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ON INTEGRABILITY CONDITIONS OF FUNCTIONS RELATED TO THE

FORMAL TRIGONOMETRIC SERIES BELONGING

TO ORLICZ SPACE

XH. Z. KRASNIQI

Abstract. In this paper we have introduced a new class of numerical sequences named as Mean Rest
Bounded Variation Sequence of second order. This class is used to show some integrability conditions
of the functions sinxg(x) and sinxf(x) such that these functions belong to the Orlicz space, where g(x)
and f(x) denote formal sine and cosine trigonometric series, respectively. This study may be taken as
an continuation of some recent foregoing results proved by L. Leindler [5] and S. Tikhonov [14].

1. Introduction

Many authors have studied the integrability of the formal series

g(x) :=

∞∑
n=1

λn sinnx(1.1)

and

f(x) :=

∞∑
n=1

λn cosnx(1.2)
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requiring certain conditions on the coefficients λn (see [6]–[7] and [2]–[15]).
As initial example, R. P. Boas in [1] proved the following result for (1.1).

Theorem 1.1. If λn ↓ 0, then for 0 ≤ γ ≤ 1, x−γg(x) ∈ L[0, π] if and only if
∑∞
n=1 n

γ−1λn
converges.

This result had previously been proved for γ = 0 by W.H. Young [15] and was later extended
by P. Heywood [4] for 1 < γ < 2.

Later the monotonicity condition on the coefficients λn was replaced to more general ones by
S. M. Shah [12] and L. Leindler [6].

In 2004 S. Tikhonov [14] proved two theorems providing sufficient conditions of g(x) and f(x)
belonging to Orlicz space. Before we state his theorems, we will recall some notions and notations.

Leindler ([6]) introduced the following definition. A sequence c := {cn} of positive numbers
tending to zero is of rest bounded variation, or briefly R+

0 BV S, if it possesses the property

∞∑
n=m

|cn − cn+1| ≤ K(c)cm(1.3)

for all natural numbers m, where K(c) is a constant depending only on c.
A sequence γ := {γn} of positive terms will be called almost increasing (decreasing) if there

exists constant C := C(γ) ≥ 1 such that

Cγn ≥ γm (γn ≤ Cγm)

holds for any n ≥ m.
Here and further C,Ci denote positive constants that are not necessarily the same at each

occurrence, and also we use the notion u � w (u � w) at inequalities if there exists a positive
constant C such that u ≤ Cw (u ≥ Cw) holds.
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We will denote (see [9]) by 4(p, q), (0 ≤ q ≤ p) the set of all nonnegative functions Φ(x) defined
on [0, 1) such that Φ(0) = 0 and Φ(x)/xp is nonincreasing and Φ(x)/xq is nondecreasing. It is clear
that 4(p, q) ⊂ 4(p, 0), 0 < q ≤ p. As an example, 4(p, 0) contains the function Φ(x) = log(1+x).

Here and in the sequel, a function γ(x) is defined by the sequence γ in the following way:
γ
(
π
n

)
:= γn, n ∈ N and there exist positive constants C1 and C2 such that C1γn+1 ≤ γ(x) ≤ C2γn

for x ∈
(

π
n+1 ,

π
n

)
.

A locally integrable almost everywhere positive function γ(x) : [0, π] → [0,∞) is said to be a
weight function. Let Φ(t) be a nondecreasing continuous function defined on [0,∞) such that
Φ(0) = 0 and limt→∞ Φ(t) = +∞. For a weight γ(x) the weighted Orlicz space L(Φ, γ) is defined
by

L(Φ, γ) =

{
h :

∫ π

0

γ(x)Φ(ε|h(x)|)dx <∞ for some ε > 0

}
.(1.4)

Tikhonov’s results now can be read as follows.

Theorem 1.2. Let Φ(x) ∈ 4(p, 0), 0 ≤ p. If λn ∈ R+
0 BV S and the sequence {γn} is such that

{γnn−1+ε} is almost decreasing for some ε > 0, then
∞∑
n=1

γn
n2

Φ(nλn) <∞ ⇒ ψ(x) ∈ L(Φ, γ),(1.5)

where a function ψ(x) is either a sine or cosine series.

Theorem 1.3. Let Φ(x) ∈ 4(p, q), 0 ≤ q ≤ p. If λn ∈ R+
0 BV S and the sequence {γn} is such

that {γnn−(1+q)+ε} is almost decreasing for some ε > 0, then
∞∑
n=1

γn
n2+q

Φ(n2λn) <∞⇒ g(x) ∈ L(Φ, γ).(1.6)
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A null-sequence c of nonnegative numbers possessing the property

∞∑
n=2m

|cn − cn+1| ≤
K(c)

m

2m−1∑
ν=m

cν(1.7)

is called a sequence of mean rest bounded variation, in symbols, c ∈MRBV S.
In [5], L. Leindler extended Theorem 1.2 and Theorem 1.3, so that the sequence {λn} belongs

to the class MRBV S instead of the class R+
0 BV S. His results are formulated as follows.

