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RECENT DEVELOPMENTS OF SCHWARZ’S TYPE TRACE
INEQUALITIES FOR OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

Communicated by D. S. Djordjevic¢

ABSTRACT. In this paper, we survey some recent trace inequalities for oper-
ators in Hilbert spaces that are connected to Schwarz’s, Buzano’s and Kato’s
inequalities and the reverses of Schwarz inequality known in the literature as
Cassels’ inequality and Shisha-Mond’s inequality. Applications for some func-
tionals that are naturally associated to some of these inequalities and for func-
tions of operators defined by power series are given. Examples for fundamental
functions such as the power, logarithmic, resolvent and exponential functions
are provided as well.

1. INTRODUCTION

Let (H,(-,-)) be a complex Hilbert space and {e;},.; an orthonormal basis of
H. We say that A € B(H) is a Hilbert-Schmidt operator if

> [l Aei]|* < oo (1.1)
el

It is well know that, if {e;},.; and {f;},., are orthonormal bases for H and

A € B(H) then
DollAed® =D IALIF =Y 1A A (1.2)

iel Jjel Jjel
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showing that the definition (1.1) is independent of the orthonormal basis and A
is a Hilbert-Schmidt operator if and only if A* is a Hilbert-Schmidt operator.
Let By (H) the set of Hilbert-Schmidt operators in B (H) . For A € By (H) we

define
1/2
| Al = (Z HAeiH2> (1.3)

i€l
for {e;},.; an orthonormal basis of H. This definition does not depend on the
choice of the orthonormal basis.

Using the triangle inequality in [ (), one checks that By (H) is a vector space
and that ||-||, is a norm on By (H), which is usually called in the literature as the
Hilbert-Schmaidt norm.

Denote the modulus of an operator A € B (H) by |A| := (A*A)"/2.

Because |||A| z|| = ||Az|| for all x € H, A is Hilbert-Schmidt if and only if |A|
is Hilbert-Schmidt and ||Al|, = |||A]]|,. From (1.2) we have that if A € By (H),
then A* € By (H) and || A, = |4,

The following theorem collects some of the most important properties of Hilbert-
Schmidt operators:

Theorem 1.1. We have
(1) (Bz(H),|||l,) is a Hilbert space with inner product

(A,B), = (Ae; Be;) =Y (B*Ae;.e;) (1.4)
iel iel
and the definition does not depend on the choice of the orthonormal basis {e;}
(i) We have the inequalities

icl’

[AIF < 11All (1.5)
for any A € By (H) and
ATl ITAlly < 1T 1A, (1.6)

forany A€ By (H) and T € B(H);
(111) By (H) is an operator ideal in B(H), i.e.
B(H)By(H)B(H)C B,y (H);
() Bpin (H), the space of operators of finite rank, is a dense subspace of
B, (H);
(v) By (H) C K (H), where K (H) denotes the algebra of compact operators on
H.

If {e;},.; an orthonormal basis of H, we say that A € B(H) is trace class if
Al = 3 (Al s, e5) < oo. (17)
iel
The definition of ||A||; does not depend on the choice of the orthonormal basis

e;}.... We denote by By (H) the set of trace class operators in B (H) .
el
The following proposition holds:
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Proposition 1.2. If A € B(H), then the following are equivalent:
(i) A€ By (H);
(ii) |Al'? € By (H) ;
(i) A (or |Al]) is the product of two elements of By (H) .
The following properties are also well known:

Theorem 1.3. With the above notations:
(i) We have
[l = 1A%, and [[A]l, < [lAll, (1.8)
for any A € By (H);
(ii) By (H) is an operator ideal in B (H), i.e.
B(H)B, (H)B(H)C By (H);
(11i) We have
By (H) By (H) = By (H) ;
(iv) We have
[A[l; = sup{[(A, B)y| | B € By (H), [|Blly <1};
(v) (B1 (H),|I|l;) is a Banach space.
(iv) We have the following isometric isomorphisms
B, (H)X K(H) and B, (H)" = B(H),
where K (H)" is the dual space of K (H) and By (H)" is the dual space of By (H) .

We define the trace of a trace class operator A € By (H) to be
tr(A) := Z (Ae;, e;) (1.9)
il
where {e;},.; an orthonormal basis of H. Note that this coincides with the usual
definition of the trace if H is finite-dimensional. We observe that the series (1.9)

converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 1.4. We have
(i) If A€ By (H) then A* € By (H) and

tr (A") =tr(A); (1.10)
(ii) If A€ By (H) and T € B(H), then AT, TA € By (H) and
tr (AT) = tr (T'A) and |tr (AT)| < || A|l, IT|l; (1.11)

(713) tr (+) is a bounded linear functional on By (H) with ||tr|| = 1;
(iv) If A, B € By (H) then AB, BA € By (H) and tr (AB) = tr (BA) ;
(v) Byin, (H) is a dense subspace of By (H).

Utilizing the trace notation we obviously have that
(A, B), = tr (B*A) = tr (AB*) and ||A|5 = tr (A*A) = tr (|A])
for any A, B € By (H).
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Now, for the finite dimensional case, it is well known that the trace functional
is submultiplicative, that is, for positive semidefinite matrices A and B in M, (C),

0 <tr(AB) <tr(A)tr(B).
Therefore
0 < tr(4¥) < [tr (A))",

where k is any positive integer.
In 2000, Yang [383] proved a matrix trace inequality

tr [(AB)*] < (trA)*(trB)*, (1.12)

where A and B are positive semidefinite matrices over C of the same order n and
k is any positive integer. For related works the reader can refer to [18], [19], [70]
and [85], which are continuations of the work of Bellman [6].

If (H, (-,-)) is a separable infinite-dimensional Hilbert space then the inequality
(1.12) is also valid for any positive operators A, B € By (H). This result was
obtained by L. Liu in 2007, see [59].

In 2001, Yang et al. [34] improved (1.12) as follows:

1/2

tr[(AB)™] < [tr (A*™) tr (B>™)] 7, (1.13)

where A and B are positive semidefinite matrices over C of the same order and
m is any positive integer.

In [75] the authors have proved many trace inequalities for sums and products
of matrices. For instance, if A and B are positive semidefinite matrices in M, (C)
then

tr [(AB)*] < min {||A||ktr (B, |B]|* tr (Ak)} (1.14)

for any positive integer k. Also, if A, B € M, (C) then for r > 1 and p, ¢ > 1
with i + 5 = 1 we have the following Young type inequality

tr (|[AB*|") < tr [(%—F@)T]. (1.15)

Ando [4] proved a very strong form of Young’s inequality - it was shown that if
A and B are in M,,(C), then there is a unitary matriz U such that

1 1
4B <U (1P -+ 2 1BI7) 0,
p q
where p, ¢ > 1 with é + é = 1, which immediately gives the trace inequality
1 1
tr (|[AB*]) < —tr (JA|") + —tr (| B|?). (1.16)
p q

This inequality can also be obtained from (1.15) by taking r = 1.
Another Hélder type inequality has been proved by Manjegani in [68] and can
be stated as follows:

tr(AB) < [tr(AP)]"? [tr(B9)]", (1.17)

where p, ¢ > 1 with }—17 + % =1 and A and B are positive semidefinite matrices.
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For the theory of trace functionals and their applications the reader is referred
to [77].

For other trace inequalities see [7], [18], [41], [33], [51], [58], [74] and [30].

In this paper we survey some recent trace inequalities obtained by the author
for operators in Hilbert spaces that are connected to Schwarz’s, Buzano’s and
Kato’s inequalities and the reverses of Schwarz inequality known in the litera-
ture as Cassels’ inequality and Shisha—Mond’s inequality. Applications for some
functionals that are naturally associated to some of these inequalities and for
functions of operators defined by power series are given. Examples for fundamen-
tal functions such as the power, logarithmic, resolvent and exponential functions
are provided as well.

Although some of these inequalities have been established for the general con-
cept of positive linear map instead of trace, we would like to state them in this
survey for trace to unify our approach to trace inequalities.

For Griiss’ type inequalities for positive maps, see [5], [65] and [71]. For Cassels,
Diaz—Metcalf and Shisha—Mond type inequalities, see [69]. For other inequalities
for positive maps see [8], [9], [17], [78] and [86].

For trace inequalities for Hilbert space operators that appeared in information
theory and quantum information theory we refer to [20], [42], [67] and [82].

2. SCHWARZ TYPE TRACE INEQUALITIES

2.1. Some Trace Inequalities Via Hermitian Forms. Let P a selfadjoint
operator with P > 0. For A € B, (H) and {e;},.; an orthonormal basis of H we
have
A5 p == tr (APA) = Y (PAe;, Aei) < ||| Y | Aeil|* = [P All;
iel icl
which shows that (-, -), , defined by

(A,B),p:=tr(B"PA) =Y (PAe;,Be;) =Y (B*PAe;,e;)
iel i€l
is a nonnegative Hermitian form on By (H), i.e. (-,-), p satisfies the properties:
(h) (A, A)y p >0 for any A € By (H);
(hh) (-, )y p is linear in the first variable;
(hhh) (B, A), p = (A, B), p for any A, B € By (H).
Using the properties of the trace we also have the following representations

JAZ 5 = tr (P|A'P) = tr (A7 P)
and
(A, B)y p :=1tr (PAB") = tr (AB"P) = tr (B*PA)
for any A, B € By (H).
We start with the following result:

Theorem 2.1 (Dragomir, 2014, [35]). Let P a selfadjoint operator with P > 0,
i.e. (Px,x) >0 for any x € H.
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(i) For any A, B € By (H)

|tr (PAB")[> < tr (P |A*]") tr (P |B*[?) (2.1)
and
[tr (P |A*?) + 2Retr (PAB") + tr (P |B**)] (2.2)
< [ir (PIAP)] " + [ex (PIBT)]
(ii) For any A, B, C € By (H)
|tr (PAB*) tr (P|C*[?) — tr (PAC*) tr (PCB")|” (2.3)
< [tr (P|A]*) tr (P|C*?) — |tr (PAC™)[?]

x [tr (P|B**) tr (P|C*[") — [tr (PBCT)[T]

ltr (PAB*)|tr (P |C*]?) (2.4)

< |tr (PAB*) tr (P|C*|*) — tr (PAC™) tr (PCB”)
< [ (1A )] [te (P1B71)] Pt (PIC)
and
ltr (PAC™) tr (PCB")| (2.5)

+ [tr (PAC™) tr (PCB")|

< % [[tr (P|A*|2)}1/2 [tr (P!B*|2)}1/2 n |tr(PAB*)|} tr (P\C*F).

Proof. (i) Making use of the Schwarz inequality for the nonnegative hermitian
form (-, -), p we have

2
(A B)yp| (4,4, (B, B),

for any A, B € By (H) and the inequality (2.1) is proved.

We observe that |||, 5 is a seminorm on By (H) and by the triangle inequality
we have

A+ Bllyp < [|Allyp + [ Blly.p

for any A, B € By (H) and the inequality (2.2) is proved.

(ii) Let C' € By (H), C # 0. Define the mapping [+, -]y p o : Ba (H)x By (H) — C
by

[A, B]Q,P,C = (4, B>2,P ||C||§,P — (4, C>2,P (C, B>2,P'

Observe that [, -], p is a nonnegative Hermitian form on B, (H) and by Schwarz
inequality we have

(A, By p IC13 p = (A, Chy o (C By (2.6)

‘ 2

2 2 2 2 2
< |11 et - [t 00| | (1B 1CIE - - (8.0,

for any A, B € By (H), which proves (2.3).
The case C' = 0 is obvious.

]
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Utilizing the elementary inequality for real numbers m, n, p, g

(m? —n?) (0* — ¢*) < (mp —ng)?,

we can easily see that

2 2 2 2 2
AL 118 = | (A o | (1518 0 1€ 5~ [eB,C0,

< (141, 181 N1 = (4. € ] | (B.C])

for any A, B, C € By (H).
Since, by Schwarz’s inequality we have

2} (2.7a)

Al e 2 (4, €,

and
1Bly,p IC s p > |(B,C)s ]

then by multiplying these inequalities we have
|41l 1Bl IC1 0 = [(A,Ca | [(B. O

for any A, B, C € By (H).
Utilizing the inequalities (2.6) and (2.7a) and taking the square root we get

(A4, B p ICI3 = (A4, Chy p (C, By (2.8)
< Al 1Bllap €15 5 = [(4, Y, | | (B o

for any A, B, C' € By (H), which proves the second inequality in (2.4).
The first inequality is obvious by the modulus properties.
By the triangle inequality for modulus we also have

(A,C), p (B p| = (A By | IS (2.9)
< (4 By p €I = (A4, )y p (C. By

for any A, B, C € By (H).
On making use of (2.8) and (2.9) we have

(A, C)op (C.B)p| = [(A By | IS
< Al p 1Bl ICI = (A, Chy | | (B, .

which is equivalent to the desired inequality (2.5). O

Remark 2.2. By the triangle inequality for the hermitian form [+, -], p o : By (H) X
BQ (H) — (C,

[A, B]Z,P,C = (4, B>2,P HCHS,P — (4, C>2,P (C, B>2,P
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we get

o 1/2
(14 BIE A 1C1 .~ [ta-+ B0, )
o 1/2 o 1/2
2 2 2 2
< (Mo 101, = [l )+ (1B 11~ 5.0 )
which can be written as

(i [P1(A+ B F] tr (PIC) — fix [P (A + B) C*]|2)1/2 (2.10)

1/2

< (tr (P|A*]%) tr (P|C*[?) — [tx (PAC™)[?)
+ (tr (P|B*]*) tr (P|C*?) — |tx (PBC™)[?)
forany A, B, C € By (H).
Remark 2.3. If we take B = AC' in (2.10), then we get
0<tr [p (A + Ac)ﬂ tr (P |C*?) = [t [P (A+ AC) C*? (2.11)
< tr (P|AP) tr (PIC*) - [tr (C"PA)P
forany A€ Cand A, C € By (H).

Therefore, we have the bound

sup {tr [P (A + AC)ﬂ tr (P|C*?) = |tr [P (A+ AC) c*]ﬁ} (2.12)

=tr (P |A*|2) tr (P \C*\Q) — |tr (PAC)|?.
We also have the inequalities
0< tr [P (A< O)ﬂ tr (P|C*?) = |tr [P (A C) C"]? (2.13)
<tr (P|A*]?) tr (P|C*?) — [tr (PAC™)|?
for any A, C' € By (H).

Remark 2.4. We observe that, by replacing A* by A and B* by B etc above, we
can get the dual inequalities, like, for instance

ltr (PA*C) tr (PC*B))| (2.14)

1/2

< % “tr (P\A’2)}1/2 [tr (P|B|2)}1/2 n |tr(PA*B)|} tr (P|C’|2) ’
that holds for any A, B, C' € By (H) .

This is an operator version of Buzano’s inequality in inner product spaces,
namely

[{z, ) (e, )| < 5 [zl [yl + [{z, »)l] (2.15)

for x, y, e € H with |le|]| = 1.
Since

ltr (PA*C)| = ‘tr(PA*C’)’ = [tr [(PA*C)Y]| = [tr (C*AP)| = |tr (PC*A)] |

N —
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tr (PC*B)| = |tr (PB*C)|
and

[tr (PA*B)| = |tr (PB*A)|
then the inequality (2.14) can be also written as

tr (PC*A) tr (PB*C)| (2.16)

< & [l (P1APY o (P1BI)] Y + lir (PBA) ] i (PICP)

that holds for any A, B,C € By (H).
If we take in (2.16) B = A* then we get the following inequality

[tr (PC*A) tr (PAC)| (2.17)
< % [[tr (P‘A|2)}1/2 [tr (P‘A*|2)}1/2 I ‘tr (PAQ)‘] tr (P ]C’|2) :

forany A, B,C € By (H).
If A is a normal operator, i.e. |A]* =|A*|° then we have from (2.17) that

tr (PC*A) tr (PAC)| < % [tr (P|A]?) + [t (PA?)|] tr (P|CT%), (2.18)
In particular, if C' is selfadjoint and C' € By (H), then
0 (PAC)? < ¢ [ix (PIAP) + |ix (PA)[] r (PC?), (2.19)

for any A € By (H) a normal operator.

