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A NOTE ON SOME GENERALIZED SUMMABILITY METHODS

E. SAVAS, P. DAS and S. DUTTA

Abstract. In this paper, we continue our investigations in line of our recent papers, Savas and Das [16]

and Das, Savas and Ghosal [5]. We introduce the notion of AI -statistical convergence which includes
the new summability methods studied in [16] and [5] as special cases and make certain observations
on this new and more general summability method.

1. Introduction

The idea of convergence of a real sequence was extended to statistical convergence by Fast [8] (see
also [18]) as follows: If N denotes the set of natural numbers and K ⊂ N, then K (m,n) denotes
the cardinality of K ∩ [m,n]. The upper and lower natural (or asymptotic) densities of the subset
K are defined by

d̄(K) = lim sup
n→∞

K(1, n)

n
and d(K) = lim inf

n→∞

K(1, n)

n
.

If d̄(K) = d(K), then we say that the natural density of K exists and it is simply denoted by

d (K). Clearly d (K) = limn→∞
K(1,n)
n .
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A sequence {xk}k∈N of real numbers is said to be statistically convergent to L if for arbitrary
ε > 0, the set K(ε) = {n ∈ N : |xn − L| ≥ ε} has natural density zero. Statistical convergence
turned out to be one of the most active areas of research in summability theory after the works of
Fridy [9] and Šalát [15] (also see [2], [3]).

The notion of statistical convergence was further extended to I-convergence [12] using the
notion of ideals of N. Many interesting investigations using the ideals can be found in [5, 6]
where more references are mentioned. In particular, in [5] and [16] ideals were used to introduce
new concepts of I-statistical convergence, I-lacunary statistical convergence and I-λ-statistical
convergence. Recently these ideas were extended to double sequences in [1].

On the other hand, the idea of A-statistical convergence was introduced by Kolk [10] using
a non-negative regular matrix A (which subsequently included the ideas of statistical, lacunary
statistical or λ-statistical convergence as special cases). More recent work in this line can be found
in [7], [11], [14] where many references are mentioned.

In this paper, we naturally unify the above two approaches and introduce the idea of AI-
statistical convergence and make certain observations.

2. Main results

Throughout the paper N will denote the set of all positive integers. A family I ⊂ 2Y of subsets
of a nonempty set Y is said to be an ideal in Y if (i) A,B ∈ I implies A ∪ B ∈ I; (ii) A ∈ I,
B ⊂ A implies B ∈ I, while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y .
If I is a proper ideal in Y (i.e., Y /∈ I, Y 6= ∅), then the family of sets F (I) = {M ⊂ Y :
there exists A ∈ I such that M = Y \A} is a filter in Y . It is called the filter associated with the
ideal I. Throughout, I will stand for a proper non-trivial admissible ideal of N.

A sequence {xk}k∈N of real numbers is said to be I-convergent to x ∈ R if for each ε > 0, the
set A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I [12].
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If x = {xk}k∈N is a sequence of real numbers and A = (ank)∞n,k=1 is an infinite matrix, then Ax
is the sequence whose n-th term is given by

An(x) =

∞∑
k=1

ankxk.

We say that x is A-summable to L if limn→∞An (x) = L.
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix. If for each x ∈ X,

the series An(x) =
∞∑
k=1

ankxk converges for each n and the sequence Ax = {An(x)} ∈ Y , we say

that A maps X into Y . By (X,Y ) we denote the set of all matrices which maps X into Y , and in
addition, if the limit is preserved, then we denote the class of such matrices by (X,Y )reg. A matrix
A is called regular if A ∈ (c, c) and limk→∞Ak (x) = limk→∞ xk for all x = {xk}k∈N ∈ c when c,
as usual, stands for the set of all convergent sequences. It is well-known that the necessary and
sufficient conditions for A to be regular are

‖A‖ = sup
n

∑
k

|ank| <∞;(R1)

lim
n
ank = 0, for each k;(R2)

lim
n

∑
k

ank = 1.(R3)

For a non-negative regular matrix A = (ank) following [10], a set K is said to have A-density if
δA(K) = limn

∑
k∈Kank exists.

