).

(ii) If p < 0, q > −p or p < − 1
2 , q = −p, then L2 has a unique stationary point m0;p,q,a =:

m0 ∈ (0,M) while

L′2 > 0 on (0,m0), L′2 < 0 on (m0,M).

(iii) If q < −p, then one of the following holds:

A: L′2 < 0 on (0,M),

B: L′2 < 0 on (0,m), L′2(m) = 0 and L′2 < 0 on (m,M),

C: L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2) and L′2 < 0 on (m2,M) for some m1 =
m1;p,q,a ∈ (0,m), m2 = m2;p,q,a ∈ [m,M).
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Proof. The case p ≥ 1 is trivial, so let p < 1 and suppose that m0 ∈ (0,M) is a stationary point
of L2. Recall that L′2 < 0 near M due to Lemma 8.4.

Firstly, let us consider q ≥ 1. Then L′′2(m0) < 0, so there are only two possibilities: Either
L′2 < 0 on (0,M) or L2 has a unique stationary point, which is a point of strict relative maximum.
Lemma 8.5 guarantees that the first one holds for p ≥ 0 and the second one for p < 0.

Now let q < 1. Consequently:

(27) L′′2(m0) < 0 ⇐⇒ R2(m0) <
(
a(q − p)
q(1− q)

) 1
2q−p−1

=: R2;p,q,a =: R2.

Recall that (R(M), R2(0)) is the range of R2. The inequality R2 > R(M) holds always while
R2 < R2(0) only for q < −p. (In the latter case, we have R2(m) = R2.) So if q ≥ −p, then each
stationary point of L2 is a point of strict relative maximum and by means of Lemma 8.5 we have
again that L′2 < 0 for p ≥ 0 and for −q = p ∈ [− 1

2 ,−
1
3 ) and L2 has a unique stationary point for

p < 0, q > −p and for p < − 1
2 , q = −p.

From now on we will consider only q < −p (thus, −1 < p < − 1
3 and q < 1). So we have

L′′2(m0) < 0 ⇐⇒ m0 > R−1
2

(
R2

)
= m.

It means that L2 has at most one stationary point (a point of strict relative minimum) in (0,m), at
most one (a point of strict relative maximum) in (m,M) and m may be a stationary point as well.
Suppose that m and some m2 > m are both stationary points of L2, thus L2 increases on [m,m2].
Since K2 decreases on [m,M), we have L2(m) = K2(m) > K2(m2) = L2(m2) (see Lemma 2.11),
a contradiction. Therefore, L2 has at most one stationary point in [m,M). Furthermore, due to
Lemma 8.5 only A, B or C can hold. �

Lemma 8.7. Assume (25) and q < −p. There exists a continuous function q∗ : (−1,− 1
2 )→ R

such that p+1
2 < q∗(p) < −p for p ∈ (−1,− 1

2 ), limp→−1/2 q
∗(p) = 1

2 and the following holds:
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(i) If p ≥ − 1
2 , q < −p or p < − 1

2 , q < q∗(p), then

L′2 < 0 on (0,M).

(ii) If p < − 1
2 and q = q∗(p), then m is a stationary point of L2 while

L′2 < 0 on (0,m), L′2 < 0 on (m,M).

(iii) If p < − 1
2 and q∗(p) < q < −p, then L2 has two stationary points m1;p,q,a =: m1, m2;p,q,a =:

m2 while m1 < m < m2 and

L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2), L′2 < 0 on (m2,M).

For all p ∈ (−1,− 1
2 ), q = q∗(p) is the only solution of the equation

Ip(g(p, q))− 1
1− p

√
2(q − p)(1− q)

q
g

1−p
2 (p, q)︸ ︷︷ ︸

=:G(p,q)

=: f(p, q) = 0

in (p+1
2 ,−p) where

g(p, q) =
(

2q(q − 1)
(2q − p− 1)(p+ q)

) 1
p+1

.

Proof. From Lemma 8.6 we already know that only A, B or C can hold for q < −p. Let us
notice the crucial role of the sign of L′2(m): If it is +, then C holds, if 0, then B or C occurs and
if −, then A holds. So we derive the following condition:

L′2;p,q,a(mp,q,a) > 0 ⇐⇒ L2(m)− (1− q)R
2q−p−1

2
2

a(1− p)
R

1−p
2

2 > 0 ⇐⇒ f(p, q) > 0
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(see (27) for the definition of R2) and in the sequel we

1. find limq→(p+1)/2 f(p, q)

2. and limq→−p f(p, q)

3. and investigate the monotonicity of f(p, ·).
Afterwards we will be able to describe the sets where f (or equivalently L′2(m)) is positive, zero
and negative, resp.