We notice that (2.19) is a trace operator version of de Bruijn inequality obtained
in 1960 in [10], which gives the following refinement of the Cauchy—Bunyakovsky—
Schwarz inequality:

2
Zaizi < §Zai [Z 2|+ ZZz ] : (2.20)
i=1 =1 i=1 i=1
provided that a; are real numbers while z; are complex for each i € {1,--- ,n}.

We notice that, if P € By (H), P>0and A, B € B(H), then
(A, B)y p = tr (PAB") = tr (AB"P) = tr (B*PA)

is a nonnegative Hermitian form on B (H) and all the inequalities above will hold
for A, B, C' € B(H). The details are left to the reader.

2.2. Some Functional Properties. We consider now the convex cone B, (H)
of nonnegative operators on the complex Hilbert space H and, for A, B € B, (H)
define the functional o4 5 : By (H) — [0,00) by

oap (P) = [tr (PIA?)]Y [tr (P|B)]" = [tr (PA*B)| (> 0).  (2.21)

The following theorem collects some fundamental properties of this functional.
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Theorem 2.5 (Dragomir, 2014, [35]). Let A, B € By (H).
(i) For any P, Q € By (H)

oaB(P+Q)20ap(P)+0a5(Q)(=0) (2.22)

;namely, o4 p s a superadditive functional on By (H);

(1t) For any P, Q € By (H) with P > Q
oap(P)>04p(Q)(>0), (2.23)

namely, o4 p is a monotonic nondecreasing functional on By (H);
(i) If P, Q € By (H) and there exist the constants M > m > 0 such that
MQ > P > mQ then

MO'A7B (Q) ZUA,B (P) 2m0A7B (Q) (Z 0) (224)

Proof. (i) Let P, Q € By (H). On utilizing the elementary inequality
(a® + 192)1/2 (¢ + d2)1/2 > ac+ bd, a,b,c,d >0
and the triangle inequality for the modulus, we have

oap(P+Q)

= [t ((P+Q)1AP)] " [ (P +@Q)1BP)]"” ~ |tr (P + Q) A"B)|

= [tr (PIA + QAP [ (P|BI* + Q|BI)]
— |tr (PA*B + QA*B)|

= [tr (PIAP?) + & (Q|A*)]Y” [tr (P|BP) + tx (Q|B[?)]
— |tr (PA*B) + tr (QA*B)|

> [or (P1AP)] [t (P1BP)] " + [ix (Q14P)] 7 [t (Q1BP))]
— |tr (PA"B)| — |tr (QA"B)|

=045 (P)+o0ap(Q)

1/2

1/2

and the inequality (2.22) is proved.
(i) Let P, Q € B, (H) with P > Q. Utilizing the superadditivity property we
have

oa(P)=0a(P—Q)+Q)>0ap(P—Q)+0ap(Q)>045(Q)

and the inequality (2.23) is obtained.
(iii) From the monotonicity property we have

oaB(P)>0ap(mQ)=moap(Q)

and a similar inequality for M, which prove the desired result (2.24). O
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Corollary 2.6. Let A, B € By (H) and P € B(H) such that there exist the
constants M > m > 0 with M1g > P > mlyg. Then

a (e (142)] " [er (1B17)] 7 = o (4°B))) (2.25)
> [tr (P1AP)] " [tr (PB?)]" — |tr (PA°B)|
> m ([or (j4)]" [or (1B)] = lex (4°B)] ).
Let P =|V|> with V € B(H).If A, B € B, (H) then
oan (V) =[x (VP 1AP)]" [t (VI 1B)]" = |er (VI 4°B)|
= [tr (VVA* A2 [tr (V*VB*B)]"? — |tr (V*VA*B)|
= [tr (VA* AV Y2 [tr (VB*BV*)]Y? — |tr (VA*BV*)|
= [tr ((AV*)" AV [t (BV*)" BV)]"? = [t ((AV*)" BVY))
= [t (JAV* )] [ (1BV*2)] — Jor AV BV

On utilizing the property (2.22) for P = |V[*, Q = |U|* with V, U € B(H),
then we have for any A, B € By (H) the following trace inequality

[tr (JAV*)? + |AU* )] [ 1BV + |BU* )]
~ltr ((AV*)* BV* + (AU*)* BU*)|
> [tr (JAV* )] [t 1BV )] = [t ((AV)* BV
+ [t (JAU* )] [t (1BU* )] M2 = Jtx ((AU*)* BU™)| (> 0).

Also, if |V[> > |U|* with V, U € B(H), then we have for any A, B € B, (H)
that

[t (|AV* )] [er (1BV*H)]Y? = [t ((AV*)" BV (2.27)
> [er (|40 )] [or (1BU* )]V = Jer ((AU*)” BUY)| (2 0).
If U € B(H) is invertible, then

1/2

(2.26)

1
o [zl < [Uz]] < |U][||=] for any = € H,

which implies that
1
Ly < U < U 1

(12|
By making use of (2.25) we have the following trace inequality
1/2 1/2 .
Joi ([er (4] e 1BP)] = lex (4*B) ) (2.28)

> [or (AU )] [or (1BU"P)] 7 = e ((AU)* BU")
(o (14P)]"* [er (1B17)] 7 = o (4 B)1)

o1
— —1112
1Tl
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for any A, B € By (H).
Similar results may be stated for P € By (H), P > 0and A, B € B(H). The
details are omitted.

2.3. Inequalities for Sequences of Operators. For n > 2, define the Carte-
sian products B™ (H) := B(H) x -+ x B(H), B{") (H) := By (H) x -+ - x By (H)
and Bf) (H) := By (H)x---x B, (H) where B, (H) denotes the convex cone of

nonnegative selfadjoint operators on H, i.e. P € By (H) if (Pz,z) > 0 for any
r € H.

Proposition 2.7 (Dragomir, 2014, [35]). Let P = (P, -+, P,) € Bsrn) (H) and
A= (A, A),B=(By,-,B,) € B (H) andz = (21, ,z,) € C" with
n > 2. Then

k=1

2 n n
< tr (Z 2| Ps |Ak|2> tr (Z 2| P |Bk|2> . (2.29)
k=1

k=1

Proof. Using the properties of modulus and the inequality (2.1) we have

k=1

n

Z ZktI" (PkAsz)

k=1

<> Jzl [tr (PLA;By)|
k=1

<37 el [t (P |A4P)] 7 i (B 1BUP)] 2.

Utilizing the weighted discrete Cauchy—-Bunyakovsky—-Schwarz inequality we also
have

Szl [or (Pl Ak®)]? [ox (P 1 Bof?)]
k=1
1/2

IA

n 1/ 2 V2 1/2 2
z_: EA ([tr (Pk |Ak|2)} / > > (Z: |2k <[tr (Pk |Bk|2>} / > )
. 12 ;. 1/2

n 1/2 n 1/2
= [t <Z|zk|Pk|Ak|2>) (tr (Z\zkmk\BkF)) :
k=1 k=1

which is equivalent to the desired result (2.29). O
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We consider the functional for n-tuples of nonnegative operators as follows:

n 1/2 n 1/2
oag (P):= |tr (Z P, |Ak|2) [tr (Z P, |Bk|2> (2.30)
k=1 k=1
— |tr (Z PkA;;Bk> ‘ .
k=1
Utilizing a similar argument to the one in Theorem 2.5 we can state:
Proposition 2.8. Let A = (Ay,--- ,A,), B=(By,---,B,) € B;") (H).
(i) For any P, Q € Bf) (H)
oaB(P+Q)=0an(P)+0oap(Q)(=0), (2.31)

namely, oa B s a superadditive functional on Bf) (H);
(i) For any P, Q € B(f) (H) with P > Q, namely P, > Q for all k €
1, ,n}

oaB(P)>0aB(Q)(>0), (2.32)

namely, oa B s a monotonic nondecreasing functional on Bf) (H);

(i) If P, Q € B(f) (H) and there exist the constants M > m > 0 such that
MQ > P >mQ then

Moag(Q) > oan (P) > moas (Q)(>0). (2.33)

If P=(pily, - ,paly) with pp > 0, &k € {1,--- ,n} then the functional of
nonnegative weights p = (p1,- -+, p,) defined by

1/2 n
k=1

1/2

(2.34)

oaB(P) = [tr (Zpk |Ak|2>
k=1

tr <Z pkAZBk>
k=1

has the same properties as in (2.31)-(2.33).
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Moreover, we have the simple bounds:

n 1/2 n
tr (Z |Ak\2> [tr (Z |Bk|2>
k=1 k=1
—|tr (Z A;;Bk> }
k=1
n 1/2 n 1/2
k=1 k=1
n 1/2
' t A2 t
- iy o0 { [ (E00)] o

— |tr <i A]:Bk>
k=1

2.4. Inequalities for Power Series of Operators. Denote by:

1/2

max {pk} (2.35)

ke{l,-

Vv

k=1
)

1/2

\Y%
z
=

NNgE
]

z € C:|z|] < R}, if R < oo
po.py = { fECFSR Rl

and consider the functions:
A= f(A): D(0,R) — C, f(A Zam

and

[e.o]

A fa(A) 1 D(0,R) = C, fa(A) = |an| A",

n=0

As some natural examples that are useful for applications, we can point out
that, if

1
"= Ae D(0,1); 2.36
. e AeDO.D); (236)

g () :Z (=1) A" =cos\, A € C;

“— (2n)!
h(X) = z%ﬁ)\%“ =sin\, A € C;
l(A):Z(—l)”)\":H%, Ae D(0,1);
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then the corresponding functions constructed by the use of the absolute values of
the coefficients are

<1 1

= —\" = Ae D(0,1 2.37
Zn —— AeD(0,1); (237)
:Z " =cosh A\, \ € C;

nO

e}

Z B +1 )\2”“—smh>\ )€ C;
n

o0

Z =1 A E€DO.1).

=0

Other important examples of functions as power series representations with non-
negative coefficients are:

o0

1
exp (\) = Z a)\” AeC, (2.38)
n=0

1, [(14+A =1
“ln(—= ) =) ——a! D(0,1);
2“(1—A) ZQn—l/\  AEDO);

)\2"+1 Ae D(0,1);
Z\/— 2n+1 ’ € (07 )7

1
tanh~ (A)—Zzn_lw ! AeD(0,1)

n=1

L+ )T+ (),
Fi @800 = G T ) 70

AeD(0,1);

where I' is Gamma function.

Proposition 2.9 (Dragomir, 2014, [35]). Let f(\) = Y .~ anA" be a power
series with complex coefficients and convergent on the open disk D (0, R), R > 0.
If (H,(-,-)) is a separable infinite-dimensional Hilbert space and A, B € By (H)

are positive operators with tr (A), tr (B) < RY?, then

ltr (f (AB))[® < f2 (trAtrB) < f, ((trA)?) fa ((rB)?). (2.39)
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Proof. By the inequality (1.12) for the positive operators A, B € B, (H) we have

tr [Z ag( AB Zaktr AB
<Z|ak|‘tr [(AB)* ‘—Z|ak|tr [(AB)"]

(2.40)

k=0
< Z|Ozk| (trA)*(trB)F Z|ak| (trAtrB)F.
k=0 k=0

Utilizing the weighted Cauchy-Bunyakovsky—Schwarz inequality for sums we have

1/2

/2 s,
Zyak\ (trA)*(trB)* (Zyak\ trA)> (Z\@k\(trB)%) . (2.41)

Then by (2.40) and (2.41) we have

tr [Zn: ar(AB)*

3

(2.42)

> Jo| (trAtrB)*
k=0

n n

< S o [0S ] [(60B)%])"

for n > 1.
Since 0 < tr (A),tr (B) < RY2, the numerical series

Z\akl (trAtrB)* Z |a| [(trA)? " and Z|ak\ (trB) }

k=0 k=0

are convergent.

Also, since 0 < tr(AB) < tr (A) tr (B) < R, the operator series Y ;- ay(AB)*
is convergent in By (H) .

Letting n — oo in (2.42) and utilizing the continuity property of tr(-) on
B, (H) we get the desired result (2.39). O

Example 2.10. a) If we take in (2.39) f(A) = (1= X)"", |A| < 1 then we get the
inequality

ltr (1 £ AB) D[P < (1 = (trA)?) " (1= (0B)?) (2.43)

for any A, B € B, (H) positive operators with tr (A4), tr (B) < 1.
b) If we take in (2.39) f(A\) =In(1£X)"", |A| < 1, then we get the inequality

ltr (In (17 £ AB)™)|” <In (1 = (tr4)?) 'In (1= (xB)?) (2.44)
for any A, B € By (H) positive operators with tr (A), tr (B) < 1.

We have the following result as well:



RECENT DEVELOPMENTS OF SCHWARZ’S TYPE TRACE INEQUALITIES 31

Theorem 2.11 (Dragomir, 2014, [35]). Let f(A\) := >~ a, A" be a power series
with complex coefficients and convergent on the open disk D (0, R), R > 0. If A,
B € By (H) are normal operators with A*B = BA* and tr (|A[2) , tr (\B[Q) <R

then the inequality

ltr (f (A"B))|* < tr (fa (JA]%)) tr (f. (I1B%)) - (2.45)
Proof. From the inequality (2.29) we have

tr (Zak(A*)kBk> < tr (Z]akHAk )tr <Z]akHBk> (2.46)

Since A, B are normal operators, then we have ‘A’“| = |A]* and }Bk‘ = |BI**
for any k > 0. Also, since A*B = BA* then we also have (4*)* B¥ = (A*B)" for
any k > 0.

Due to the fact that A, B € By (H) and tr (|A|2) , tr (|B|2) < R, it follows that
tr (A*B) < R and the operator series

> ap (AB)", > ol |AP* and Y |ew | BI*
k=0 k=0 k=0

are convergent in the Banach space By (H).
Taking the limit over n — oo in (2.46) and using the continuity of the tr (-) on
B (H) we deduce the desired result (2.45). O

Example 2.12. a) If we take in (2.45) f(A\) = (1= X)~", |\| < 1 then we get the
inequality

for (L = A B) ) <or (1= 14P) ) e (1= 1B7) ) (2.47)
for any A, B € By (H) normal operators with A*B = BA* and tr (|A|2),
tr (|1BI*) < 1.

b) If we take in (2.45) f(A) = exp (A), A € C then we get the inequality

ltr (exp (A*B))|” < tr (exp (\A[Z)) tr (exp (]B\Q)) (2.48)
for any A, B € B,y (H) normal operators with A*B = BA*.
Theorem 2.13 (Dragomir, 2014, [35]). Let f(z) := Y 2 p;z’ and g(2) =
Z;io q;77 be two power series with nonnegative coefficients and convergent on the
open disk D (0,R), R> 0. If T and V' are two normal and commuting operators
from By (H) with tr (|T|2) tr (|V|2) < R, then
[or (7 (TP) + 9 ()] o (7 (V) + 9 (V)] (2.49)
—[tr (f (T"V) + g (T*V))]
> [or (7 (I71%)] " [ fir(r (v VN = o (F (V)
+ [t (g (7)) e (9 (IVP))]* = e (9 (T VDI (2 0).
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Moreover, if p; > q; for any j € N, then, with the above assumptions on T and
V.

[tr (£ (TP)] [tr (F (VD] = e (f (T5V))) (2.50)

> [tx (g (1)) [ir (o (V)] = lix (g TV (= 0).
Proof. Utilizing the superadditivity property of the functional oa g (-) above as a

function of weights p and the fact that 7" and V' are two normal and commuting
operators we can state that

ltr (Zn: (P + qx) |T‘2k>

1/2 1/2

(2.51)

k=0

tr (Z (pr + ar) (T*V)k>

k=0

k=0

tr (Zn: (. + qx) |V|2k>

n 1/2 n 1/2 n
> |tr (Zpk ‘T|2k> tr (Zpk |V‘2k> —|tr (Zpk (T*V)k>
k=0 k=0 k=0
n 1/2 n 1/2 n
+ | tr (Z k |T|2k> ltr (Z qk |V|2k> — |tr (Z qk (T*V)k>
k=0 k=0 k=0
for any n > 1.

Since all the series whose partial sums are involved in (2.51) are convergent in
By (H), by letting n — oo in (2.51) we get (2.49).