Theorem 1.4. Theorems 1.2 and 1.3 can be improved when the condition λn ∈ R+
0 BV S is

replaced by the assumption λn ∈MRBV S. Furthermore the conditions of (1.8) and (1.6) may be
modified as follows:

∞∑
n=1

γn
n2

Φ

(
2n−1∑
ν=n

λν

)
<∞⇒ ψ(x) ∈ L(Φ, γ),(1.8)

and
∞∑
n=1

γn
n2+q

Φ

(
n

2n−1∑
ν=n

λν

)
<∞⇒ g(x) ∈ L(Φ, γ),(1.9)

respectively.

In 2009, B. Szal [11] introduced a new class of sequences as follows.

Definition 1.1. A sequence α := {ck} of nonnegative numbers tending to zero is called Rest
Bounded Second Variation of second order, or briefly, {ck} ∈ RBSV S, if it has the property

∞∑
k=m

|ck − ck+2| ≤ K(α)cm
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for all natural numbers m, where K(α) is positive, depending only on the sequence {ck}, and we
assume that the sequence is bounded.

Motivated by the above definition, we introduce a new class of numerical sequences.

Definition 1.2. A null-sequence c of nonnegative numbers possessing the property

∞∑
n=2m

|42cn +42cn+1| ≤
K(c)

m

2m−1∑
ν=m

|cν − cν+2|(1.10)

is said to be a sequence of Mean Rest Bounded Variation of second order, in symbols, c ∈
MRBSV S, where 42cn = cn − 2cn+1 + cn+2.

The aim of this paper is to extend Tikhonov’s results and Leindler’s result, so that the sequence
{λn} belongs to the class MRBSV S instead of the classes R+

0 BV S and MRBV S. To achieve
this aim, we need some helpful statements given in next section.

2. Auxiliary Lemmas

We shall use the following lemmas for the proof of the main results.

Lemma 2.1 ([9]). Let Φ ∈ 4(p, q), 0 ≤ q ≤ p, and tj ≥ 0, j = 1, 2, . . . , n, n ∈ N. Then

(1) θpΦ(t) ≤ Φ(θt) ≤ θqΦ(t), 0 ≤ θ ≤ 1, t ≥ 0,

(2) Φ
(∑n

j=1 tj

)
≤
(∑n

j=1 Φ1/p∗(tj)
)p∗

, p∗ := max(1, p).

Lemma 2.2 ([5]). Let Φ ∈ 4(p, q), 0 ≤ q ≤ p. If ρn > 0, an ≥ 0 and if

2m+1−1∑
ν=2m

aν �
2m−1∑
ν=1

aν(2.1)
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holds for all m ∈ N, then

∞∑
k=1

ρkΦ

(
k∑
ν=1

aν

)
�

∞∑
k=1

Φ

(
2k−1∑
ν=k

aν

)
ρk

(
1

kρk

∞∑
ν=k

ρν

)p∗
,

where p∗ := max(1, p).

Lemma 2.3. The following representations of g(x) and f(x)

2 sinxg(x) = −
∞∑
k=1

(λk − λk+2) cos(k + 1)x

and

2 sinxf(x) =

∞∑
k=1

(λk − λk+2) sin(k + 1)x,

where we have assumed that λ1 = λ2 = 0, hold.

Proof. We start from obvious equality

∞∑
k=1

λk cos kx =
1

2

∞∑
k=1

(λk + λk+1) cos kx+
1

2

∞∑
k=1

(λk − λk+1) cos kx,

or
1

2

∞∑
k=1

λk cos kx =
1

2

∞∑
k=1

(λk + λk+1) cos kx− 1

2
cosx

∞∑
k=2

λk cos kx

− 1

2
sinx

∞∑
k=2

λk sin kx.
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Thus we have

1 + cosx

2

∞∑
k=2

λk cos kx

=
1

2

∞∑
k=1

(λk + λk+1) cos kx− 1

2
sinx

∞∑
k=2

λk sin kx− 1

2
λ1 cosx

or since λ1 = 0, we obtain

∞∑
k=2

λk cos kx

=
1

2 cos2 x2

{ ∞∑
k=1

(λk + λk+1) cos kx− sinx

∞∑
k=2

λk sin kx

}
.