1. Since limq→(p+1)/2 g(p, q) = ∞, using the first term of the asymptotic expansion of Ip(y)
for y →∞ (see Lemma 3.4), we obtain:

lim
q→ p+1

2

f(p, q)

g
1−p
2 (p, q)

=
3p+ 1

(1− p)
√
p+ 1

< 0, thus lim
q→ p+1

2

f(p, q) = −∞.

2. We are going to find limq→−p f(p, q), so we denote −q − p =: r for the sake of simplicity.
All the asymptotic expansions in this step will concern r → 0+ or y → ∞. We will see
that the first two terms of the asymptotic expansions of Ip(g(p, q)) and G(p, q) are identical,
therefore we need to calculate the first three. We have:

G(p, q) =
2
√
p+ 1

1− p

√√√√1 + 3p+1
2p(p+1)r + 1

2p(p+1)r
2

1 + r
p

g
1−p
2 (p, q)

=
2
√
p+ 1

1− p

√
1 +

p− 1
2p(p+ 1)

r +
1

2p2(p+ 1)
r2 +O(r3) g

1−p
2 (p, q)

=
2
√
p+ 1

1− p

(
1 +

p− 1
4p(p+ 1)

r − p2 − 10p− 7
32p2(p+ 1)2

r2 +O
(
r3
))
g

1−p
2 (p, q).
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It will be useful to write the asymptotic expansion of Ip(y) in the form

Ip(y)√
p+ 1

=
2

1− p

(
1 +

p− 1
2(3p+ 1)

1
yp+1

)
y

1−p
2 + %p(y)

where function %p will be specified later. Joining the last formula with

(28)

1
gp+1(p, q)

=
3p+ 1

2p(p+ 1)
r

1 + 2
3p+1r

1 + 2p+1
p(p+1)r + 1

p(p+1)r
2

=
3p+ 1

2p(p+ 1)
r

(
1− 4p2 + 3p+ 1

p(p+ 1)(3p+ 1)
r +O

(
r2
))
,

we obtain that

Ip(g(p, q)) =
2
√
p+1

1−p

(
1 +

p−1
4p(p+1)

r +
(1−p)(4p2+3p+1)
4p2(p+1)2(3p+1)

r2 +O
(
r3
))

· g
1−p
2 (p, q) +

√
p+1%p(g(p, q)),

consequently

(29)
f(p, q) =

(√
p+ 1(29p3 + 21p2 + 15p− 1)
16p2(p+ 1)2(3p+ 1)(p− 1)

r2 +O
(
r3
))
g

1−p
2 (p, q)

+
√
p+ 1%p(g(p, q)).

(a) Let − 3
5 < p < − 1

3 , thus %p(y) = Bp + o(1). Since

g
1−p
2 (p, q) = O

(
r

p−1
2(p+1)

)
= o

(
1
r2

)
,
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we have
f(p, q) =

√
p+ 1 Bp + o(1).

So limq→−p f(p, q) is negative for p ∈ (− 1
2 ,−

1
3 ), zero for p = − 1

2 and positive for
p ∈ (− 3

5 ,−
1
2 ) due to Lemma 3.4.

(b) If p = − 3
5 , then inserting %p(y) = 3

8 ln y + O(1) and g
1−p
2 (p, q) = O( 1

r2 ) in (29), we
obtain that

f(p, q) =
3
√

5
8
√

2
ln

1
r

+O(1) −→ ∞.

(c) For p ∈ (−1,− 3
5 ) we have

%p(y) =
(
− 3

4(5p+ 3)
1

y2(p+1)
+ o

(
1

y2(p+1)

))
y

1−p
2 ,

hence (29) yields

f(p, q) =
(

4(p+ 1)3/2

p(3p+ 1)(5p+ 3)(p− 1)
r2 + o

(
r2
))
g

1−p
2 (p, q) −→ ∞.

(See (28).)