The real number sequence x = {xk}k∈N is A-statistically convergent to L provided that for
every ε > 0, the set K(ε) := {k ∈ N : |xk − L| ≥ ε} has A-density zero [10].
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Now we introduce the main concept of this paper, namely the notion of AI-statistical conver-
gence.

Definition 2.1. Let A be a non-negative regular matrix. A sequencex={xk}k∈N is said to be
AI-statistically convergent to L if for any ε > 0 and δ > 0,{

n ∈ N :
∑

k∈K(ε)

ank ≥ δ
}
∈ I

where K(ε) = {k ∈ N : |xk − L| ≥ ε}.

In this case we write xk
AI−st−−−−→ L. We will denote the set of all AI-statistically convergent

sequences by SA(I). It can be easily verified that SA(I) is a linear subspace of the space of all real
sequences. Also note that for I = Ifin, the ideal of all finite subsets of N, AI-statistical convergence
becomes A-statistical convergence [10].

(1) If we take A = (ank) as

ank =


1

n
if n ≥ k

0 otherwise,

then AI-statistical convergence becomes I-statistical convergence [5].
(2) If we take A = (ank) as

ank =


1

λn
if k ∈ In = [n− λn + 1, n]

0 otherwise,

where {λn}n∈N is a non-decreasing sequence of positive numbers tending to ∞ and λn+1 ≤ λn + 1

then AI-statistical convergence coincides with I-λ-statistical convergence [16].
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(3) By a lacunary sequence θ = (kr), r = 0, 1, 2, . . . where k0 = 0 we mean an increasing sequence
of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals determined by θ will be
denoted by Ir = (kr−1, kr] and let hr = kr − kr−1. If A = (ank) is given by

ank =


1

hr
if kr−1 < k ≤ kr

0 otherwise,

then AI-statistical convergence coincides with I-lacunary statistical convergence [5].
Non-trivial examples of such sequences can be seen in ([5], [16]). We now give another example

of a sequence which is AI-statistically convergent.

Example 1. Let I be a non-trivial admissible ideal of N. Choose an infinite subset

C = {p1 < p2 < p3 < . . .}

from I. Let x = {xk}k∈N be given by

xk =

{
1 k is odd

0 k is even.

Let A = (ank) be given by

ank =


1 if n = pi, k = 2pi for some i ∈ N
1 if n 6= pi, for any i, k = 2n+ 1

0 otherwise.
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Now for 0 < ε < 1, K(ε) = {k ∈ N : |xk − 1| ≥ ε} is the set of all even integers. Observe that∑
k∈K(ε)

ank =

{
1 if n = pi for some i ∈ N
0 if n 6= pi, for any i ∈ N.

Thus for any δ > 0,
{
n ∈ N :

∑
k∈K(ε) ank ≥ δ

}
= C ∈ I showing that x is AI-statistically

convergent to 1.
Note that for any L ∈ R and 0 < ε < 1

2 , {k ∈ N : |xk − L| ≥ ε} contains either the set of

even integers or the set of all odd integers or both and consequently for δ = 1
100 ,

{
n ∈ N :

|{k≤n:|xk−L|≥ε}|
n ≥ δ

}
/∈ I as it must be equal to N or N \ {1}. Hence x is not I-statistically

convergent. Further note that if I 6= Id and we choose C from I \ Id, the ideal of all subset of N
with natural density zero, then x is not A-statistically convergent.

We now prove the following result which establishes the topological character of the space SA(I).

Theorem 2.1. SA(I)∩l∞ is a closed subset of l∞ where as usual, l∞ is the space of all bounded
real sequences endowed with the superior norm.

Proof. Suppose that {xn}n∈N ⊂ SA(I)∩ l∞ is a convergent sequence and it converges to x ∈ l∞.

We have to show that x ∈ SA(I) ∩ l∞. Let xn
AI−st−−−−→ Ln for all n ∈ N. Take a sequence {εn}n∈N

where εn = 1
2n+1 ∀n ∈ N. We can find n ∈ N such that ||x − xj ||∞ < εn

4 ∀ j ≥ n. Choose

0 < δ < 1
3 .