The inequality (2.50) follows by the monotonicity property of oa g (-) and the
details are omitted. O

Example 2.14. Now, observe that if we take

. 1
f(A) =sinh A=) ———_ )\
—~ (2n+1)!

and
- 1 2n
g(\) =cosh A = nz%w)\ ,
then
[o.¢] 1 .
F+g) =expA=2 —)
n=0
for any A € C.

If T"and V are two normal and commuting operators from By (H), then by
(2.11)

[tr (exp (IT2))] " [tr (exp (V)] = [tx (exp (T7V))] (2.52)
> [tr (sinh (|T1))]"* [tx (sinh ([V]?))] "% = [tx (sinh (T7V))]
+ [tr (cosh (]T\2))]1/2 [tr (cosh (]V]z))}l/z — |tr (cosh (T*V))| (> 0).
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Now, consider the series 5 = > 02 (A", A € D(0,1) and In 15 = 07 | LA™,

A€ D(0,1) and define p, =1, n >0, go = 0, ¢, = £, n > 1, then we observe
that for any n > 0, p, > ¢,.
If T"and V' are two normal and commuting operators from By (H) with tr (\T \2) ,

tr (|V|*) < 1, then by (2.12)

i (= 1) )] Jor (= v )] 2.53)

—Jtr ((1yg —T*V) ™)

> [tr <1n (1 — \T|2)71>} v [tr (ln (1 — ]V|2)71>]

— |tr (In (15 — T*V)71)| (>0).

1/2

2.5. Inequalities for Matrices. We have the following result for matrices.

Proposition 2.15 (Dragomir, 2014, [35]). Let f(\) := > "2 o, A" be a power

n

series with complex coefficients and convergent on the open disk D (0, R), R > 0.
If A and B are positive semidefinite matrices in M, (C) with tr (A?), tr (B?) < R,
then the inequality

tr [f(AB)]” < tr [fa (A%)] tr [f. (BY)]. (2.54)
Iftr (A), tr (B) < VR, then also

[tr [f(AB)]| < min {tr (fa (|[All B)), tr (fa (I B]| A))} - (2.55)

Proof. We observe that (1.13) holds for m = 0 with equality.
By utilizing the generalized triangle inequality for the modulus and the in-
equality (1.13) we have

(2.56)

= laal tr[(ABY] < D Jon [ir (4°7)] [ (8],

for any m > 1.
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Applying the weighted Cauchy—Bunyakowsky—Schwarz discrete inequality we

also have
m

S fea] for (427)]2 e (B2)] 2 (2.57)

n=0

< (2l (1 <A2">J”2)2) ) (z el ([ <B%>J”2)2)
_ z aal [ <A2">}) N (z aal [ <B2">}) :

for any m > 1.
Therefore, by (2.56) and (2.57) we get

1/2

m 2 m m
tr| Y a,(AB)"|| <tr (Z ]an|A2”> tr (Z || BZ”> (2.58)
n=0 n=0 n=0

for any m > 1.
Since tr (A2) ,tr (B?) < R, then tr (AB) < y/tr (A2) tr (B2?) < R and the series

> an(AB)", > || A and Y |ay,| B>
n=0 n=0 n=0
are convergent in M, (C).
Taking the limit over m — oo in (2.58) and utilizing the continuity property
of tr (-) on M, (C) we get (2.54).
The inequality (2.55) follows from (1.14) in a similar way and the details are

omitted. 0
Example 2.16. a) If we take f(\) = (1 £ )", |A| < 1 then we get the inequality
Jor (1 = AB) ] < e [ (1, — 4%) e [ (1 - B3] (2.59)

for any A and B positive semidefinite matrices in M,, (C) with tr (4%) , tr (B?) < 1.
Here I, is the identity matrix in M, (C).
We also have the inequality
|tr [(Z, = AB)™"]| < min {tr ((I, — || Al B Y, tr (L, — B A} (2.60)
for any A and B positive semidefinite matrices in M, (C) with tr (A), tr (B) < 1.
b) If we take f(\) = exp A\, then
(tr [exp(AB)])* < tr [exp (A?)] tr [exp (B?)] (2.61)
and
tr [exp(AB)] < min {tr (exp ([[A]| B)) , tr (exp ([| B|| A))} (2.62)
for any A and B positive semidefinite matrices in M, (C).
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Proposition 2.17 (Dragomir, 2014, [35]). Let f(X) = > 2, a,A" be a power

n

series with complez coefficients and convergent on the open disk D (0, R), R > 0.

If A and B are matrices in M, (C) with tr (|[A]"), tr (|B|?) < R, where p, ¢ > 1
with Il) + % =1, then

(£ (A < 1w |, (‘ATH%)] (2.63)

1 P l q
< o [ﬁa(w )+ 2108 >} |

Proof. The inequality (1.15) holds with equality for r = 0.
By utilizing the generalized triangle inequality for the modulus and the in-
equality (1.15) we have

(Z a, | AB| )

m

> antr (|AB*|")

n=0

(2.64)

foranyleandp,q>1with%+%:1.
It is know that if f : [0,00) — R is a convex function, then trf (-) is convex
on the cone M’ (C) of positive semidefinite matrices in M, (C). Therefore, for

n > 1 we have
AP |B|Q)”} PR T
tr —_t — < —tr AP + Ztr (| B¢ 2.65
Kp q L (147" + o (B (2.65)

Wherep,q>1with%+%:1.

The inequality reduces to equality if n = 0.
Then we have

S ot [ (B4 BEY ] < S ol [Jont1ay + Secmm)] - 2o
—u [1 > foall A+ 23 ol 151"

p n=0

foranyleandp,q>1with%+%:1.
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From (2.64) and (2.66) we get

m [ m AP (Bl9\™
tr (zant*y) <t | Ja (%+u)
n=0 Ln=0

: (2.67)

1 & Ll — .
<tr| =3 Janl [AP" 4 = ol B
_p n=0 qnzO

foranyleandp,q>1with%+%:1.

Since tr (JA"), tr (|B]?) < R, then all the series whose partial sums are involved
in (2.67) are convergent, then by letting m — oo in (2.67) we deduce the desired
inequality (2.63). O

Example 2.18. a) If we take f(A\) = (1= X)~", |\] < 1 then we get the inequal-

ities
tr (I, £ [AB*)7Y)| < & ([In — (ﬁ + E)] 1) (2.68)

p q

1 1
< tr|=(I,— AP+ = In—Bq_l],
{p( AP+ (1 - 1B

where A and B are matrices in M, (C) with tr (JA|"), tr (|B]?) < 1 and p,q > 1
with  + 2 = 1.
b) If we take f(\) = exp A\, then

tr (exp (|JAB*|)) < tr {exp (% + %)} (2.69)

1 1
- L; exp (|AP) +5exp<rB\q>] ,

where A and B are matrices in M, (C) and p,q > 1 with i + % =1.

Finally, we can state the following result:

Proposition 2.19 (Dragomir, 2014, [35]). Let f(X) := > 2, a,A" be a power

series with complez coefficients and convergent on the open disk D (0, R), R > 0.

If A and B are commuting positive semidefinite matrices in M, (C) with tr (AP),
tr (BY) < R, where p, ¢ > 1 with ]lj + é =1, then

o (f (AB))] < [ox(fa (A7) ox(fa (B (2.70)

Proof. Since A and B are commuting positive semidefinite matrices in M, (C),
then by (1.17) we have for any natural number n including n = 0 that

tr((AB)") = tr(A"B") < [tr(A™)]"? [tx(B")]"/*, (2.71)

Wherep,q>1with}—17—|—%:1.
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By (2.71) and the weighted Holder discrete inequality we have

tr (i ay, (AB)")

<3 Ja| Jtr(A"B")|

n=0

i": aptr(A"B")

n=0

<>l [ox(A™)] 7 [oe(B)]

" /p / m 1/q
:< |an|tr(A”p)) (Zmnltr(B”q))

n

m 1/p m 1/q
- (tr@ o A”p)) (mz al BW))

Wherep,q>1with%+%:1.
The proof follows now in a similar way with the ones from above and the details

are omitted. O
Example 2.20. a) If we take f()\) = (1£ )", |A| < 1 then we get the inequality
ltr (L, £ AB) ™| < [te((I, — A" O] [te((L, — BY™H]Y", (272)

for any A and B commuting positive semidefinite matrices in M,, (C) with tr (A?),
tr (BY) < 1, where p, ¢ > 1 with %—i_ %1 =1.
b) If we take f(\) = exp A, then
tr (exp (AB)) < [tx(exp (A7)]'77 [tr(exp (B)]"" (2.73)
for any A and B commuting positive semidefinite matrices in M,, (C) and p, ¢ > 1

: 1 1 _

3. KATO’S TYPE TRACE INEQUALITIES

3.1. Kato’s Inequality. We denote by B (H) the Banach algebra of all bounded
linear operators on a complex Hilbert space (H; (-, -)) .

If P is a positive selfadjoint operator on H, i.e. (Pz,z) > 0 for any = € H,
then the following inequality is a generalization of the Schwarz inequality in H

(Pz,y)|* < (Px,2) (Py.y), (3.1)

for any x,y € H.
The following inequality is of interest as well, see [56, p. 221].
Let P be a positive selfadjoint operator on H. Then

|P||* < ||P|| (P, ) (3.2)
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for any x € H.

The “square root” of a positive bounded selfadjoint operator on H can be
defined as follows, see for instance [56, p. 240]: If the operator A € B(H) is
selfadjoint and positive, then there exists a unique positive selfadjoint operator
B:=+/Ac B(H) such that B> = A. If A is invertible, then so is B.

If A€ B(H), then the operator A*A is selfadjoint and positive. Define the
“absolute value” operator by |A| := v A*A.

In 1952, Kato [57] proved the following celebrated generalization of Schwarz
inequality for any bounded linear operator T on H:

(T, )" < (T°T)" ,2) (TT) "y, y), (3-3)

for any z, y € H, a € [0, 1]. Utilizing the modulus notation introduced before,
we can write (3.3) as follows

[(Ta,y) < (T 2,2) (T yy) (3.4)

for any x, y € H, « € [0,1].
It is useful to observe that, if 7' = N, a normal operator, i.e., we recall that
NN* = N*N, then the inequality (3.4) can be written as

[(Na,y) P < (NP a2) (INFO g), (3.5)
and in particular, for selfadjoint operators A we can state it as
[(Az, )| < A" 2| |||A]" ]| (3.6)

for any z, y € H, a € [0, 1].
If T'= U, a unitary operator, i.e., we recall that UU* = U*U = 1y, then the
inequality (3.4) becomes

(U, y)| < =] |yl
for any x,y € H, which provides a natural generalization for the Schwarz inequal-
ity in H.
The symmetric powers in the inequalities above are natural to be considered,
so if we choose in (3.4), (3.5) and in (3.6) o = 1/2 then we get for any z, y € H

(T, y)* < (T, 2) (T y,y) , (3.7)

[Nz, y)[* < (IN|z,2) (IN]y,v), (3.8)
and

(Az,y)| < 1417 14172 (3.9)
respectively.

It is also worthwhile to observe that, if we take the supremum over y € H, ||y|| =
1 in (3.4) then we get

Tz < 7| (T 2, 2) (3.10)
for any x € H, or in an equivalent form

||l < (17| |7 (3.11)
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for any x € H.
If we take a = 1/2 in (3.10), then we get

|T|* < | TI(T 2, z) (3.12)

for any x € H, which in the particular case of T' = P, a positive operator, provides
the result from (3.2).

For various interesting generalizations, extension and Kato related results, see
the papers [44]-[54], [59]-[68] and [79].

3.2. Trace Inequalities Via Kato’s Result. We start with the following re-
sult:

Theorem 3.1 (Dragomir, 2014, [34]). Let T € B(H).
(i) If for some a € (0,1), [T)**, |T***~ € By (H), then T € By (H) and

tr (7)< tr (|T**) tr <|T*|2(1_O‘)) : (3.13)
(ii) If for some o € [0,1] and an orthonormal basis {e;},.; the sum
Do ITed ™ 1 T7e ]
icl
is finite, then T € By (H) and
[tr (7)) < Y IITesl| ™ 1T7es]) (3.14)
iel
Moreover, if the sums Y .., ||Te;|| and Y., ||T"€;:|| are finite for an orthonor-
mal basis {e;} then T € By (H) and

i€l

[t (T)] < in ZnTezn |77 < mind S Teill, ST e -
a€[0.1] iEF i€EF
(3.15)

Proof. (i) Assume that o € (0,1). Let {e;},.; be an orthonormal basis in H and
F' a finite part of 1. Then by Kato’s inequality (3.4) we have

S (Teren| < 3o 1(Ten e < ST er, e (o0 ei,ei>1/2. (3.16)

el el i€l

By Cauchy-Buniakovski-Schwarz inequality for finite sums we have
1/2

> (71 e, er)” <\T*\2(17a) €i, ei> (3.17)
ieF
1/2 Ny
<(plomeT) (Z [W—o» «eT)

i€l i€EF

i€l
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Therefore, by (3.16) and (3.17) we have

1/2 1/2
3 (Tei )| < (Zm?%i,e») <Z<|T*|2(1_a)ei,ei>> (3.18)

icF el i€l

for any finite part F of I.

If for some o € (0,1) we have |T|*,|T*[**™® < B, (H), then the sums
Sier T s e;) and 3, <|T*|2(170‘) ei,e,-> are finite and by (3.18) we have
that ) .., (T'e;, e;) is also finite and we have the inequality (3.13).

(ii) Assume that o € [0,1]. Let {e;},.; be an orthonormal basis in H and F

a finite part of I. Utilizing McCarthy’s inequality for the positive operator P,
namely

<Pﬁx,x> < (Px,x)ﬁ,
that holds for 5 € [0,1] and = € H, ||z|| = 1, we have
<|T’2a €i, €i> < <’T\2 €1, €i>a
and )
<|T*|2(1704) 67;,€i> < <|T*|2 ei,€i> —a
for any i € [.
Making use of (3.16) we have

S° (e, en| < 301 Teen)| < ST er, e (o0 ei7ei>1/2 (3.19)

el i€l i€l
S Z <‘T‘2 e, €i>a/2 <’T*’2 e, ei>(1*0‘)/2
ek
= Z <T*T6i, €i>a/2 <TT*61'7 €i>(1_a)/2
i€l
= Te|* 1T e
el
Utilizing Holder’s inequality for finite sums and p = i, q= ﬁ we also have
a * l1-o
D T 1Tl (3.20)
el
— a -«
ay1l/a * —a\ 1/(1-a)
<[> (Tel)” ] > (T el™) ]
LieF i€l
r a -«
= D _lITell] | Do IT el
LieF i€l

Since all the series involved in (3.19) and (3.20) are convergent, then we get

> (Teie) SolITell] DT el

iel iel il

« l—«

<D ITe ™ (1T7e

iel

(3.21)
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for any « € [0, 1].
Taking the infimum over a € [0, 1] in (3.21) produces

Te;,e;)| < inf Te | | T e; || 3.22
> (e < M{ZH 17 } (52
11—«
Z | Te]| Z 17|

i€

— min {Z | Teil| > HT*eiH} .

el S

a€l0,1]

Corollary 3.2. Let T € B(H).
(1) If |T|, |T*| € By (H), then T € By (H) and
jtr (T)[* < te (1) tr (IT7); (3.23)
(ii) If for an orthonormal basis {e;},.; the sum Y .. /|| Te;| [|[T*e;|| is finite,
then T € By (H) and

i€l
(D)) < Y VITell [T el (3.24)
i€l
Corollary 3.3. Let N € B(H) be a normal operator. If for some o € (0,1),
IN|*, IN[**") ¢ B, (H), then N € By (H) and

tr (N)[? < tr (V) tr (|N|2<1—a>) . (3.25)
In particular, if |[N| € By (H), then N € By (H) and
i ()] < tr (V). (3.26)

The following result also holds.