So we have derived that

lim
q→−p

f(p, q)


< 0 if − 1

2 < p < − 1
3 ,

= 0 if p = − 1
2 ,

> 0 if − 1 < p < − 1
2 .
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3. The increase of f(p, ·) can be proved using

∂f

∂q
(p, q) =

(√
p+1

gp+1(p, q)−1
−
√

(2q−p−1)(p−q)(p+q)
2q

)
∂g

∂q
(p, q)

+
q2−p

(1−p)q
√

2q(q−p)(1−q)
1√

gp+1(p, q)
g(p, q)

=
1
2q

√
(2q−p−1)(p+q)

p−q

(
q2−p

q(1−q)(1−p)
g(p, q) + (p+q)

∂g

∂q
(p, q)

)
and

∂g

∂q
(p, q) = − q2 − 2pq + p

q(1− q)(2q − p− 1)(p+ q)
g(p, q),

which yield

∂f

∂q
(p, q) =

p+ q

q2(p− 1)

√
(p+ q)(p− q)

2q − p− 1
g(p, q) > 0.

From 1., 2. and 3. we can see that if p ∈ [− 1
2 ,−

1
3 ), q ∈ (p+1

2 ,−p), then f(p, q) < 0, i. e. L′2 < 0.
Moreover, f(p, ·) has a unique zero—denote it by q∗(p)—for all p ∈ (−1,− 1

2 ) and

• if p+1
2 < q < q∗(p), then L′2(m) < 0, so A holds,

• if q∗(p) < q < −p, then L′2(m) > 0, so C holds with m2 > m

• and if q = q∗(p), then L′2(m) = 0, so either B holds or C with m2 = m. Nevertheless,
we prove that only B can hold for q = q∗(p): So suppose that C holds for some p =
p0 ∈ (−1,− 1

2 ) and q = q∗(p0), thus L′2;p0,q∗(p0),a(m̃)>0 for some m̃ ∈ (0,M). From the
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definition of R2 and the implicit function theorem it follows that R2;p0,·,a(m̃) is continuous,
which together with (13), (10) and Theorem 3.5 guarantees the continuity of L′2;p0,·,a(m̃).
Hence, L′2;p0,q∗(p0)−ε,a(m̃) > 0 if ε > 0 is small enough, giving a contradiction.

At this moment, assertions (i)–(iii) have been proved. Since f is continuous due to Theorem 3.5,
from the implicit function theorem we have the continuity of q∗ as well. So there only remains to
find its limit at − 1

2 . Recall that limq→1/2 f(− 1
2 , q)=0 and choose arbitrary ε ∈ (0, 1

2 ). From the
increase of f(− 1

2 , ·) we have f(− 1
2 ,

1
2 − ε) < 0, therefore f(p, 1

2 − ε) < 0 for all p ∈ (− 1
2 − δ,−

1
2 )

and some suitable δ ∈ (0, 1
2 ) and the increase of f(p, ·) yields that 1

2 − ε < q∗(p) < −p for
p ∈ (− 1

2 − δ,−
1
2 ). So we conclude that limp→−1/2 q

∗(p) = 1
2 . �

Lemma 8.8. There exists

lim
p→−1

q∗(p) =: q∗(−1) ∈ (0, 1).

Proof. An easy calculation yields that

lim
p→−1

g(p, q) = e
q+1

2q(1−q) =: ψ(q)

and

lim
p→−1

f(p, q) = I−1(ψ(q))−

√
1− q2

2q
ψ(q) =: ϕ(q)

for all q ∈ (0, 1). In the sequel we examine the behaviour of ϕ.
Since limq→0 ψ(q) =∞ and I−1(y) = o(y) for y →∞ (see Lemma 3.6),

ϕ(q) = − 1√
2q
(
1 + o(1)

)
ψ(q) −→ −∞, q −→ 0.
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Set r := 1− q and consider r → 0+. Using Lemma 3.6 with n = 4 and the formulae

1√
lnψ(q)

=
√
r

(
1− r

4
− 5

32
r2 − 13

128
r3 +O

(
r4
))
,

1
lnψ(q)

= r

(
1− r

2
− r2

4
+O

(
r3
))
,

1
ln2 ψ(q)

= r2
(
1− r +O

(
r2
))
,

1
ln3 ψ(q)

= r3
(
1 +O(r)

)
,

we obtain that

I−1(ψ(q)) =
√
r

(
1 +

r

4
+

7
32
r2 +

89
128

r3 +O
(
r4
))
ψ(q).

