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Abstract. Dye, [Ann. of Math. (2) 61 (1955), 73–89] proved that the discrete
unitary group in a factor determines the algebraic type of the factor. After-
wards, for a large class of simple unital C∗-algebras, Al-Rawashdeh, Booth and
Giordano [J. Funct. Anal. 262 (2012), 4711–4730] proved that the algebras
are ∗-isomorphic if and only if their unitary groups are isomorphic as abstract
groups. In this paper, we give a counterexample in the non-simple case. In-
deed, we give two C∗-algebras with isomorphic unitary groups but the algebras
themselves are not ∗-isomorphic.

1. Introduction

In [4], H. Dye proved that two von Neumann factors not of type I2n are isomor-
phic (via a linear or a conjugate linear ∗-isomorphism) if and only if their unitary
groups are isomorphic as abstract groups. Indeed, he proved the following main
theorem:

Theorem 1.1 ([4], Theorem 2). Let M and N be factors not of type I2n, and let
ϕ be a group isomorphism between their unitary groups U(M) and U(N). Then
there exists a linear (or conjugate linear) ∗-isomorphism ψ of M onto N which
implements ϕ in the following sense: for some (possible discontinuous) character
λ of U(M) and all u ∈ U(M), ϕ(u) = λ(u)ψ(u).
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In [[3], Theorem 1], M. Broise shows that the unitary group of a factor not of
type In has no non-trivial characters. Therefore Dye’s result can be rewritten as
follows:

Theorem 1.2. If N and M are two von Neumann factors not of type In(n <∞),
then any isomorphism between their unitary groups is implemented by a linear or
a conjugate linear ∗-isomorphism between the factors.

Then extending the above result to some cases of simple, unital C∗-algebras,
the author in [1] proved that if ϕ is a continuous automorphism of the unitary
group of a UHF -algebra, then ϕ is implemented by linear or conjugate linear
∗-isomorphism.

In [2], Al-Rawashdeh, Booth and Giordano generalized Dye’s approach for a
large class of simple, unital C∗-algebras. An isomorphism of the unitary groups,
induces an isomorphism of their K-theory. In particular, if A and B are both sim-
ple unital AF-algebras, both irrational rotation algebras, or both Cuntz algebras
and their unitary groups are isomorphic (as abstract groups), then A and B are
isomorphic as C∗-algebras. In general, they proved the following main theorems:

Theorem 1.3 ([2], Theorem 4.10). Let A and B be two simple, unital AH-
algebras of slow dimension growth and of real rank zero. Then A and B are
isomorphic if and only if their unitary groups are topologically isomorphic.

Theorem 1.4 ([2], Corollary 5.7). Let A and B be two unital Kirchberg algebras
belonging to the UCT -class N . Then A and B are isomorphic if and only if their
unitary groups are isomorphic (as abstract groups).

In this paper, we give an example of two C∗-algebras whose unitary groups are
isomorphic, however the algebras themselves are not ∗-isomorphic. The coun-
terexample is given in the non-simple C∗-algebra C(X), where X is a compact
set. Recall that the unitary group of C(X) is the group of all continuous func-
tions from X to the unit circle T, which is denoted by C(X,T).

2. The Counterexample

Let us recall Milutin’s theorem which is stated as follows:

Theorem 2.1 (Milutin). [[7], p.494] If X and Y are two compact, metrizable
spaces which are non-countable, then C(X,R) ' C(Y,R) as Banach spaces.

Let us recall the following results of V. Pestov in [6]. Let ζ denote the group
homomorphism from C(X,T) to the cohomotopy group π1(X) assigning to every
mapping its homotopy class. Denote by C0(X,T) the kernel of ζ. Let X be a
topological space and θ be the map of the linear space C(X,R) to the group
C(X,T), given by θ(f) = exp(2πif). The image of C(X,R) under θ is contained
in C0(X,T) and θ is an additive group homomorphism.
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If x0 ∈ X, then let

C(X, x0,R) = {f ∈ C(X,R); f(x0) = 0},
C(X, x0,T) = {f ∈ C(X,T); f(x0) = 1},
C0(X, x0,T) = {f ∈ C0(X,T); f(x0) = 1}.