Theorem 3.4 (Dragomir, 2014, [34]). Let T € B(H) and A, B € By (H).
(i) For any o € [0,1], |A*)*|T]**, |B*|* |T***~*) and B*TA € B, (H) and

tr (AB*T)[? < tr (JA* 2 |T*) <|B*|2 |T*|2<1—a>> : (3.27)
(i) We also have
ltr (AB*T)|? (3.28)

< min {tr (|B|2) tr (|A*|2 |T|2) ,tr (|A|2) tr (|B*|2 |T*|2)} :

Proof. (i) Let {e;},.; be an orthonormal basis in /{ and F' a finite part of /. Then
by Kato’s inequality (3.4) we have

(T Ae;, Be;)|> < (|T|** Aey, Ae;) <|T*|2<1—a> Bei, Bei> (3.20)
for any ¢ € I. This is equivalent to

1/2
[(B*T Ae;, e5)| < (A" |T[** Ae;, Z>1/2<B*|T*| )Bei,ei> (3.30)



42 SILVESTRU SEVER DRAGOMIR

for any 7 € [.
Using the generalized triangle inequality for the modulus and the Cauchy—
Bunyakowsky—Schwarz inequality for finite sums we have from (3.30) that

> (BT Aej,e;) (3.31)

el

S Z |<B*TA€Z, 6,>|

i€

1/2
< Z <A* |T|2a Ae;, €i>1/2 <B* |T*|2(1ia) Be;, €i> /
i€l
- 1/2 97 1/2
* 20 1/2\2 x| (2(1—a) 1/2
<[> (AP de e )| x [Z (<B TP Bey,e;) ) ]
LicF' S
- 1/2 1/2
= > (A ]T\zaAei,ei>] Z<B* |70 Bei,ei>
LicF i€l

for any F' a finite part of 1.
Let o € [0,1]. Since A, B € By (H), then A*|T|** A, B*|T*|** ™ B and
B*T'A € By (H) and by (3.31) we have

e (BTA)] < [or (A% |71 )] [ix (B 720~ B)] v (3.32)

Since, by the properties of trace we have
tr (B*TA) =tr (AB*T),
tr (A" | TP A) = tr (AA* |T[**) = tr (|A*] |T)*)
and
tr (BT P07 B) = (1B TP,
then by (3.32) we get (3.27).
(ii) Utilizing McCarthy’s inequality [68] for the positive operator P
(PPz,z) < (Pz,z)"
that holds for § € (0,1) and x € H, ||z|| = 1, we have

(PPy.y) < llwl™*™" (Py. )’ (3.33)
for any y € H.
Let {e;},.,; be an orthonormal basis in /' and F a finite part of /. From (3.33)
we have
(T Ae;, Aes) < || Aei ]P0 (|T)? Aey, Ae;)”
and

<|T*\2<1—a> Bei,Bei> < ||Bes|[** (|T*? Bes, Be;)' ™™

for any 7 € [.
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Making use of the inequality (3.29) we get

(T Aes, Be:)[* < [|Aes | (T Aes, Aer)™ || Besl|* (|T*|? Bey, Be;)' ™
— || Bes|** (IT? Aes, Aer)™ || Aes| P~ (|T* Bes, Be;)' *

and taking the square root we get

l1—«
2

|<TA€¢, B€1>| S ||B€i||a <|T|2A61,A€Z>% HAeZ'Hl_a <|T*|2B6i, B€l> (334)

for any 7 € [.
Using the generalized triangle inequality for the modulus and the Holder’s
inequality for finite sums and p = £, ¢ = == we get from (3.34) that

> (BT Ae; e;) (3.35)
i€F
S Z |<B*TA6“6Z>|
ieF
< ST IBel (TP Acs, Aei)? | Aei|™ (|T*? Bes, Bei) *
i€EF
< (Z [uBein“<|T|2Aez~,Aei>gT/a)
iEF
1o /(=) P
<3 [HAeiHl_o‘<|T*]2Bei,Bei> 2 ]
i€F
a ) l—«
— (Z||Be,~|| <|T|2Ae,~,Ae,~>2> (Z ||Aei||<|T*|2Bei,Be,~>2> :
i€F el

By Cauchy—Bunyakowsky—-Schwarz inequality for finite sums we also have

1/2 1/2
S IBel| (TP Aey, Ae)? < <Z|]Bei\l2> <Z<IT\2Aei,Aez>>

i€l i€F icF
1/2 1/2
= Z<|B|2 ei,ei>> <Z (A" ]T|2Aei,ei>>
icF
and

) 1/2 1/2
> Al (|T*|? Bej, Be;)® < ( HAeiHQ> (Z <\T*\2Beia36i>>
1EF

ieF 1EF

Stan) (S wrona)”

el
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and by (3.35) we obtain

> (BT Ae; e;) (3.36)

< | D (Bleier) h > (AT Aes ) "
(Sete) )

i€F i€EF
(1-a)/2 (1—-a)/2
X <Z<|A|2 ei,ei>> (Z <B* |T*|2.B€i7€i>)
iEF iEF

for any F' a finite part of I.
Let a € [0,1]. Since A, B € By (H), then A*|T|° A and B*|T*]* B € B, (H)
and by (3.36) we get
|tr (AB*T)|? (3.37)
< [tr (1B]?) tr (AT 4)]" [er (AP) te (B [T B)]*
= [tr (|BP) tr (JA* 2 [T/)]" [tr (JAP) tr (1B 1T*)] "
Taking the infimum over a € [0, 1] we get (3.28). O

Corollary 3.5. Let T € B(H) and A, B € By (H) . We have |A*|*|T|, |B*|* |T*|
and B*TA € By (H) and

ltr (AB*T)|” < tr (|A*)*|T)) tx (|1B** |T]) - (3.38)

Corollary 3.6. Let N € B(H) be a normal operator and A, B € By (H) .
(i) For any o € [0,1], |A*]*|N|*, |B**|N|**™ and B*NA € B, (H) and

ltr (AB*N)[® < tr (|42 |N]*) tr (|B*|2 |N|2(1_°‘)> . (3.39)
In particular, |A*|* |N|, |B*|*|N| and B*NA € By (H) and
tr (AB*N)|* < tr (JA*]” |N|) tr (| B*)*|N]) . (3.40)
(i1) We also have
|tr (AB*N)|? (3.41)

< min {tr (]B|2) tr (|A"‘|2 |N|2) ,tr (|A|2) tr (]B*|2 ]N|2)} :
Remark 3.7. Let v € [0, 1] . By replacing A by A* and B by B* in (3.27) we get
ltr (A" BT)[? < tr (JAP? |T]*) tr (\B!Q yT*F@*a)) (3.42)

forany T € B(H) and A, B € By (H).
If in this inequality we take A = B, then we get

ltr (|BI>T)|” < tr (| B |T]%) tr (|B|2 |T*|2<1*a>> (3.43)
for any T € B(H) and B € By (H) .
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If in (3.42) we take A = B*, then we get
ltr (B>T)[* < tr (|1B*2|T*) tr <|B|2 |T*|2(1’a)> (3.44)

for any T € B(H) and B € By (H).
Also, if T'= N, a normal operator, then (3.43) and (3.44) become

ltr (|B[> N)|* < tr (|BP |N*) te (yB|2 |N|2<H>) (3.45)
and

ltr (B2N)[* < tx (|B*[2 [N %) tr <|B|2 |N|2(1_°‘)> , (3.46)
for any B € By (H).
3.3. Some Functional Properties. Let A € By (H) and P € B(H) with P >
0. Then @ := A*PA € By (H) with > 0 and writing the inequality (3.43) for
B = (A*PA)'? € B, (H) we get

ltr (A*PAT)|? < tr (A*PA|T*) t (A*PA |T*|2(1_°‘)> ,

which, by the properties of trace, is equivalent to

tr (PATA™)? < tr (PA|T** A*) tr <PA |7 20 A*) , (3.47)

where T' € B(H) and « € [0,1].
For a given A € By (H), T € B(H) and « € [0,1], we consider the functional
0aT.o defined on the cone By (H) of nonnegative operators on B (H) by

oare (P) = [ix (PATP 4] [ir (PA[T0-) 47)] "

— |[tr (PAT A")|.
The following theorem collects some fundamental properties of this functional.

Theorem 3.8 (Dragomir, 2014, [34]). Let A € By (H), T € B(H) and o € [0,1].
(i) For any P, Q € By (H)

oaTa(P+Q) > 0ara(P)+0oara(Q)(>0), (3.48)

namely, oar.o 15 a superadditive functional on By (H);

(i1) For any P, Q € B, (H) with P > Q
0ara(P) 2 0ara(Q)(20), (3.49)

namely, oa T 1S a monotonic nondecreasing functional on By (H);
(i1i) If P, Q € By (H) and there exist the constants M > m > 0 such that
M@ > P > mQ then

Moara(Q) 2 0ara(P) Zmoara(Q)(=0). (3.50)
Proof. (i) Let P, Q € By (H). On utilizing the elementary inequality
(a2 + b2)1/2 (02 + d2)1/2 >ac+bd, a,b,c,d >0
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and the triangle inequality for the modulus, we have
oAt (P+Q)
= [t (P + Q) AT 4%)]"? [tr ((P L Q) AT A*)}
— |tr (P + Q) AT A")]
= [tr (AT A" + QAT A7)]

1/2

< [ir (PAITe PO a4 ATt ar) ]
— |tr (PATA* + QATA")]
= [tr (PA|T* A7) + tr (QA T A7)]"?
x [t (PAIT* PO A7) 4 tr (QA TP A*)T/Q
— |tr (PATA") + tr (QATA")|

> [t (PAIT™ A7)]" [tr (PA|T*|2(1—a) A*)T/Q

. [tr (QA|T|2a A*)}m [tr <QA|T*|2(1*°‘) A*)}”Q
— |tr (PAT A*)| — |tr (QAT A*)|
= 0AT (P) + OAT,a (Q)

and the inequality (3.48) is proved.
(i) Let P, Q € B, (H) with P > Q. Utilizing the superadditivity property we
have

oara(P) = 0ara((P=Q)+ Q)2 0ara(P—Q)+0aras(Q)
2 OAT,a (Q)

and the inequality (3.49) is obtained.
(iii) From the monotonicity property we have

oara(P) > 0ara(mQ)=moar. (Q)

and a similar inequality for M, which prove the desired result (3.50). O

Corollary 3.9. Let Ac By (H), T € B(H) and a € [0,1]. If P € B(H) is such
that there exist the constants M > m > 0 with M1y > P > mlyg, then

M ([tr (A[T? A7)]"* [tr <A 720 A*)] R (ATA*)|) (3.51)
> [t (PA[TP 4] [ur (PAT 0 47)] " jur (PaATAY)

>m <[tr (AT 4] [or (Ao a)] P (ATA*)|> |
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For a given A € By (H), T € B(H) and « € [0,1], if we take P = |V|* with
V € B(H), we have

O'A7T7a <|V|2) _ [tr <|V|2A|T|2a A*):|1/2 [tr <|V|2A|T*|2(1fa) A*>:|1/2

— |tr (|V|* AT A%)

e (VVA TP AN o (viva e 49)]
7| |77

|t (V*VATA"),
= [tr (AV VAT o (aveva o)

— Jtr (A*V*VAT)]
= [ (VA VAT [ir ((Vay varepo-o)] v

— [t (VA VAT),
= [tr (VAP TP)] 7 [ex (AP P - e (vap )

Assume that A € By (H), T € B(H) and « € [0,1].
If we use the superadditivity property of the functional o4 1, we have for any
V, U € B(H) that

e (VAP + 0AR) [TP)] 7 [er (vap + wap) )] @52
— [t (VAP + |UA]) T)|
> e (VAP [TP)] o (Jv AP 7P “)}1/2— tr (VAP T)|
+ Jor (UAP [P for (wap )] = o (Uap 7))
(=0).
Also, if |V[> > |U|? with V, U € B(H), then

e (VAP [72)] " [ex (WA )]~ e (v AP T)) (3.53)

o " —a 1/2
> [t (JUAP [T2)] Y [tr(\UA|2]T 20 >)] — Jtr (UAPT)|
(=0).
If U € B(H) is invertible, then

1
o] [zl < [|Uz]| < [[U][ ||=] for any = € H,

which implies that

1
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Utilizing (3.51) we get

U2 ([tr (1P TP)] o (A (7P | e arT) |> (3.54)

o *12(1—a 1/2
> [t (JUAP |T2)] [tr(]UA\2|T 20 >)] — |t ((UAPT)]

> -
= 1112
U]

X <[tr (AP TP [tr (|Ay2 \T*|2<1—a>)}”2 o (|A|2T)y) .

3.4. Inequalities for n-Tuples of Operators. We have:

Proposition 3.10 (Dragomir, 2014, [34]). Let P = (P,---,P,) € Bf) (H),
T= (T, ---,T,) € B®W(H), A= (A, ,A,) € Bé") (H) andz = (21, -+ ,2,) €
C™ with n > 2. Then

2

k=1
< tr (Z |2k | PoAg | T AZ) tr (Z |2k| PeAy [T 0 AZ)
k=1 k=1

for any o € [0,1].

Proof. Using the properties of modulus and the inequality (3.47) we have

k=1

3

k=1

<3 Ll [or (PeAw Tl 47)] 7 [t (P T2 P07 A7)

k=1

k=1

1/2
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Utilizing the weighted discrete Cauchy-Bunyakowsky-Schwarz inequality we also
have

n 1/2
Z |Zk’ [tr (PkAk ’Tk|2a AZ)] 12 [tr (PkAk ‘T,:|2(1_a) A;;)i|
k=1

n ) 1/2
: <Z ol ([tr (P T 47)] ) )

k=1

Y o\ 1/2
% (Z EA ([tr (PkAk |T,:’2(1—a) AZ)] 1/2) )

nk:l - - 1/2
= (Z |Zlc’ tr (PkAk |Tk|2a AZ)) (Z |Zk| tr (PkAk |Tl:<|2(1_a) AZ)) |

k=1 k=1

which imply the desired result (3.55). O
Remark 3.11. If we take P, = 1y for any k € {1,--- ,n} in (3.55), then

tr (Z Ze |Ak|2 Tk>

k=1
S tr (Z |Zk‘ ‘Ak|2 |Tk|20¢> tr <Z ’Zk| ’Ak‘Q |T’:|2(1_a)>
k=1 —1

provided that T = (T%,---,T,) € B™ (H), A = (Ay,--- ,A,) € B (H), a €
0,1] and z = (21, -+, 2,) € C™.