(2.2)

Similarly as above, we obtain

∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx+
1

2

∞∑
k=1

(λk − λk+1) sin kx,

or

1

2

∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx

− 1

2
cosx

∞∑
k=2

λk sin kx+
1

2
sinx

∞∑
k=2

λk cos kx.

(2.3)
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Inserting (2.2) into (2.3), we have (λ1 = 0)

1

2

∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx− 1

2
cosx

∞∑
k=2

λk sin kx

+
sin x

2

2 cos x2

∞∑
k=1

(λk + λk+1) cos kx−
sin x

2 sinx

2 cos x2

∞∑
k=2

λk sin kx

=
1

2

∞∑
k=1

(λk + λk+1) sin kx+
sin x

2

2 cos x2

∞∑
k=1

(λk + λk+1) cos kx

−
(

cosx

2
+

sin x
2 sinx

2 cos x2

) ∞∑
k=2

λk sin kx

or
∞∑
k=1

λk sin kx =
1

2 cos x2

∞∑
k=1

(λk + λk+1) sin

(
k +

1

2

)
x

Applying the summation by parts to the above equality and taking into account that λ1 = λ2 = 0,
we obtain

∞∑
k=1

λk sin kx =
1

2 cos x2

∞∑
k=1

(λk − λk+2)

k∑
i=0

sin

(
i+

1

2

)
x,

or finally, noting that
k∑
i=0

2 sin

(
i+

1

2

)
x sin

x

2
= 1− cos(k + 1)x,
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we get
∞∑
k=1

λk sin kx = − 1

2 sinx

∞∑
k=1

(λk − λk+2) cos(k + 1)x,

which clearly proves the first part of this lemma.
For the proof of the second part of this lemma, it is enough to put n = 1 into the equality

(3.10), see [11, page 167]. �

Lemma 2.4. If λ := {λn} ∈MRBSV S and Dn := 1
n

∑2n−1
k=n |λk − λk+2|, then

Dk � D`

holds for all k ≥ 2`.

Proof. For m ≥ 2`, we note that

1

`

2`−1∑
k=`

|λk − λk+2| �
∞∑
k=2`

|42λk +42λk+1|

≥
∞∑
k=m

|42λk +42λk+1|

≥
∞∑
k=m

‖λk − λk+2| − |λk+1 − λk+3‖ ≥ |λm − λm+2|.

Summing up the both sides of the last inequality, when m goes from k to 2k − 1, we obtain

k

`

2`−1∑
k=`

|λk − λk+2| �
2k−1∑
m=k

|λm − λm+2|,
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whence the required inequality follows immediately. �

3. Main Results

Our first theorem deals with integrability of both functions sinxg(x) and sinxf(x) simultaneously.

Theorem 3.1. Let Φ(x) ∈ 4(p, 0), 0 ≤ p. If λn ∈ MRBSV S and the sequence {γn} is such
that {γnn−1+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

γn
n2

Φ

(
2n−1∑
ν=n

|λν − λν+2|

)
<∞ ⇒ sinxψ(x) ∈ L(Φ, γ),(3.1)

where a function ψ(x) is either a sine or cosine series.

Proof. For the proof we use the idea which Tikhonov and Leindler used for their results. For

this, let x ∈
(

π
n+1 ,

π
n

]
. Based on Lemma 2.3 and applying the summation by parts, we obtain

2| sinxf(x)| ≤
n∑
k=1

|λk − λk+2|+
∣∣∣∣ ∞∑
k=n

(λk − λk+2) sin(k + 1)x

∣∣∣∣
≤

n∑
k=1

|λk − λk+2|+
∞∑
k=n

|42λk +42λk+1|
∣∣D̃∗k(x)

∣∣
+ |λn − λn+2|

∣∣D̃∗n(x)
∣∣

where D̃∗k(x) are defined by

D̃∗k(x) :=

k∑
i=0

sin(i+ 1)x =
cos x2 − cos

(
k + 3

2

)
x

2 sin x
2

, k ∈ N.
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Taking into account that |D̃∗k(x)| = O
(
1
x

)
and {λn} ∈MRBSV S, we have

2| sinxf(x)| ≤
n∑
k=1

|λk − λk+2|+ n

∞∑
k=n

|42λk +42λk+1|+ n|λn − λn+2|

�
n∑
k=1

|λk − λk+2|+
n−1∑
k=n

2

|λk − λk+2|+ n|λn − λn+2|

�
n∑
k=1

|λk − λk+2|+ n|λn − λn+2|.