Now

A =

{
m ∈ N :

∑
k∈M1

amk < δ

}
∈ F (I) where M1 =

{
k ∈ N : |xkn − Ln| ≥

εn
4

}
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and

B =

{
m ∈ N :

∑
k∈M2

amk < δ

}
∈ F (I) where M2 =

{
k ∈ N : |xkn+1 − Ln+1| ≥

εn
4

}
.

Since A∩B ∈ F (I) and I is admissible, A∩B must be infinite. So we can choose m ∈ A∩B such
that |

∑
k amk − 1| < δ

2 . But
∑
k∈M1∪M2

amk ≤ 2δ < 1− δ
2 while

∑
k amk > 1− δ

2 .

Hence there must exist k ∈ N \ (M1 ∪ M2) for which we have both |xkn − Ln| < εn
4 and

|xkn+1 − Ln+1| < εn
4 . Then it follows that

|Ln − Ln+1| ≤ |Ln − xkn|+ |xkn − xkn+1|+ |xkn+1 − Ln+1|
≤ |Ln − xkn|+ |xkn+1 − Ln+1|+ ‖x− xn‖∞ + ‖x− xn+1‖∞

≤ εn
4

+
εn
4

+
εn
4

+
εn
4

= εn.

This implies that {Ln}n∈N is a Cauchy sequence in R. Let Ln → L ∈ R as n→∞. We shall prove

that x
AI−st−−−−→ L. Choose ε > 0 and n ∈ N such that εn <

ε
4 , ‖x− xn‖∞ < ε

4 , |Ln − L| < ε
4 . Now

since ∑
k∈{k∈N: |xk−L|≥ε}

ank ≤
∑

k∈{k∈N: |xk−xk
n|+|xk

n−Ln|+|Ln−L|≥ε}

ank,

it follows that{
n ∈ N :

∑
k∈{k∈N : |xk−L|≥ε}

ank≥ δ
}
⊂
{
n ∈ N :

∑
k∈{k∈N: |xk

n−Ln|≥ ε
2}

ank ≥ δ
}
∈ I

for any given δ > 0. Since the set on the right hand side belongs to I, this shows that x
AI−st−−−−→ L.

This completes the proof of the result. �
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Remark 1. We can say that the set of all bounded AI-statistically convergent sequences of
real numbers forms a closed linear subspace of l∞. Also it is obvious that SA(I)∩ l∞ is complete.

We now define another related summability method and establish its relation with AI-statistical
convergence.

Definition 2.2. Let A = (ank)∞n,k=1 be a non-negative regular matrix. Then we say that

x = {xk}k∈N is AI-summable to L if the sequence {An(x)}n∈N I-converges to L.

For I = Id, AI-summability reduces to statistical A-summability of [7].

Theorem 2.2. If a sequence is bounded and AI-statistically convergent to L, then it is
AI-summable to L.

Proof. Let x = {xk}k∈N be bounded and AI-statistically convergent to L and for ε > 0, let
K( ε2 ) := {k ∈ N : |xk − L| ≥ ε

2} as before. Then

|An(x)− L| ≤

∣∣∣∣∣∣
∑

k/∈K( ε
2 )

ank(xk − L)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k∈K( ε
2 )

ank(xk − L)

∣∣∣∣∣∣
≤ ε

2

∑
k/∈K( ε

2 )

ank + sup
k
|(xk − L)|

∣∣∣∣∣∣
∑

k∈K( ε
2 )

ank

∣∣∣∣∣∣ ≤ ε

2
+B.

∑
k∈K( ε

2 )

ank,

where B = sup
k
|xk − L|. It now follows that{

n ∈ N : |An(x)− L| ≥ ε
}
⊂
{
n ∈ N :

∑
k∈K( ε

2 )

ank ≥
ε

2B

}
.
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Since x is AI-statistically convergent to L, the set on the right hand side belongs to I and this
consequently implies that x is AI-summable to L. �

The converse of the above result is not generally true.

Example 2. Let A = (ank) be given by

ank =

{
1

n+1 0 ≤ k ≤ n+ 1

0 otherwise

and let

xk =

{
1 if k is odd

0 if k is even.