2

(3.56)

We consider the following functional for n-tuples of nonnegative operators P =
(P, ,P,) € B (H) as follows:

tr (Z PkAk |Tk|2a A:)
k=1

X [tr (Z P Ay [Ty P A;;)

k=1

1/2

oaTa (P):= (3.57)

1/2

)

k=1

where T = (T3, -+, T,)) € B™ (H), A = (Ay,--- ,A,) € BY (H) and « € [0, 1].
Utilizing a similar argument to the one in Theorem 3.8 we can state:

Proposition 3.12 (Dragomir, 2014, [34]). Let T = (Ty,---,T,) € B™ (H),
A=(Ay, - A) €BY(H) and o €[0,1].
(i) For any P, Q € BS:L) (H)

oATo(P+Q)>0a1a(P)+0a1a(Q)(>0), (3.58)

namely, oa 1 15 a superadditive functional on Bﬁ” (H);
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(ii) For any P, Q € Bf) (H) with P > Q, namely P, > Qy for all k €
(1,---,n}
oaTa(P)>0a10(Q)(>0), (3.59)

namely, oa B s a monotonic nondecreasing functional on Bf) (H);

(i) If P, Q € Bf) (H) and there exist the constants M > m > 0 such that
MQ > P > mQ then

Moara(Q)>0ara(P)>moara(Q)(>0). (3.60)

P =(pily, - ,puly) withpy >0, k € {1,--- ,n} then the functional of real
nonnegative weights p = (p1,- -+ ,p,) defined by

n 1/2
OATa(P) = [tf (Zpk | Agl® |Tk|2a> (3.61)
k=1
X [tr (Zpk | A |Tg\2<1—a>)] — ltr (Zpk \AkFTk>
k=1 k=1
has the same properties as in Theorem 3.8.
Moreover, we have the simple bounds
1/2

(3.62)

2 2a
Jnax {pi} [tr (Z|Ak| || )

k=1

n 1/2 n
X [tl” (Z |Ak|2 |Tg|2(1_a))] — |tr (Zpk |Ak|2Tk>
k=1 k=1
n 1/2 n 1/2
Z [tr (Zpk ‘Ak|2 |Tk|20¢> ltr (Zpk |Ak’2 ‘T;‘Q(l—a)>]
k=1 k=1
k=1
n 41/2
> i {px} [F<;| k" Tl >

n 1/2
x [tr (Z A |T,:|2<1-a>)] -
k=1

3.5. Further Inequalities for Power Series. We have the following version of
Kato’s inequality for functions defined by power series:

tr Zpk |Ak|2 Tk>
k=1

Theorem 3.13 (Dragomir, 2014, [34]). Let f(A) := Y7, a, A" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. Let
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N € B(H) be a normal operator. If for some o € (0,1), |N]2°‘, |N\2<1_a) c
By (H) with tr (IN[**), tr (,N,zu—a)) < R, then

o (F ()P <t (fu (INP)) e (fu (INPO7)). (3.63)
Proof. Since N is a normal operator, then for any natural number k£ > 1 we have

| NE[* = |N]** and ]N’“‘Z(l_a) _ | N0k
By the generalized triangle inequality for the modulus we have for n > 2

tr (Z aka) ‘ = Z otr (Nk)
k=1 k=1

If for some a € (0,1) we have |[N|**, [N[**™* € B, (H), then by Corollary 3.3
we have N € By (H) . Now, since N, [N[**, |N|**~* € B, (H) then any natural
power of these operators belong to By (H) and by (3.25) we have

< Z || [tr (NF)] . (3.64)

[tr (N*)]* < tr (yN\za’“) tr (yNyQ(l‘C“)’“) , (3.65)

for any natural number k& > 1.
Making use of (3.65) we have

i o [t (V9| < i ] (i (]N]Zak>)1/2 (ir (wy?(l—a)k))w. (3.66)

Utilizing the weighted Cauchy—Bunyakowsky—-Schwarz inequality for sums we also
have

n

3 ol <tr (yzvy“’f))m (tr (yNF(l“")’“))I/Q (3.67)

k=1
1/2

1/2

1/2

By
n (\NF“’“)] : [Z o (rNr2<1—“>k)]

Making use of (3.64), (3.66) and (3.67) we get the inequality

n 2 n n
tr (Z oszk> < tr (Z || 1N|2a’“) tr (Z || \N|2(1_‘“)k> (3.68)
k=1 k=1 k=1

for any n > 2.
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Due to the fact that tr (|N]2°‘) , tr (\N|2(1_°‘)> < R it follows by (3.25) that
tr (|V]) < R and the operator series

D aNF Y ow NP and > fag] [ N[O
k=1 k=1 k=1

are convergent in the Banach space By (H).
Taking the limit over n — oo in (3.68) and using the continuity of the tr (-) on
B (H) we deduce the desired result (3.63). O

Example 3.14. a) If we take in f(A\) = (1£X\) " —1 =T\ (1+ )\)_1), A <1
then we get from (3.63) the inequality

ltr (N (1 £ N)™))[* (3.69)

provided that N € B(H)
INJ24=) € B, (H) with tr (|N|? )HQMMQ§<1

b) If we take in (3 63) f(A) =exp(A) — 1, A € C then we get the inequality

|tr (exp (N) — 1p)[* < tr (exp (IN|**) — 1) tx (exp <|N] (1~ ) — 1H) , (3.70)
provided that N € B(H) is a normal operator and for a € (0,1), |N[**,
NP e By (H).

The following result also holds:

Theorem 3.15 (Dragomir, 2014, [34]). Let f(A\) := > ", a, A" be a power series
with complex coefficients and convergent on the open disk D (0,R), R > 0. If
T eB(H),Ae By (H) are normal operators that double commute, i.e. TA = AT

and TA* = A*T and tr (\A|2 \T|2a) , tr (]A\z ‘T‘2(1—a)) < R for some o € [0, 1],
then

o (F (AP T))[* < tr (fu (AP 7)) e (fu (JAP TPE)) . 370)

Proof. From the inequality (3.56) we have
" 2

tr (Z oy, }AkIQTk>
i (Sl | 1977 Sl ).

Since A and T are normal operators, then ’Ak‘ = ]A|2k, ‘T’f} = ‘T|2a’“ and
}T’“|2(170‘) = |T]** ™ for any natural number k > 0 and a € [0, 1].
Since 1" and A double commute, then is easy to see that

k (03 o
APETS = (JAPT)", AP T = (AP TP

is a normal operator and for o € (0,1), \N|2a,

(3.72)
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and
k
|A|2k; |T|2(1—a)k‘ _ <’A|2 |T|2(1—a))

for any natural number £ > 0 and « € [0, 1].
Therefore (3.72) is equivalent to

5 (Z a (rAFT)’“)
<tr (; o] (14T |T|2°“)k> tr (; ol (14T |T|2“‘“))k> ,

for any natural number n > land « € [0,1].
Due to the fact that tr (|A|2 |T|2a) , tr <|A|2 |T|2(1_a)> < R it follows by (3.56)
for n =1 that tr (|A|2 T) < R and the operator series

D aeNE S o] NP and Y oy [N
k=1 k=1 k=1

are convergent in the Banach space B (H).
Taking the limit over n — oo in (3.73) and using the continuity of the tr (-) on
By (H) we deduce the desired result (3.71). O

2

(3.73)

Example 3.16. a) If we take f(A\) = (1 £ X\)"", |A| < 1 then we get from (3.71)
the inequality

)tr ((1Hﬂ: A2 T)—1)‘2 (3.74)
<t <(1H B ]A\Q ‘T‘za)%) tr (<1H — \A|2 ‘T|2(1a)>—1) ,

provided that T' € B (H), A € By (H) are normal operators that double commute
and tr (JA? [T*) | tr (\A|2 |T|2(1_°‘)> <1foraco1].
b) If we take in (3.71) f(A) = exp (A), A € C then we get the inequality

ltr (exp (JAPT))[* < tr (exp (JA]P|T]%)) tr <exp (\AF |T]2(1_°‘)>> . (3.75)

provided that 7" € B(H) and A € By (H) are normal operators that double
commute and « € [0,1].

Theorem 3.17 (Dragomir, 2014, [31]). Let f(z) := dosopi¥ and g(2) =
Z;io q;%’ be two power series with nonnegative coefficients and convergent on
the open disk D (0,R), R > 0. If T'€ B(H), A € By (H) are normal operators

that double commute and tr (|A|2 |T|2a) , tr <|A|2 |T|2(17°‘)> < R for a € [0,1],
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then

[or (f (|4 1) + g (1A [T))] (3.76)
« [or (£ (142 171207 + g (1ap =) ]
= |t (f (|APT) + 9 (JAFT))]
> (o (7 (LAPITP)] 7 o (o (1P TP ) )|
= [er (£ (1AFT))]
+ [t (g (JAP [7P)] 7 [ (g (J4P [2P0)) ]

—|tr (g |A| T))| (> 0).

1/2

1/2

Moreover, if p; > q; for any j € N, then, with the above assumptions on T and
A,

e (7 (1A [1P)) 7 o (£ (1P )] (3.7
—[er (£ (AP T))]
> [t (g (|41 [7))] [ (o (14 re=))] "
— [ (g (147 T))| (=

The proof follows in a similar way to the proof of Theorem 3.15 by making use
of the superadditivity and monotonicity properties of the functional oa 1 (+).
We omit the details.

Example 3.18. Now, observe that if we take

= 1
fN) =sinhA=)" AZnt

— (2n+1)!
and
g (A) = cosh A Z
0
then

FN+g)=epr=3 o
n=0

for any A € C.
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If T € B(H), A € By(H) are normal operators that double commute and
a € 10,1], then by (3.76)

o (exp (|AP 1)) [er (exo (142 (1)) = o (esp (14P 7))
(3.78)

> [t (sin (|41 [212%))]" [ir (sink (JAP (1))~ [or (sinh (1A 7))

+ [t (cosh (|42 [T2%))] " Jtr (cosh (JAP (1)) = [ir (cosh (142 7))
(= 0).

Now, consider the series =3 oA, AeD(0,1) and In 25 =307 IAm

1— )\ n=1n
A€ D(0,1) and define p, =1, n >0, q =0, ¢, = *, n > 1, then we observe
that for any n > 0, p, > qp.

IfT € B(H), A€ By (H) are normal operators that double commute, o € [0, 1]
and tr (|A* [T*) | tr (\A|2 yT|2<1—a>) < 1, then by (3.77)

[tr ((1H — AP |T|2a)—1>]1/2 [tr (<1H — AP |Ty2(1—a)>_l)] v (3.79)
~ e ((tn —1427) )|
> [tr (m (1 — |AP |T;2“)*1)]

—1\ 71/2
x [tr (m (1H— \A|2\T|2<H>> )}

_ ‘tr (m (1e — |A|2T)_1> (>0).

1/2

4. REVERSES OF SCHWARZ INEQUALITY

4.1. Some Classical Facts. Let a = (ai1,...,a,) and b = (by,...,b,) be two
positive n-tuples with

0<my <a; <M <ooand 0 < my <b <M< o0 (4.1)

for each i € {1,...,n}, and some constants my, mq, My, M,.
The following reverses of the Cauchy—Bunyakowsky—Schwarz inequality for pos-
itive sequences of real numbers are well known:

a) Pdlya-Szegd’s inequality [73]:

S < (Vo Vi)

b) Shisha—Mond’s inequality [76]:

2
D ke i > 1 Qrbr M, 2 my 2
— < - | —
22:1 arby ZL bi B ma Mo .
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If w = (wy,...,w,) is a positive sequence, then the following weighted inequal-
ities also hold:
c) Cassels” inequality [$1]. If the positive real sequences a = (ay, ..., a,) and
b = (by,...,b,) satisfy the condition
0<m§%§M<ooforeachk€{1,...,n}, (4.2)
k
then ;
(ks wiai) (O, wib}) < (M +m) _
(s wiaby)” - AmM

For other recent results providing discrete reverse inequalities, see the mono-
graph online [21].
The following reverse of Schwarz’s inequality in inner product spaces holds [22].

Theorem 4.1 (Dragomir, 2003, [22]). Let A, a € C and z, y € H, a complez
inner product space with the inner product (-,-). If

Re (Ay — z,x — ay) > 0, (4.3)

or equivalently,

a+ A 1
- . < =-|A- 4.4
o= 5y < pla-allul, (1.4
holds, then
1

0 < flall* lyll* = [z, )* < 7 1A —al* 1yl (4.5)

The constant § is sharp in (4.5).

In 1935, G. Griiss [55] proved the following integral inequality which gives an
approximation of the integral mean of the product in terms of the product of the
integrals means as follows:

/ (x) dx

/ f(z)g(x)dx — —/ f(z)dx -
b—a
—¢)(I'=7),
where f, g : [a, b] — R are integrable on [a, b] and satisfy the condition
p<f(r)<® y<gle)<T (47)

for each x € [a, b] , where ¢, ®, v, " are given real constants.

Moreover, the constant i is sharp in the sense that it cannot be replaced by a
smaller one.

In [24], in order to generalize the Griiss integral inequality in abstract struc-
tures the author has proved the following inequality in inner product spaces.

(4.6)

Theorem 4.2 (Dragomir, 1999, [24]). Let (H,(-,-)) be an inner product space
over K (K=R,C) ande € H, |le|]| = 1. If o, v, ©, I' are real or complex numbers
and x, y are vectors in H such that the conditions

Re (Pe — z,x — pe) > 0 and Re (I'e — y,y —ve) >0 (4.8)
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hold, then
1
[z, y) = (z,e) {e,y)| < 7@ =l [T —1]. (4.9)

The constant ;11 15 best possible in the sense that it can not be replaced by a smaller
constant.

For other results of this type, see the recent monograph [27] and the references
therein.

For other Griiss type results for integral and sums see the papers [1]-[3], [L1]-
[13], [14]-[16], [23]-[30], [43], [72], [87] and the references therein.

4.2. Additive Reverses of Schwarz Trace Inequality. We denote by
Bf (H):={P: PeB,(H), P is selfadjoint and P > 0}.

We obtained recently the following result [30]:

Theorem 4.3 (Dragomir, 2014, [36]). For any A, C € B(H) and P € Bf (H) \
{0}

(4.10)

tr (PAC)  tr(PA)tr (PC)
tr (P)  tr(P) tr(P)’

< inf [A— A1y 1) ('(C’—le)PD

tr (P tr (P)
, tr (P|C]*)  |tr (PC)|?
< fblA=A-Lall ) =0 ) ‘ tr (P) !

where ||-|| is the operator norm.

Proof. We observe that, for any A € C we have

r [P(A—/\lH) (c— (Pc)l )} (4.11)

tr (P) tr (P)
~w P4 (0 T )]
“wtmt (O S )
_fr (PAC)  tr(PA)tr (PC)

tr (P) tr (P) tr(P)
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Taking the modulus in (4.11) and utilizing the properties of the trace, we have
‘tr (PAC) tr(PA)tr(PC)

tr(P)  tr(P) tr(P)
cinle Pt - M
it o4 (0 gy )
< 4= Al gy (| (0 - i) 7

for any X\ € C.
Utilizing Schwarz’s inequality we also have

(e}
(o)

1/2

< [tr (‘ (c . tzr(f PC)) 1H) PI/QDI [tr (P)]"/2.

t(\(c tgg; re) (113
() /)< 7))
/( S@%)( ) ’)
c- >1)(0

(
)

. w(PO),, u(PO), . |w(PC)
- ('C’ - tr( P ¢ ) ¢ 'W 1H)P
(t (|C|P Pth P,

tr (P)
By (4.12) and (4.13) we get
r(

" (‘ <C o <P>)1H) i
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and by (4.24) we have

(4.14)

tr (PAC) tr(PA)tr (PC)
tr(P)  tr(P) tr(P)‘

<A=X-14 ﬁtf (’ (C - %IH) PD

tr(|C|2P) ‘tr(Pc) 2)1/2
for any A € C.