The following estimates can be obtained by the same technique. We get

2| sinxg(x)| ≤
n∑
k=1

|λk − λk+2|+
∣∣∣∣ ∞∑
k=n

(λk − λk+2) cos(k + 1)x

∣∣∣∣
≤

n∑
k=1

|λk − λk+2|+
∞∑
k=n

|42λk +42λk+1|
∣∣D∗k(x)

∣∣+ |λn − λn+2|
∣∣D∗n(x)

∣∣
≤

n∑
k=1

|λk − λk+2|+ n

∞∑
k=n

|42λk +42λk+1|+ n|λn − λn+2|

�
n∑
k=1

|λk − λk+2|+
n−1∑
k=n

2

|λk − λk+2|+ n|λn − λn+2|

�
n∑
k=1

|λk − λk+2|+ n|λn − λn+2|,
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where D∗k(x) are defined by

D∗k(x) :=

k∑
i=0

cos(i+ 1)x =
sin
(
k + 3

2

)
x− sin x

2

2 sin x
2

, k ∈ N.

Thus

| sinxψ(x)| �
n∑
k=1

|λk − λk+2|+ n|λn − λn+2|,

where a function ψ(x) is either f(x) or g(x).
Moreover, since {λn} ∈MRBSV S,

n|λn − λn+2| ≤ n
∞∑
k=n

|42λk +42λk+1| �
n∑
k=1

|λk − λk+2|,

and hence

| sinxψ(x)| �
n∑
k=1

|λk − λk+2|.(3.2)

According to Lemma 2.4, the condition (2.1) with |λν − λν+2| in place of aν is satisfied, and thus
we are ready to apply Lemma 2.2. Therefore, by (3.2), we obtain∫ π

0

γ(x)Φ(| sinxψ(x)|)dx�
∞∑
n=1

Φ

(
n∑
k=1

|λk − λk+2|

)∫ π/n

π/(n+1)

γ(x)dx�
∞∑
n=1

γn
n2

Φ

(
n∑
k=1

|λk − λk+2|

)

�
∞∑
n=1

Φ

(
2n−1∑
k=n

|λk − λk+2|

)
γn
n2

(
n

γn

∞∑
ν=n

γν
ν2

)p∗
,

where p∗ := max(1, p).
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Finally, by the assumption on {γn}, we get

n

γn

∞∑
ν=n

γν
ν2
� 1

which along with the above inequality immediately imply (3.1). The proof is completed. �

Theorem 3.2. Let Φ(x) ∈ 4(p, q), 0 ≤ q ≤ p. If λn ∈ MRBSV S and the sequence {γn} is
such that {γnn−(1+q)+ε} is almost decreasing for some ε > 0, then

∞∑
n=1

γn
n2+q

Φ

(
2n−1∑
k=n

k|λk − λk+2|

)
<∞ ⇒ sinxf(x) ∈ L(Φ, γ).(3.3)

Proof. Let x ∈
(

π
n+1 ,

π
n

]
. Then

2| sinxf(x)| ≤
n∑
k=1

(k + 1)x|λk − λk+2|+
∣∣∣∣ ∞∑
k=n+1

(λk − λk+2) sin(k + 1)x

∣∣∣∣
� x

n∑
k=1

k|λk − λk+2|+
∞∑
k=n

|42λk +42λk+1|
∣∣D̃∗k(x)

∣∣+ |λn − λn+2|
∣∣D̃∗n(x)

∣∣
� n−1

n∑
k=1

k|λk − λk+2|+
n−1∑
k=n

2

|λk − λk+2|+ n|λn − λn+2|

� n−1
n∑
k=1

k|λk − λk+2|.

(3.4)
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According to Lemmas 2.1, 2.2, 2.4, and the estimate (3.4), we have∫ π

0

γ(x)Φ(| sinxf(x)|)dx

�
∞∑
n=1

Φ

(
n−1

n∑
k=1

k|λk − λk+2|

)∫ π/n

π/(n+1)

γ(x)dx

�
∞∑
n=1

γn
n2+q

Φ

(
n∑
k=1

k|λk − λk+2|

)

�
∞∑
n=1

Φ

(
2n−1∑
k=n

k|λk − λk+2|

)
γn
n2+q

(
n1+q

γn

∞∑
ν=n

γν
ν2+q

)p∗
,

(3.5)

where p∗ := max(1, p).
By the assumption on {γn}, we get

n1+q

γn

∞∑
ν=n

γν
ν2+q

� 1,

and hence (3.5) takes this form∫ π

0

γ(x)Φ(| sinxf(x)|)dx�
∞∑
n=1

γn
n2+q

Φ

(
2n−1∑
k=n

k|λk − λk+2|

)
,

which proves (3.3). With this the proof of theorem is finished. �
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