On the other hand,√
1− q2

2q
=
√
r
(

1− r

2

)1/2

(1− r)−1/2 =
√
r

(
1 +

r

4
+

7
32
r2 +

25
128

r3 +O
(
r4
))
,

hence

ϕ(q) =
r7/2

2
ψ(1− r)

(
1 +O(r)

)
=
r7/2

2
e

1
r + 1

2
(
1 +O(r)

)
−→ ∞.

It is not hard to derive that

ψ′(q) =
q2 + 2q − 1
2q2(1− q)2

ψ(q)



JJ J I II

Go back

Full Screen

Close

Quit

and

ϕ′(q) =

(
1√

lnψ(q)
−

√
1− q2

2q

)
ψ′(q) +

√
2q

1− q2
q2 + 1

4q2
ψ(q)

=
1− q
2q2

√
1− q2

2q
ψ(q) > 0.

So we conclude that ϕ has a unique zero q0 ∈ (0, 1). Since ϕ increases and limp→−1 f(p, q) =
ϕ(q), we have that for arbitrary ε ∈ (0,min{q0, 1− q0}) there exists such δ > 0 that

∀p ∈ (−1,−1 + δ) : f(p, q0 − ε) < 0 < f(p, q0 + ε),

hence
∀p ∈ (−1,−1 + δ) : q0 − ε < q∗(p) < q0 + ε

and therefore limp→−1 q
∗(p) = q0. �

Numerical calculations indicate that q∗ is probably decreasing, concave, its graph touches the
graph of q = −p in − 1

2 , and q∗(−1) ≈ 0.730. We would like to prove some of these observations
analytically in the future.

We append Figure 4 with all the possible graphs of L1 and L2 and the corresponding sets
of (p, q), based on the lemmata of this section. These results are sufficient to determine the
number of the symmetric solutions of (1) in case V depending on p, q, a, l (see Lemma 2.8)
except for −1 < p < − 1

2 , q∗(p) < q < −p because it is required to investigate, for which p, q is
L2(0) > L2(m2). In view of Lemmata 8.6 (ii) and 8.7 (ii), it can be expected that this domain is
divided by a continuous curve into three sets where L2(0) = L2(m2) for (p, q) lying on the curve,
L2(0) < L2(m2) above it and L2(0) > L2(m2) under it. This hypothesis is also consistent with
numerical calculations and will be an object of further research.

So let us state the main result of this section.
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Theorem 8.9. Suppose (25).

(a) If q < p, then {
|S(l)| : l > 0

}
=
{

0, 1, 2
}
.

(b) If q = p, then {
|S(l)| : l > 0

}
=
{

0, 1
}
.

(c) If p ≥ 1 and q > p, then

|S(l)| = 1 for l > 0.

(d) If 0 ≤ p < 1 or p ≥ − 1
2 , q ≤ −p or p < − 1

2 , q ≤ q∗(p), then{
|S(l)| : l > 0

}
=
{

0, 1
}
.

(e) If p < 0, q > −p or p < − 1
2 , q = −p, then{

|S(l)| : l > 0
}

=
{

0, 1, 2
}
.

(f) If p < − 1
2 and q∗(p) < q < −p, then{

|S(l)| : l > 0
}

=
{

0, 1, 2, 3
}
.

The exact dependence of |S(l)| on l as well as the monotonicity properties of L are indicated in
Figure 4. (Recall that L(u(0)) = l for any u ∈ S(l).)

In this paper, we have not dealt with the monotonicity of L1 + L2, which is related to the
number of nonsymmetric solutions of (1). It was proved in [5] that (L1 + L2)′ < 0 for 1 < p ≤ 4
and for p > 4, q ≥ p − 1 − 1

p−2 . Our future goal is to examine the behaviour of L1 + L2 for the
rest of case V and to study cases VI–XIII.
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Figure 3. The relation between m = u(0) and l for u ∈ S(l) in case III (p > −1, 0 < q < p+1
2

, a > 0) according
to Lemmata 2.8, 6.2, 6.3, 6.4 and 6.5. See also Theorem 6.6.
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Figure 4. The relation between m = u(0) and l for u ∈ S(l) in case V (p > −1, q > p+1
2

, a > 0) according to
Lemmata 2.8, 8.3, 8.4, 8.6, 8.7 and 8.8. See also Theorem 8.9.