<|JJ[A=A-1
<| Hn<tdp) e
Taking the infimum over A € C in (4.14) we get the desired result (4.23). O

We also have [30]:
Corollary 4.4. Let o, f € C and A € B(H) such that

a—i—ﬁ.l

1
HA— §§|ﬁ—0¢‘-

For any C € B(H) and P € B (H) \ {0}

tr (PAC)  tr PA tr PC
tr (P) tr (P ‘ (4.15)
f%'@ i) )
( ) <P® 2
=3 W_ tr ‘ tr (P)
In particular, if C € B(H) is such that
1
SETN.
then
tr (PICP) |t (PC)|?
ST | e (4.16)

I

s =algay (=) 7)
e(PICH) o] L

1
=510l = tr (P)
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Also

tr (PC?) (tr(PC>>2 (4.17)

tr (P) tr (P)

1 1 tr (PC)
<318l (| (0~ ey ) PD

. w(PICP)  |wpo))?] 1 )
S Ll ey _‘tr(P) Skt

For other related results see [36].
In order to simplify writing, we use the following notation

B.(H):={P € B(H), P is selfadjoint and P > 0} .
The following result holds:

Theorem 4.5 (Dragomir, 2014, [38]). Let, either P € B, (H), A, B € By (H)
orPeBf (H), A, BeB(H) and~, T € C. Then
(i) We have

0 <tr (P|A[*) tr (P|B) — |tx (PB*A)” (4.18)
= Re [(Ttr (P|BJ*) — tr (PB*A)) (tr (PA*B) — 7tr (P|B|*))]
—tr (P[BJ*) Re (tr [P (A" = 7B") (T'B — A)])
< 0= [ox (P1BP)
—tr (P|B[*) Re (tr [P (A" —¥B") ('B — A)]).
(1i) If
Re (tr [P (A* —=5B*) (TB — A)]) > 0 (4.19)

or, equivalently

r |\ 1
tr (P‘A—%B ) < JI0 =t (PIBP). (4.20)
then
0 <tr (P|AP) tr (P|Bf) — |tr (PB*A)[? (4.21)

< Re [(Ttr (P|BJ*) — tr (PB*A)) (tr (PA*B) —7tr (P|B|%))]
< 110 = [ix (P1BP)]?
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and

0 <tr (P|AP) tr (P|B)?) — |tr (PB*A)[” (4.22)
< Lir o [ (P8P
—tr (P|B|*) Re (tr [P (A* —5B*) (TB — A)))

1 2 27712
<z I0=o [ (PIBI)]
Proof. Observe that, by the trace properties, we have

I, :==Re [(Ttr (P |B|*) — tr (PB*A)) (tr (PA*B) —7tr (P |B*))]  (4.23)
= Re [(Ftr (P|BP) — tr (PB*A)) (m — tr (P |B|2))]
~ Re [Ftr (P|B) tr (PB*A) + 7tr (PB*A) tr (P|BJ)
~ [tr (PBA) T [tx (P|B])]’
= tr (P|BJ*) Re [Fm + Tt (PB*A)]

— Jtr (PB*A)* = [tr (P|B]*)]” Re (T'7)
and

I, == tr (P|B|*) Re (tr [P (A* —5B*) (I'B — A)))
=tr (P|B|*) Re[tr (TPA*B +5PB*A — 3T PB*B — PA*A)]
= tr (P |B|*) Re[['tr (PA*B) + Ftr (PB* A)]
—ATtr (P|B?) — tr (P |A]?)]
= tr (P|BJ?) Re [rm + Tt (PB*A)}
— [tr (P|B})]*Re (3T) — tr (P|B*) tr (P|A[}) ,

for P a selfadjoint operator with P >0, A, B € By (H) and v, I' € C.
Then we have

I — I, = tr (P|B*) tr (P|A") — |[tr (PB*A)?,

which proves the equality in (4.18).
Utilizing the elementary inequality for complex numbers

1
Re (uv) < Z—L|u—|—v\2, u,v € C,
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we have

Re [(Ttr (P|B)?) — tr (PB*A)) (tr (PA*B) — 7tr (P |BI*))]
—Re |(Ttx (PB) — tr (PB*A)) (tr (PB4) —yr (P[BP) ) |
=1

< Lre (P1B]?) -t (PB*A) + tr (PB*A) — e (P |B)]?
= 110 = [ox (P1BP))

which proves the last inequality in (4.18).
We have the equalities

(4.24)

| r
ZW—VEHBF—PP—VQ B

A—V;FB

1
—pl=
4
1 r r
—p b spimr - (a1 0) (a1
1 2 2
1
4

W—WWBF—'

=P |70 =B

v+ T
2

4T r
—mﬁ+7; BA+1 4B ’7+‘ym2

—p |m+-2 Ppar g

2
) |BI°

:p_¢W+7; BA+7+

14T
2

1 2
) i _
+ 4\ ol ‘

A*B — Re (T7) |B)?

for any bounded operators A, B, P and the complex numbers v, I' € C.
Let P be a selfadjoint operator with P > 0, A, B € By (H) and v, ' € C.

Taking the trace in (4.24) we get
) (4.25)

1 T
ﬂr—ﬂ%qpuﬁ)—u<PP—7§ B

T T
:_uunmﬂ—Re@mu(Pwﬁy+“;tupyﬂy+“;tupmﬂ)

:-ﬁruwAE)—ReawﬁruwB|y+1g£¥(PB%®4ilg£t(PBw@
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— —tr (P|AP) — Re (T9) tr (P |BJ) + %t (PB*A) + %t (PB*A)

7+F

—tr (P|A[") — Re (T'F) tr (P |B[?) + 2Re (PB*A)-
tr (PJAP) — Re () tr (P|BJ) + Re [5itr (PB*A)] + Re [Ttr (PB*4)]
(P14]) (P1BI)

— —tr (P|AP) — Re (D7) tr (P |B[?) + Re [ytr (PB*A)] + Re 'Ftr(PB*A)}

— —tr (P|A) — Re (I'7) tr (P|B[?) + Re [Jtr (PB*A)] + Re :Ftr (PB*A)} .

Utilizing the equality for I above, we conclude that (4.19) holds if and only if

(4.20) holds, and the inequalities (4.21) and (4.22) thus follow from (4.18).
The case P € B (H), A, B € B(H) goes likewise and the details are omitted.
0

For two given operators T, U € B (H) and two given scalars a, 5 € C consider
the transform

Cop(T,U)=(T"—aU") (U —-T).
This transform generalizes the transform
Cap(T):=(T" —aly) (Bly = T) = Cap (T, 1n),

where 1y is the identity operator, which has been introduced in [32] in order
to provide some generalizations of the well known Kantorovich inequality for
operators in Hilbert spaces.

We recall that a bounded linear operator 7' on the complex Hilbert space
(H,(-,-)) is called accretive if Re(Ty,y) > 0 for any y € H.

Utilizing the following identity

Re(Cop (T,U)z,2) = Re (Cpa (T,U) x, x) (4.26)

a+ 0 2
2
x,x>

2
1
- Z|ﬁ—o¢|2<]U|2:10,x> - <’T— a+ﬁ.U
that holds for any scalars a, § and any vector x € H, we can give a simple
characterization result that is useful in the following:

-Ux

1
~ 119 af el - o -

2

Lemma 4.6. For a, f € C and T, U € B(H) the following statements are
equivalent:

(1) The transform Co g (T,U) (or, equivalently, Cs o (T,U)) is accretive;

(ii) We have the norm inequality

a+ 0
2

Ty —

UH < 15— al Uz (4.27)

for any x € H;
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(iii) We have the following inequality in the operator order

oz+ﬂ. 2

U
2

1
- <Lg—apiur.

As a consequence of the above lemma we can state:
Corollary 4.7. Let o, 5 € C and T, U € B(H). If Co.5 (T, U) is accretive, then

a—+ 0
U
2

|- | <315-alio. (1.29
Remark 4.8. In order to give examples of linear operators T, U € B(H) and
numbers «, § € C such that the transform C, 4 (7,U) is accretive, it suffices
to select two bounded linear operator S and V' and the complex numbers z, w
(w # 0) with the property that ||Sz — 2Vz| < |w|||Vz| for any z € H, and, by
choosing T'= 5, U =V, a =1 (z+w) and 3 = % (z — w) we observe that T and
U satisty (4.27), i.e., Co g (T, U) is accretive.

Corollary 4.9. Let, either P € B, (H), A, B € Bo(H) or P € Bf (H), A,
B e B(H) and v, I' € C. If the transform C,r (A, B) is accretive, then we have
the inequalities (4.21) and (4.22).

The case of selfadjoint operators is as follows.

Corollary 4.10. Let P, A, B be selfadjoint operators with either P € B, (H),
A, BeBy(H)orPeBf(H), A, BeB(H) and m, M € R with M > m. If
(A—mB)(MB — A) >0, then
0 < tr (PA?) tr (PB?) — [tr (PBA)]? (4.29)
< [(Mtr (PB?) — tr (PBA)) (tr (PAB) — mtr (PB?))]

< — (M —m)? [tr (]332)]2

o]

and

0 < tr (PA?) tr (PB?) — [tr (PBA))? (4.30)
1

< 7 (M —m)* [t (PB?)]" — tr (PB?) tr [P (A —mB) (MB — A)]

1L —m)? [ix (PBY))”

We also have the following result:

Theorem 4.11 (Dragomir, 2014, [38]). Let, either P € By (H), A, B € By (H)
orPeBf (H), A, BeB(H) and X € C.
(i) We have

0 < tr (P|B]°)tr (P|A]®) — |[tr (PB*A)” (4.31)

VAN

b (p o (PB4 - AB‘Q) ~ |l (P18 A~ (PBA)
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(11) If there is r > 0 such that

tr (P

then we have the reverse of Schwarz inequality

1/2

er (P15 A< 3] ) < on (P1BP)]

0 <tr (P|B]*)tr (P|A]°) — |tr (PB*A)” (4.32)
<2 [tr (P|BP)] —‘ [tr (P|B[2)]* A tr(PB*A)‘Q
r [or (PIB)] .

Proof. Using the properties of trace, we have for P > 0, A, B € By (H) and A € C
that

Ji = tr (P [tr (P1BP)] A~ ABD

w (P ([t (P1BP)]"* A= B) ([tr(PIBP)]"* - 2B))
(P [tx (P[BP) |AF + AP |BI

Ao (P1B)] B A A [ (P1BP)]” 4B )

tr (P|B[) tr (P\A!2)+|)\|2t1‘ (P|B[)
Y
tr (P

tr

[t (P |B))]* tr (PB*A) — A [tr (P|B[?)]* tx (PA*B)
[BI?) tr (P |AF") + A" tr (P |B[)
Xt (PBA) [t (P|B])] " = N (PB*A) [tr (P|BP)]
—tr (PIB) r (PIAR) + N2t (P|BPY)
—2[tr (P|B*)]"’ Re (Atr (PB*A))

1/2

and
Iy o= [ (P|B))]? A =t (PB*A)‘Q
= ([ (P1BP))* A = e (PB)) ([t (P1BI)]* X = 0 (PB-4))
—tr (P|BP) AP = 2 [tr (P|B*)]"* Re (Mr (PB*A)) + [tr (PB*A)[?.
Therefore
Ji— Jy
:tr(P([tr(P|B|2)]”2A AB‘)—‘ (P1BA)]* A~ tr (PBA)|

and the equality (4.31) is proved.
The inequality (4.32) follows from (4.31).
The other case is similar. 0J
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Corollary 4.12. Let, either P € B, (H), C, D € By(H) or P € Bf (H), C,
D e B(H) and 6, A € C.

If
Re (tr [P (C* —6D*) (AD - C)]) >0 (4.33)
or, equivalently
< ‘0_#9 )g}lm—(sﬁu(mm?), (4.34)
then
0<tr(P|C*)tr (P|D[*) - |tr(PD*C)|2 (4.35)

< }lm 5P e (PDP)] r(P|DP) — tr (PD*C)

‘ o+A ?
1 2
< Z’A_él [tr (P|D? )] :
Proof. The equivalence of the inequalities (4.33) and (4.34) follows from Theorem

45 (ii).

If we write the inequality (4.34) for C' = A and D = B, we have
0+ A 1 2 2

If we multiply this inequality by tr (P |B|2) > 0 we get

" (P‘[tr(P]B| )7 A- 2R [ (p1BP)) B D (4.36)

A =52t (P|B*) tr (P|B|*).

NH

Let

)\:# e (P1BP)] andT=%|A_5| tr (P|B%)]"*.

Then by (4.36) we have
2
tr (P [tr (P1BP)]"* 4~ 2B > <% (P|BJ) .
and by (4.32) we get

0 <tr(P|B*)tr (P|A[") - |tr(PB*A)|2

‘5+A 2

< 118~ 5F [ir (P1B)] (PIBI*) — tr(PB*A)

< 118 8P [ir (P1BP),

and the inequality (4.35) is proved. O



RECENT DEVELOPMENTS OF SCHWARZ’S TYPE TRACE INEQUALITIES 67

Corollary 4.13. Let, either P € B, (H), C, D € By(H) or P € B (H), C,
D e B(H) and 6, A € C. If the transform Csa (C, D) is accretive, then we have
the inequalities (4.35).

The case of selfadjoint operators is as follows.

Corollary 4.14. Let P, C, D be selfadjoint operators with either P € B, (H),
C,De€By(H)orPeBf(H),C,DeB(H) and n, N € R with N > n. If
(C—=nD)(ND —C) >0, then

0 < tr (PC?) tr (PD?) — [tr (PDC)? (4.37)
1 2 2 n+ N 2
< = (N —=n)[tr (PD?)]" - ( tr (PD?) — tr (PDC))
4
< % (N —n)? [tr (PD?)]?.

4.3. Trace Inequalities of Griiss Type. Let P be a selfadjoint operator with
P > 0. The functional (-, ), p defined by

(A, B), p = tr (PB*A) = tr (APB") = tr (B*AP)

is a nonnegative Hermitian form on By (H) .

For a pair of complex numbers (a, 3) and P € B, (H), in order to simplify the
notations, we say that the pair of operators (U,V) € By (H) x By (H) has the
trace P-(a, B)-property if

Re (tr [P (U* —aV*) (BV —U)]) > 0

or, equivalently

tr(P'U—&;ﬁV

2
1
) <7 18— al*tr (PV[).
The above definitions can be also considered in the case when P € Bf (H) and
A BeB(H).

Theorem 4.15 (Dragomir, 2014, [38]). Let, either P € B, (H), A, B, C €
By(H) or PeBf (H), A, B,C € B(H) and \, T, 6, A € C. If (A,C) has the
trace P-(\,I')-property and (B,C) has the trace P-(5, A)-property, then

|tr (PB*A) tr (P |C|*) — tr (PC*A) tr (PB*C) (4.38)
<tr (P ]C|2) % T —~]|A = 6] tr (P \0]2)

— [Re (tr [P (A" —5C*) (TC = A)))]/?

x [Re (i [P (B = 3C*) (AC - B)])] "]
<1
4

T —~]1A =6 [tr (PICP)]”.
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Proof. We prove in the case that P € By (H) and A, B, C € By (H).
Making use of the Schwarz inequality for the nonnegative hermitian form
(*;)g,p We have

2

(A B)yp| < (A, A)yp (BB, p

for any A, B € By (H).
Let C € By (H), C # 0. Define the mapping [+, ], po : B (H) x B2 (H) — C
by

[4, B]Q,P,C’ = (4, B>2,P ||C||§,P — (4, C>2,P (C, B>2,P

Observe that [-, ], p - is a nonnegative Hermitian form on B, (H) and by Schwarz
inequality we also have

2

(A By [ = (A, C)y p (C By

2 2 2 2 2 2
< |11 1t - (4. | (11 1CIE - ~ i8]
for any A, B € By (H), namely

ltr (PB*A) tr (P|CJ?) — tr (PC*A) tr (PB*C)|” (4.39)
< [tr (P |A|2) tr (P |C’|2) — |tr (PC’*A)ﬂ
x [tr (P|B*) tr (P|C[*) — |tx (PC”B)

2}’

2
where for the last term we used the equality ‘( ’ (C, B), P‘

Since (A, C) has the trace P-(\,I")-property and ( , C) has the trace P-(0, A)
-property, then by (4.22) we have

‘ 2

0 <tr(PJAP?) tr (P|C°) — |txr (PC*A)[? (4.40)
<tr (P |C’]2)

< [0 = [ (PIC)] = Re (e [P (4 = 507 (rC - )]

and
0 <tr (P|B)*) tr (P|C*) — |t (PC*B)|? (4.41)
<tr (P |C|2)

x E 1A = 5 [tr (P|C]?)] - Re (ix [P (B* — 5C*) (AC — B)D] .
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If we multiply (4.40) with (4.41) and use (4.39), then we get
|tr (PB*A) tr (P |C*) — tr (PC*A) tr (PB*C)
< [tr (PICP)]

k (4.42)

[0 i (PICP)] = Re ([P (4 - 567 (O - )]
. E A = 8 ir (PICP)] = Re (i [P (B* — 5C°) (AC B)D} .

Utilizing the elementary inequality for positive numbers m, n, p, q

(m? —n?) (p* — ¢*) < (mp —ng)?,

we can state that

E T =~ [tr (P |C\2)] — Re (tr [P (A" —7C") (I'C — A)])} (4.43)
X E |A =6 [tr (P|C]*)] = Re (tr [P (B* = 5C™) (AC — B)})}

< (3 =118 =81 [ (PICP)
— [Re (tr [P (A" = 5C™) (TC — A)))]/?
< [Re (ix [P (B* ~50°) (AC - B)))] )

with the term in the right hand side in the brackets being nonnegative.
Making use of (4.42) and (4.43) we then get

|tr (PB*A) tr (P |C|*) — tr (PC*A) tx (PB*C)

k (4.44)
< [ (PICP)]* (1 =11 = ol fr (PICP)]
— [Re (tr [P (A" —5C*) (PC = A))]/?
x [Re (tr [P (B* — 5C") (AC — B)])] 1/2)2 .
Taking the square root in (4.44) we obtain the desired result (4.38).

Il
Corollary 4.16. Let, either P € B, (H), A, B, C € By (H) or P € Bf (H), A,
B, CeB(H)and N\, T, §, A € C. If the transforms Cxr (A,C) and Csa (B, C)
are accretive, then the inequality (4.38) is valid.