Then x = {xk}k∈N is A-summable to 1/2, so is AI-summable to 1/2 for any admissible ideal I.
But note that for any L ∈ R and for 0 < ε < 1

2 , K(ε) = {k ∈ N : |xk − L| ≥ ε} contains either the
set of all even integers or the set of all odd integers or both. Consequently,

∑
k∈K(ε)

ank = ∞ for

any n ∈ N and so for any δ > 0,
{
n ∈ N :

∑
k∈K(ε) ank ≥ δ

}
/∈ I. This shows that x = {xk}k∈N is

not AI-statistically convergent for any non-trivial ideal I.

Example 3. As before, let I be a non-trivial admissible ideal of N. Choose an infinite subset
C = {p1 < p2 < p3 < . . .} from I. Let x be the same sequence defined in Example 1. Let
A = (ank) be given by

ank =


1
2 if n 6= pi for any i ∈ N and k = n2, n2 + 1

1 if n = pi, k = p2
i

0 otherwise.
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Then

yn =

∞∑
k=1

ankxk =


1
2 if n 6= pi for any i ∈ N
0 if n = pi, p

2
i is even

1 if n = pi, p
2
i is odd .

Now {
n ∈ N : |yn −

1

2
| ≥ ε

}
= C ∈ I,

so x is AI-summable to 1
2 . Note that if I 6= Id and if C ∈ I \ Id, then x is not statistically

A-summable also.
Further for any L ∈ R and 0 < ε < 1

2 , {k ∈ N : |xk − L| ≥ ε} contains either the set of all even

integers or the set of all odd integers or both and hence
∑
k∈K(ε) ank ≥

1
2 for all n ∈ N\C. It is clear

that for 0 < δ < 1
2 ,{

n ∈ N :
∑
k∈K(ε) ank ≥ δ

}
⊃ N \ C, so can not belong to I. This shows that x is not

AI-statistically convergent.

We now prove that continuity preserves the AI-statistical convergence.

Theorem 2.3. If for a sequence x = {xk}k∈N, xk
AI−st−−−−→ L and g is a real valued function

which is continuous, then g(xk)
AI−st−−−−→ g(L).

Proof. Since g is continuous at y = L, for a given ε > 0, there is δ > 0 such that |y − L| < δ
implies |g(y)−g(L)| < ε. Hence |g(y)−g(L)| ≥ ε implies |y−L| ≥ δ. In particular, |g(xk)−g(L)| ≥ ε
implies |xk − L| ≥ δ. Thus

K = {k ∈ N : |g(xk)− g(L)| ≥ ε} ⊂ K ′ := {k ∈ N : |xk − L| ≥ δ}.
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Hence for any σ > 0,{
n ∈ N :

∑
k∈K

ank ≥ σ
}
⊂
{
n ∈ N :

∑
k∈K′

ank ≥ σ
}
∈ I.

Therefore, g(xk)
AI−st−−−−→ g(L). �

We now establish an equivalent criteria for AI-statistical convergence. For this we will need the
following result.

Lemma 2.1 (Ideal version of Dominated Convergence Theorem). If {fn}n∈N is a sequence of
real valued functions with I-lim

n
fn = f and if |fn| ≤ g for all n ∈ N for some function g > 0 with∫

g <∞, then

I-lim
n

∫
fn =

∫
I-lim

n
fn.

The proof is parallel to the proof of Lebesgue Dominated Convergence Theorem with little
modifications, so it is omitted.

Theorem 2.4. A sequence x = {xk}k∈N is AI-statistically convergent to L iff for each real
number t, we have

I − lim
n

∞∑
k=1

ankeitxk = eitL(1)

Proceeding as in [4, Theorem 2] and using the ideal version of Bounded convergence Theorem,
we can prove this theorem.
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Actually we can show that for a sequence x = {xk}k∈N belonging to the space,

S∗ =

{
x :
{ ∞∑
k=1

ank|xk|
}∞
n=1
∈ l∞

}
(1) holds for every rational number t iff x is AI-statistically convergent.
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