Obviously, θ maps C(X, x0,R) to C0(X, x0,T). Denote by θ0 the restriction of θ
to C(X, x0,R).

Proposition 2.2 ([6], Pro.13). Let X be a path-connected space and let x0 ∈ X.
Then the map θ0 : C(X, x0,R) → C0(X, x0,T) is an algebraic isomorphism.

For every element x0 ∈ X, the groups C0(X,T) and C0(X, x0,T) ⊕ T are
isomorphic under the mapping f 7→ (f.f(x0)

−1, f(x0)). Similarly, the groups
C(X, x0,R) ⊕ R and C(X,R) under the mapping f 7→ (f − f(x0), f(x0)), (see
[[6], Lemma 7]).

Consider the following short exact sequence:

0 −→ C0(X,T)
ι−−→ C(X,T)

ζ−−−→ π1(X) −→ 0.

If X is compact, then C(X,T) splits, i.e. C(X,T) = C0(X,T)⊕ π1(X). Now let
us prove the following lemma:

Lemma 2.3. Let X and Y be two compact spaces. If C(Y,R) and C(X,R)
are isomorphic as Banach spaces, then there is an isomorphism between C(Y,R)
and C(X,R) which sends 1 (as a constant function) to itself and hence sends all
constant functions to constants.

Proof. Let ψ denote the isomorphism from C(Y,R) onto C(X,R). If x0 ∈ X, and
k ∈ R\{−1}, then we define

ϕk : C(X,R) → C(X,R)

g 7→ g + kg(x0).

It is clear that ϕk is a linear map and ϕk(1) = 1 + k.
The map ϕk is surjective: If h ∈ C(X,R), then h− k

k+1
h(x0) ∈ C(X,R) and

ϕk(h−
k

k + 1
h(x0)) = h+ kh(x0)−

k

k + 1
h(x0)ϕk(1) = h.

Now to show that ϕk is injective, let g ∈ ker(ϕk). Then for every x ∈ X,
g(x) + kg(x0) = 0 and in particular, (k + 1)g(x0) = 0, therefore g = 0, hence ϕk
is a bijective.

Let ψ(1) = f . As f is a non-zero function which belongs to C(X,R), there
exists x0 ∈ X such that |f(x0)| = ‖f‖∞. Let k = 2sign(f(x0)). Then for all
x ∈ X,

ϕk(f)(x) = f(x) + kf(x0)

= f(x) + 2sign(f(x0)).f(x0)

= f(x) + 2|f(x0)| > 0.
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The map ψ1 = ϕk ◦ ψ is an isomorphism from C(Y,R) onto C(X,R) with
ψ1(1) > 0. Then define Φ : C(Y,R) → C(X,R) by g 7→ 1

ψ1(1)
ψ1(g) and hence the

lemma is checked. �

Finally, let us introduce the following main counterexample:

Example 2.4. Consider X = [0, 1] and Y = [0, 1] × [0, 1] as subspaces of the
usual topology of R and R2, respectively. As X and Y are not homeomorphic
topological spaces, the C∗-algebras C(X) and C(Y ) are not ∗-isomorphic.

Claim: C(X,T) ' C(Y,T) as abstract groups.

Proof. As X and Y are both contractible subsets of R and R2, their cohomology
groups Hq(X) = Hq(Y ) = 0, for all q > 0. the cohomotopy groups π1(X) and
π1(Y ) are trivial. AsX and Y are both compact metrizable non-countable spaces,
there exists a Banach space-isomorphism Φ from C(X,R) to C(Y,R), by Milutin’s
theorem. We may assume that Φ maps constant functions onto themselves. Now
define

ψ : C(X, x0,R) → C(Y, y0,R)

f 7→ Φ(f)− Φ(f)(y0).

It is clear that ψ is a linear. If g ∈ C(Y, y0,R), then h = Φ−1(g)− Φ−1(g)(x0) ∈
C(X, x0,R) and ψ(h) = g, hence ψ is a surjective. If ψ(f) = 0, then for all y ∈ Y ,
Φ(f)(y) = Φ(f)(y0), therefore Φ(f) is a constant function of Y and then f = 0.
Hence ψ is an isomorphism. By Proposition (2.2), we have that C0(X,T) '
C0(Y,T), hence C(X,T) ' C(Y,T) and the example is completed. �
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