We have:

Corollary 4.17. Let P, A, B, C be selfadjoint operators with either P € B, (H),
A B, CeBy(H)orPeBf (H), A B,Ce€B(H) and m, M, n, N € R with
M >m and N >n. If (A—mC)(MC —A) >0 and (B—nC)(NC —B) >0
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then
|tr (PBA) tr (PC?) — tr (PCA) tr (PBC)| (4.45)
< tr (PC?) i (M —m) (N —n)tr (PC?)
— [Re (tr (A —mC) (MC — A))]"/?
[Re (tx [P (B = nC) (NC — B)))]"”|
(M —m) (N —n) [tr (PC?)]”.
Finally, we have:
Theorem 4.18 (Dragomir, 2014, [38]). With the assumptions of Theorem 4.15
|tr (PB*A) tr (P |C*) — tr (PC*A) tr (PB*C) (4.46)
< (PICF) [0 =11 = 8w (PICP)

‘F+7 (P|C] )—tr(PC*A)‘

"”A (P|CP) —tr(PC*B)H

< 110 =118 =4 [ix (PICP)]".

If the transforms Cyxr (A,C) and Csa (B,C) are accretive, then the inequality
(4.46) also holds.

The proof is similar to the one for Theorem 4.15 via the Corollary 4.12 and the
details are omitted.

Corollary 4.19. With the assumptions of Corollary 4.17
|tr (PBA) tr (PC?) — tr (PCA) tr (PBC)| (4.47)
1
< tr (PC?) {Z (M —m) (N —n)tr (PC?)

M+m

tr (PC?) — tr (PCA)'

|

< 3 (M —m) (N = n) [ir (PC?)]”.

n+ N
X

tr (PC?) — tr (PCB)

4.4. Some Examples in the Case of P € B, (H). Utilizing the above results
in the case when P € B (H), A € B(H) and B = 1y we can also state the
following inequalities that complement the earlier results obtained in [36]:
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Proposition 4.20 (Dragomir, 2014, [38]). Let P € Bf (H), A € B(H) and -,
I' e C.

(i) We have
tr (PA[*)  |tr (PA)|?
=t (P) | tr(P) (4.48)
B tr (PA)\ [tr(PA*) _
-re|(r- 557 (7))
- ﬁRe (60 [P (A* —714) (Tly — A)])
< % IT — ) - tr(P)Re (tr [P (A" —=F1y) (T1y — A)]).
(ii) If
Re (tr [P (A" —71y) (T1ly — A)]) >0 (4.49)
or, equivalently
ﬁtr (P‘A—Wrrhf ) gi{r—w, (4.50)
and we say for simplicity that A has the trace P-(\,T')-property, then
tr (P|A]?)  |tr (PA)|?
STwP) | e (4:51)
tr (PA)\ [tr(PA*) _ 1 9
< Re {(T— & (P) ) ( tr (P) —’Y)} < Z‘F—ﬂ
and
tr (P|A")  |tr (PA)|?
w ()| wP) (4:52)
< 310 = = iy Re (i [P (4" = 714) (CLy = ) < 717 ="

(i1i) If the transform Cyp (A) = (A" —7ly) (T'ly — A) is accretive, then the
inequalities (4.51) and (4.52) also hold.

Corollary 4.21. Let P € B (H), A be a selfadjoint operator and m, M € R
with M > m.
(i) If (A—mly)(M1ly — A) >0, then

tr (PA?) [tr(PA)]?
=~ tr(P) _{tr(P)]

[l (=) s

(4.53)
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and
tr (PA?)  [tr(PA)]*
s 54
1 ) 1 1 )
SZ(M_m) _tr(P)tr[P(A_mB)(MB_A)]SZ_L(M_m)'

(i) If mly < A< M1y, then (4.53) and (4.54) also hold.
We have the following reverse of Schwarz inequality as well:

Proposition 4.22 (Dragomir, 2014, [38]). Let P € Bf (H), A € B(H) and -,
I'e C.
(i) If A has the trace P-(\,T")-property, then

2

tr (P ]A|2) tr (PA)
tr(P) ‘ tr (P) (4.55)
1 2 |+~ tr(PA) S| 9
<ol - |52 - S < qir-n

(i1) If the transform Cyr (A) := (A* —51y) (I'ly — A) is accretive, then the
inequality (/.55) also holds.

Corollary 4.23. Let P € By (H), A be a selfadjoint operator and m, M € R

with M > m.
(i) If (A—mly) (M1g — A) >0, then

tr(PA%)  [tr(PA)]?

o (4.56)
1 s |m+M tr(PA)]? 1 5

s WM=m)y === Tpy | SgW-m)

(i) If mly < A< M1y, then (4.56) also holds.

Finally, we have the following Griiss type inequality as well:
Proposition 4.24 (Dragomir, 2014, [38]). Let P € Bf (H), A, B € B(H) and
Ao, AeC.

(i) If A has the trace P-(\,T")-property and B has the trace P-(0, A)-property,
then

. Ef(i*)A) a tir(fp? trtilzzf)*) (4.57)
< |3Ir-alia-a
- iy [Re (1 [P (4" = L) (T — A
x— (1p) [Re (tr [P (B~ 31a) (AL — B)))]™*| < 110 =118 3]
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and
tr(PB*A) _ tr(PA)tr (PB)
tw(P)  w(P) tr(P) -
1 '+~ tr(PA)||[6+A tr(PB)
gsz—vHA—ﬂ—‘ 2 (P H 2 u(P)

1
< —|T'—=~|A-=4].
< ;P =11a -4

(i) If the transforms Car (A) and Csa (B) are accretive then (4.57) and (4.58)
also hold.

The case of selfadjoint operators is as follows:

Corollary 4.25. Let P, A, B be selfadjoint operators with P € Bf (H), A,
BeB(H) and m, M, n, N € R with M >m and N > n.
(i) If (A—mly)(M1ly —A) >0 and (B —nly)(Nly — B) > 0 then

tr (PBA)  tr(PA)tr (PB)

tr (P) tr (P) tr(P) (4:59)

1
< L—l(]\/[—m)(N—n)

1
tr (P)
1

[Re (tr (A —mly) (M1g — A))]Y?

X

o (p) e ([P (B =nly) (Nly - B2

1
< L OI=m)(V —n)
and

tr (PBA) tr(PA)tr(PB)
tr(P)  tr(P) tr(P)‘

(4.60)

m—+ M  tr(PA)
2 tr(P)

n+ N tr(PB)
2 tr(P)

< FOr-m) W =) - |

I N

< —(M—m)(N —n).

(i) If mly < A< Mly and nly < B < Nlg then (4.59) and (4.60) also
hold.

5. CASSELS TYPE INEQUALITIES

5.1. General Inequalities. We have the following result:
Theorem 5.1 (Dragomir, 2014, [39]). Let, either P € B, (H), A, B € By (H)

or P € Bf (H), A, B € B(H) and v, ' € C with Re (I'y) = Re (') Re () +
Im (T") Im () > 0.
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(i) If (A, B) satisfies the P-(~y,T")-trace property, then
tr (P|A[*) tr (P |B[?) (5.1)
1 [Re(y+T)Retr (PB*A) + Im (y + I) Imtr (PB*A)]*
4 Re (I') Re (7) + Im (I") Im ()
1 Jy+If
~— 4 Re(I'y)
(1) If the transform C., r (A, B) is accretive, then the inequality (5.1) also holds.

<

ltr (PB*A)|*.

Proof. (i) If (A, B) satisfies the P-(v,I')-trace property, then, on utilizing the
calculations above, we have
2)

1 r
0< Z;'F_V'Q“ (P|Bf) — tr (P‘A_%B

= —tr (P|A[") — Re (I'F) tr (P |B[*)
+ Re[Ftr (PB*A)] + Re [Pm}
= —tr (P|A[") — Re (I'9) tr (P |B[*)
+ Re [jtr (PB"A)] + Re [Ttr (PBA)|
= —tr (P|A") — Re (I'9) tr (P |B[*)
+ Re [ytr (PB*A)] + Re [T'tr (PB*A)]
= —tr (P|A]®) —=Re (I'9) tr (P|B[*) + Re [(F +T) tr (PB*A4)]
which implies that
tr (P|A[*) + Re (I'7) tr (P |B[?) (5.2)
<Re[(¥+4T)tr(PB*A)]
=Re(y+T)Retr (PB*A) + Im (v + T') Imtr (PB*A) .
Making use of the elementary inequality

2vpg <p+4q, p,g =0,
we also have

2y/Re (17) tr (P |AP) tr (P|B?) < tr (P|AP®) + Re (T7) tr (P|B).  (5.3)
Utilizing (5.2) and (5.3) we get
Vi (PIAP) (P |B?) (5.4)
< Re (y+T')Retr (PB*A) 4+ Im (v + I') Imtr (PB*A)

2y/Re (I'y)

that is equivalent with the first inequality in (5.1).
The second inequality in (5.1) is obvious by Schwarz inequality

(ab+ cd)? < (a* +c*) (B> +d?), a,b,c,d € R.
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The (ii) is obvious from (i). O

Remark 5.2. We observe that the inequality between the first and last term in
(5.1) is equivalent to

Ogtr(P‘A]2)tr(P]B‘2)—|tr(PB A)F_Z |];{Y( |)

Corollary 5.3. Let, either P € B, (H), A€ By (H) or P B (H), A€ B(H)
and v, T' € C with Re (I'y) = Re (') Re () + Im (T") Im () > 0.
(i) If A satisfies the P-(v,T')-trace property, namely

Re (tr [P (A* — 71y) (Tl — A)]) > 0 (5.6)

ltr (PB*A)).  (5.5)

or, equivalently

tr (P'A—V;Fh{ ) §i|F—7]2tr(P), (5.7)
then
tr (P |A|2)
) (5.8)
1 [Rer 1) MEED 4+ 1) i)
< Z
4 Re (I R ()+Im()lm(7)
1 TP [ pa)f
~— 4 Re(I'm) | tr(P)

(i) If the transform C,r (A) is accretive, then the inequality (5.1) also holds.
(iii) We have
tr (P |A\2)
tr (P)

tr (PA)|?
tr (P)

tr (PA)|
tr (P)

1 |y-Tp

=1 Re(m9) (5.9)

Remark 5.4. The case of selfadjoint operators is as follows.

Let A, B be selfadjoint operators and either P € B, (H), A, B € By (H) or
PeBf(H), A BeB(H)and m, M € R with mM > 0.

(i) If (A, B) satisfies the P-(m, M)-trace property, then

tr (PA?) tr (PB?) < %—;—j\]\jf tr (PBA)]? (5.10)
or, equivalently
0 < tr (PA?) tr (PB?) — [tr (PBA))* < % [tr (PBA))”. (5.11)

(ii) If the transform C,, ps (A, B) is accretive, then the inequality (5.10) also holds.
(iii) If (A—mB)(MB — A) > 0, then (5.10) is valid.
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5.2. Trace Inequalities of Griiss Type. We have the following Griiss type
inequality:

Theorem 5.5 (Dragomir, 2014, [39]). Let, either P € By (H), A, B, C € By (H)
or Pe Bf (H), A, B, C € B(H) with P|A|”, P|B>, P|C]> # 0 and \, T, §,
A € C with Re (I'y), Re (Ad) > 0. If (A, C) has the trace P-(\,T')-property and
(B, C) has the trace P-(0, A)-property, then

tr (PB*A) tr (P|C[?)

o1 h-rs-a
tr (PC*A) tr (PB*C')

T4 Re(17) Re (29)

Proof. We prove in the case that P € B, (H) and A, B, C € By (H).
Making use of the Schwarz inequality for the nonnegative hermitian form
(- '>2,P we have

(5.12)

2
‘(A, B>2,P‘ < (4, A>2,P <B7B>2,P

for any A, B € By (H).
Let C € By (H), C # 0. Define the mapping [+, ], po : Ba (H) X B2 (H) — C
by

[A, B]Q,P,C = (4, B>2,P HCH;,P — (4, C>2,P (C, B>2,P-
Observe that [-, -]2, pc is a nonnegative Hermitian form on By (H) and by Schwarz
inequality we also have

2

(A By 11 = (A, Cy p (C By

]

2 2 2 2 2
< 1A It - [t 00| | (1B 1CIE - - (8.0,
for any A, B € By (H), namely
|tr (PB*A) tr (P |C*) — tr (PC* A) tr (PB*C)
< [tr (PJAP) tr (P|C|?) — [tx (PC*A)|?]
x [tr (P|B]®) tr (P|C[") — |tx (PB*C)|?],

2

‘ 2

(5.13)

2
where for the last term we used the equality ‘(B, Clyp|l = ’(C, B>2’P‘

Since (A, C') has the trace P-(\,I')-property and (B, C') has the trace P-(d, A)
-property, then by (5.5) we have

2
0 <tr (P|Af*) tr (P|CI) — |tr (PC*A)* < i : ge_a;') tr (PC*A)]>  (5.14)
and
0<tr(P|B)tr(P|C)?) - |tx (PB*C)|° < % o= A_’Z tr (PB*C))*. (5.15)
Re (A(S)
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If we multiply the inequalities (5.14) and (5.15) we get
[tr (P|A]*) tr (P |C[) — |tr (PC*A)[] (5.16)
x [tr (P|B]*) tr (P|C[) — |tr (PB*C)|?]
1 poTP AP
~ 16 Re(I) Re (Ad)
If we use (5.13) and (5.16) we get
|tr (PB*A) tr (P |C*) — tr (PC*A) tr (PB*C)
1 TP - AP
~ 16 Re(T'7) Re (AJ)

Since P, A, B, C # 0 then by (5.14) and (5.15) we get tr (PC*A) # 0 and
tr (PB*C) # 0.

Now, if we take the square root in (5.17) and divide by |tr (PC*A) tr (PB*C)| we
obtain the desired result (5.12). O]

Corollary 5.6. Let, either P € By (H), A, B € By or P € B (H), A, B €
B(H) with P|A]*, P|B|*#0 and \, T, 6, A € C with Re (I'), Re (Ad) > 0. If
A has the trace P-(\,T')-property and B has the trace P-(0, A)-property, then

tr (PB*A)tr (P) ‘ 1 |y =TJl§d - A
tr (PA) tr (PB*) 4 \/Re (I7) Re (AD) '

The case of selfadjoint operators is useful for applications.

Itr (PC*A)|? [tx (PB*C)|.

| 2

(5.17)

ltr (PC*A)|? |tr (PB*C)|”.

(5.18)

Remark 5.7. Assume that A, B, C' are selfadjoint operators. If, either P €
B.(H), A B, Ce€By(H)or PeBf(H), A B,C e B(H) with PA?, PB?
PC? # 0 and m, M, n, N € R with mM, nN > 0. If (A,C) has the trace
P-(m, M)-property and (B, C') has the trace P-(n, N)-property, then

tr (PBA) tr (PC?) | < 1 (M —m)(N—n)
tr (PCA) tr (PBC) ‘ ' '

5.19
4 mnMN ( )

If A has the trace P-(k, K)-property and B has the trace P-(I, L)-property, then

tr (PBA) tr (P) | (K —k)(L-1)
w(PA)w(PB) |51 VRRL (5:20)

where kK, [L > 0.
We observe that, if 0 < kly < A< Kly and 0 < l1y < B < Lly, then by
(5.21)
(K—k)(L-1)
VKIKL

[tr (PBA) tr (P) — tr (PA) tr (PB)| < tr (PA)tr (PB) (5.21)

| =

or, equivalently
tr (PBA)  tr(PA)tr(PB)
tr (P) tr (P) tr(P)

1 (K —k)(L-1)tr(PA)tr(PB)
4 VEIKL tr(P) tr(P)

< (5.22)
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5.3. Applications for Convex Functions. In the paper [37] we obtained
amongst other the following reverse of the Jensen trace inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m, M] for some scalars m, M with m < M. If f is a continuously
differentiable convex function on [m, M] and P € By (H) \ {0}, P > 0, then we

have

t(Pf(A) . (tr(PA)

o G (523)
t(Pf(A)A)  (PA) tr(Pf (A))

- tr (P) tr (P) tr (P)
(117 ) = g oy S B )

= ' tr(Pf(4))

o -y L)

VAN

<

\
( 1/2

3 [ (M) = f" (m)] |:tt(1(3ﬁ) - (tﬁﬁ)ﬂ

(M —m) {tr(P[f’(A)]Q) _ (tr(Pf,(A))Y} 1/2
\ ’ tr(P) tr(P)
}l[f/(]m — (M) (M —m).

Let M,, (C) be the space of all square matrices of order n with complex elements
and A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some
scalars m, M with m < M. If f is a continuously differentiable convex function
on [m, M|, then by taking P = I,, in (5.23) we get

o< ), (M) (5.24)
LA tr(d) (7 (4))

IN

IN

(|- E014)

(L1 (M) — 7 ()] B

pay- 2, )

n

o
1) - g )| - ()’

1/2

1/2

(VAN
=~ =
=
=

|

i
S

<

|

2
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The following reverse inequality also holds:

Proposition 5.8 (Dragomir, 2014, [39]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) C [m, M] for some scalars m, M with
0<m< M. If fis a continuously differentiable convex function on [m, M| with
f'(m)>0and P e By (H)\ {0}, P >0, then

tr (Pf (A tr (PA
0= (tr(fP() ! _f< tr<(P))) (5:25)
tr(Pf(A)A) tr(PA) tr(Pf(A))
tr (P) tr (P) tr (P)
oL (M —m)[f" (M) — [ (m)] tr (PA) tr (Pf'(A))
S1 ) w(P) w(P)

The proof follows by the inequality (5.22) and the details are omitted.

Let A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some
scalars m, M with m < M. If f is a continuously differentiable convex function
on [m, M| with f"(m) > 0 then by taking P = I, in (5.25) we get

P (fn(A)) _f (%) (5.26)
LA tr(d) o (f(4))
1 (M —m)[f (M) = [ (m)] tr (A) tr (' (4))
SO M) n on

We consider the power function f : (0,00) — (0,00), f(t) = t" with ¢t €
R\ {0} . For r € (—00,0) U [1,00), f is convex while for r € (0,1), f is concave.

Let » > 1 and A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with 0 <m < M. If P € B (H) \

{0}, then
tr (PA") tr (PA)\"
=0 ( o (P) ) (5:27)
e (PA")  tr(PA) tr(PA™Y)
= { tr(P)  tr(P)  tr(P) }
< 1 (M —m) (M1 —m 1 tr (PA) tr (PA™1)
=1 mr/2 M2 tr (P) tr(P)
If we take the first and last term in (5.27) we get the inequality:
0 tr (P)tr(PA")  tr(P)[tr (PA) (5.28)

= tr (PA)tr (PA™Y) e (PAPY) [tr (P!
1 (M —m)(M—t —m1)
ZT mr/2 /2

Consider the convex function f : R — (0,00), f(t) = expt and let A be a
selfadjoint operator on the Hilbert space H and assume that Sp (A) C [m, M] for

<
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some scalars m, M with 0 <m < M. If P € Bf (H) \ {0}, then using (5.25) we

have
tr (Pexp A) tr (PA)
=t e () o
tr (PAexpA) tr(PA) tr(PexpA)
= wP)  w(P)  (P)

1 (M —m)(expM —expm) tr (PA) tr (Pexp 4)
4 VmMexp (m+ M)  tr(P)  tr(P)

IN

If we take the first and last term in (5.29) we get the inequality:

wep) (P exp (24)
VS HPA) T w(PA) & (Pop A) (5:30)
(M —m) (expM — expm).

vVmM exp (m + M)

<

-1

6. SHISHA-MOND TYPE TRACE INEQUALITIES

6.1. General Results. We have the following result:

Theorem 6.1 (Dragomir, 2014, [10]). Let, either P € B, (H), A, B € By (H)
orPeBf (H), A, BEB(H) and~, T € C withT +~ # 0.
(i) If (A, B) satisfies the P-(~y,T")-trace property, then

Vir (PlAP) e (P|B?) (6.1)
- Re (v + F) Retr (PB*A) + Im (7 +I') Imtr (PB*A)
- T+

L Hr P,
4 T+~

tr (P |B[%)

1|l — 7| 2
< |tr (PB*A)| + - P\B|7).

(1) If the transform C, r (A, B) is accretive, then the inequality (6.1) also holds.

Proof. (i) If (A, B) satisfies the P-(,[')-trace property, then

(‘A 1+
2

1
) LI =t (PIBP)
that is equivalent to

tr (P|A[*)~Re[(7 +T) tr (PB*A)] +}l T+~ tr (P|B|*) < i T —~tr (P|B)?),
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which implies that
tr (P|A]?) +i|I‘+7|2tr (P|BJ?) (6.2)
<Re[(7+T)t (PB*A)] + 411 T A2t (P|BP).
Making use of the elementary inequality
2ypg<p+q p.q=0,

we also have

T+ 4] [tr (PAP) & (P |BI)]? < tr (P|A]?) + }1 T+t (P|B]*). (6.3)
Utilizing (6.2) and (6.3) we get

1/2

Do [or (PIAP) o (P1BP)] (6.4
<Re[(7+7T) tr (PB*4)] + 411 T —~*tr (P|B[*).
Dividing by |T" 4+ 7| > 0 and observing that
Re [(7+7T) tr (PB*A)] = Re(y +I') Retr (PB*A) + Im (v + I') Imtr (PB*A)

we get the first inequality in (6.1).
The second inequality in (6.1) is obvious by Schwarz inequality

(ab+ cd)? < (a* +c*) (B> +d?), a,b,c,d € R.
The (ii) is obvious from (i). O

Remark 6.2. We observe that the inequality between the first and last term in
(6.1) is equivalent to

1| =4/

PR tr (P|B)*).  (6.6)

0< \Jtr (PIAP) tr (P|BP) — |tr (PB*A)| <

Corollary 6.3. Let, either P € B, (H), A€ By(H) or P € B (H), A€ B(H)
and v, I' € C with v+ T # 0.
(i) If A satisfies the P-(vy,T')-trace property, namely

Re (tr [P (A* — 71y) (Tly — A)]) >0 (6.7)

or, equivalently

r

) < i T —~|*tr (P), (6.8)
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then
tr (P \AF) (6.9)
tr (P) '
Re (y + 1) BUEA o m (y 4 1) 0B g2
- T+ 4 I+
_ |tr(Pa) 10—
— | tr(P) 40+~

1) If the transform C,r (A) is accretive, then the inequality (6.1) also holds.
77
(iii) We have

tr (P ]A\Q)
- tr (P)

tr (PA) ’ . IT —~)? (6.10)

tr(P) |~ 4T+

Remark 6.4. The case of selfadjoint operators is as follows.

Let A, B be selfadjoint operators and either P € B, (H), A, B € By (H) or
PeBf (H), A BeB(H)and m, M € R with m + M # 0.

(i) If (A, B) satisfies the P-(m, M)-trace property, then

Vit (PA2) tr (PB2) < Retr (PBA) + %tr (PB?) (6.11)
< [tr (PBA)| + —i%M_ern)ﬂtr (PB?)
and
0 < \/tr (PA2)tr (PB?) — Retr (PBA) < %tr (PB?).

(i) If the transform C,, as (A, B) is accretive, then the inequality (6.11) also holds.
(iii) If (A —mB)(MB — A) > 0, then (6.11) is valid.

Corollary 6.5. Let A, B be selfadjoint operators and either P € B, (H), A,
BeBy(H) orPeBf (H), A, Be B(H) and m, M € R with m + M # 0.
(i) If (A, B) satisfies the P-(m, M)-trace property, then

(VP + Vi PBD) — (P A+ 5)) < D0

AT 2
< 4|M+m|tr (PB?) . (6.12)

Proof. Observe that

<\/tr (PA2) + 4/tr (PB?))2 —tr (P (A+ B)?)

—9 (\/tr (PA2) tr (PB?) — Retr (PBA)) .

Utilizing (6.11) we deduce (6.12). O
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6.2. Trace Inequalities of Griiss Type. We have the following Griiss type
inequality:

Theorem 6.6 (Dragomir, 2014, [40]). Let, either P € By (H), A, B, C € By (H)
or Pe B (H), A, B, C € B(H) with P|A|*, P|B]>, P|C|” # 0 and \, T, 6,
AeCwithy+T #0,04+A#0. If (A, C) has the trace P-(\,T')-property and
(B, C) has the trace P-(6, A)-property, then

t(PBA)  tr(PCHA) 1 (PBC) |
tr (P[C’|2) tr (P|C’|2) tr (P|C|2)

(6.13)

1 D=9 |A=4 |t (PIA]") tr (P[B[)

4 Tl [A+0] [tr (P|C)]?

Proof. We prove in the case that P € B, (H) and A, B, C € By (H).
Making use of the Schwarz inequality for the nonnegative hermitian form
(*;+)g,p We have

2
(A B)yp| (4,4, (B, B),

for any A, B € By (H).
Let C' € By (H), C # 0. Define the mapping [, ], po : Ba (H) x Ba (H) — C
by
[A, B]Q,P,C’ = (4, B>2,P ||C||§,P — (4, C>2,P (C, B>2,P'

Observe that [, -], p is a nonnegative Hermitian form on B, (H) and by Schwarz
inequality we also have

(A By I3 = (A.C)y p (C By

‘ 2

< |11 1N - (4. | (11 1CIE - ~ e8]
for any A, B € By (H), namely

|tr (PB*A) tr (P |C*) — tr (PC*A) tr (PB*C)

< [tr (PAP) tr (P|C]?) — [tr (PC*A)[]

x [tr (P|BP) tx (P|C?) — |tr (PB*C)[]

‘ 2

(6.14)

2 2
where for the last term we used the equality ’(B, Clypl = ’(C, B>2,P‘

Since (A, C') has the trace P-(\,I')-property and (B, C') has the trace P-(d, A)
-property, then by (6.6) we have

2

2 2 * 1|F_V| 2
0<\Jtr (PIAP) tr (PICP) - |tx (PC*A)]| < T (PIer)
and
0< \/tr (P|B) tr (P|C?) — |tr (PC*B)| < RN tr (P|C|%),
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which imply
0 <tr (P|AP) tr (P|C) — |tr (PC*A)|? (6.15)
2
N el
4 T+
1|0 =4
— 2|+

tr (P[C]) (\/tr (PIAP) tx (P|C?) + |t (PO*A)|)

tr (PIC) ot (P1AP) tr (PICP)

and
0 <tr (P|B]?) tr (P|C]*) - |tr (PB*C)|? (6.16)

tr (P |C) (\/tr (P|B*) tr (P|C?) + |tr(PC’*B)|)

tr (PICP) \/tr (P|BP) e (P |CP?).

If we multiply the inequalities (6.15) and (6.16) we get
[tr (P|A]*) tr (P |C?) — |t (PC*A)[?] (6.17)
x [tr (P|BI) tr (P|C[") — [tx (PB*C)[’]
2 2
< 1 Bt (piop) yfur (PLAP) s (PICF)
< tr (P|C?) \Jtr (PB]) tr (PICP).
If we use (6.14) and (6.17) we get
|tr (PB*A) tr (P |C*) — tr (PC* A) tr (PB*C)
< 3 B (pioP) v (PLAP) w (PICP)
<t (PICP) y/ir (PIBI) o (PICIP).
Since P |C)* # 0 then by (6.18) we get the desired result (6.13). O

Corollary 6.7. Let, either P € By (H), A, B € By or P € Bf (H), A, B €
B(H) with P|A]>, P|B*#0 and \, T, 6, A € C withy+T #0, 6+ A #0. If
A has the trace P-(\,T')-property and B has the trace P-(0, A)-property, then

tr (PB*A)  tr(PA) tr (PBY)|”

‘ 2

(6.18)

tr (P) tr(P) tr(P) (6.19)
L D= |A—d]* [t (P|AP)tr (P|BP)
4 [D+9] A+ for (P)]°

The case of selfadjoint operators is useful for applications.

Remark 6.8. Assume that A, B, C' are selfadjoint operators. If, either P €
B.(H), A B,Ce€By(H)or PeB(H), A B,C e B(H) with PA?, PB?
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PC? #0and m, M, n, N € R with m + M, n+ N # 0. If (A, C) has the trace
P-(m, M)-property and (B, C') has the trace P-(n, N)-property, then

2

tr (PBA) tr(PCA)tr (PBC)
tr (PC?)  tr(PC?) tr(PC?)
1 (M —=m)*(N=n)* [tr(PA%)tr(PB?)
4 |[M+m| |N+n] [tr (PC2)]

(6.20)

<

If A has the trace P-(k, K)-property and B has the trace P-(l, L)-property, then

2

tr (PBA) tr(PA)tr(PB)

tr(P)  tr(P) tr(P)
1 (K=K’ (L= [tr(PA%) tr (PB?)
4 |K+kl |L+1| tr (P)]>

(6.21)

<

where k+ K, | + L # 0.

6.3. Applications for Convex Functions. In the paper [37] we obtained
amongst other the following reverse of the Jensen trace inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m, M] for some scalars m, M with m < M. If f is a continuously
differentiable convex function on [m,M] and P € By (H) \ {0}, P > 0, then we
have

tr (Pf (A)) tr (PA)
VS ) _f( tr (P) ) (6.22)
tr(Pf(A)A)  t(PA) tr(Pf (A))
- tr (P) tr (P) tr (P)
( tr(P|A- TP 1,
L1 () — () )
< ,
[
( tr(PA? ara\2]
10 - 7 o] |G - (5]
- tr( P[f! 2 tr(PF' 2 1/2
30— [ “OE - (stzpy]
< 317 (M) = ()] (M = m).

Let M,, (C) be the space of all square matrices of order n with complex elements
and A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some
scalars m, M with m < M. If f is a continuously differentiable convex function
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on [m, M|, then by taking P = I,, in (6.22) we get

. w - (#) (6.23)
LD w4 w(f(4)
s (M) = [ (m)] w
) (A
[ L(M —m) ol n(f,f L))
r 2 .
Lf (M) — f"(m)] {# (trglA)> ]
<
3 (M —m) {tr(U;(LA)]Q) _ (tr(f;(A))>2:| 1/2
1\

< QM) = 1 (m)] (M —m).

The following reverse inequality also holds:

Proposition 6.9 (Dragomir, 2014, [40]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) C [m, M] for some scalars m, M with
m~+ M # 0. If f is a continuously differentiable convex function on [m, M| with
f'(m)+ f'(M)#0 and P € By (H)\ {0}, P >0, then

tr (Pf (A)) tr (PA)
o<t~ () 624)
tr(Pf(A)A) tr(PA) tr(Pf(A4))
- tr (P) tr (P) tr (P)

<1 W‘MV%).N>ermmwwwmm
"2 Im A+ MIf )+ FM) Y te(P) tr (P)

The proof follows by the inequality (6.21) and the details are omitted.

Let A € M,, (C) be a Hermitian matrix such that Sp(A) C [m, M] for some

scalars m, M with m+M # 0. If f is a continuously differentiable convex function
on [m, M| with f"(m)+ f' (M) # 0 then by taking P = I,, in (6.24) we get

o< B <M) (6.25)
b (f(A)A4) (4 tr(f(4)
(

S Ml ) (WIVWNWHNMW.
2 it M IP s ranV non
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We consider the power function f : (0,00) — (0,00), f(t) = ¢" with ¢ €
R\ {0} . For r € (—00,0) U [1,00), f is convex while for r € (0,1), f is concave.

Let » > 1 and A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with 0 <m < M. If P € Bf (H) \
{0}, then

tr (PA" tr (PA)\"
= m(r (P)) - ( tr<(p)>> (6.26)
{tr (PA")  tr(PA) tr(PATl)}
tr (P) tr (P) tr (P)
Sl M) (M - {/ tr (PA2) tr (PA2-1)
=9 (m+M)1/2 (mr—l + MT—1)1/2 tr(}g) tr (P)
Consider the convex function f : R — (0,00), f(t) = expt and let A be a

selfadjoint operator on the Hilbert space H and assume that Sp (A) C [m, M] for
some scalars m, M with m < M. If P € B (H)\ {0}, then using (6.24) we have

tr (Pexp A) tr (PA)
<“Gim o (hm) o
tr (PAexpA) tr(PA) tr(PexpA)
tr(P)  tw(P)  tr(P)

1|M m| (exp (M) — exp (m ))\/tr(PAQ)tr(Pexp(QA))
2 VIm+ M|y/expm + exp M (P) tr (P)
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