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Abstract. In the present paper, we propose a new construction of quantum
Markov fields on arbitrary connected, infinite, locally finite graphs. The con-
struction is based on a specific tessellation on the considered graph, that allows
us to express the Markov property for the local structure of the graph. Our
main result concerns the existence and uniqueness of quantum Markov field
over such graphs.

1. Introduction

One of the basic open problem in quantum probability is to develop a theory of
quantum Markov fields, which are conventionally quantum Markov processes with
multi-dimensional index set. Here Quantum Markov fields are noncommutative
extensions of the classical Markov fields (see [4, 8, 11]). On the other hand, these
quantum fields can be considered as extensions of quantum Markov chains [1, 7]
to general graphs.

In [3, 10] the first attempts to construct quantum analogues of classical Markov
chains have been carried out. In [3] quantum Markov fields were considered over
integer lattices, unfortunately there was not given any non trivial examples of
such fields. In [5, 6], quantum Markov chains (fields) on the tree like graphs (like
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Cayley tree) have been constructed and investigated, but the proposed construc-
tion does not work for general graphs.

A main aim of the present paper is to provide a construction of new class of
quantum Markov fields on arbitrary connected, infinite, locally finite graphs. The
construction is based on a specific tessellation on the considered graphs, it allows
us to express the Markov property for the local structure of the graph. Our main
result is the existence and uniqueness of quantum Markov field over such graphs.
We note that even in the classical case, the proposed construction gives a new
ways to define Markov fields (see [12, 13]).

2. Graphs

Let G = (V, E) be a ( non-oriented simple ) graph, that is, L is a nonempty
set and E is identified as a subset of an ordered pairs of V , i.e.

E ⊆ {{x, y} : x, y ∈ E, x 6= y}
Elements of V and E are called, respectively, vertices and edges. Two vertices
x and y are said to be nearest neighbors if there exist an edge joining them (i.e.
{x, y} ∈ E) and we denote them by x ∼ y. For any vertex y ∈ V we denote its
nearest neighbors by

Ny := {x ∈ V : y ∼ x}. (2.1)

Notice that x /∈ Nx. The set {y}∪Ny is said to be interaction domain or plaquette
at y. If for every x ∈ V one has |Nx| < ∞ then the graph is called locally finite.
An edge path or walk joining two vertices x and y is a finite sequence of edges
x = x0 ∼ x1 ∼ . . . xd−1 ∼ xd = y. In this case d is the length of the edge path.
The graph is said to be connected if every two disjoint vertices can be joined by
an edge path. In the sequel, we assume that the graph G is infinite, connected
and locally finite. Note that in this case the set V is automatically countable.
Now for any nonempty Λ ⊆ V we associate its following parts

• complement :
Λc := V \ Λ

• boundary :
∂Λ := {x ∈ Λ : ∃y ∈ Λc; x ∼ y}

• interior :
◦
Λ := Λ \ ∂Λ

• external boundary :

~∂Λ := {y ∈ Λc : ∃x ∈ Λ; x ∼ y}
• closure:

Λ := Λ ∪ ~∂Λ.

By F we denote the net of all finite subsets of V , i.e.

F := {Λ ⊆ V : |V | < ∞}, (2.2)

where | · | denotes the cardinality of a set.
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3. Tessellations on graphs

In this section we propose a tessellation on the considered graphs, which will
play a key role in the construction. Therefore, the resulting quantum Markov
field will depend also on the tessellation.

Fix a “root” y1 ∈ V and define by induction the following sets

V0,1 := {y1}.

Having defined V0,n, put

Vn :=
⋃

y∈V0,n

({y} ∪Ny) and V0,n+1 := V0,n ∪ ~∂Vn.

Define the following set of vertices: V0 :=
⋃

n≥1 V0,n.
From now on, elements of V0 will be called vertices, any other element of

V belongs to some plaquette at a certain element of V0. Notice that in this
construction, for every n, the inner boundary ∂Vn of each Vn contains no vertex:

∂Vn ∩ V0 = ∅.

Since |V | = +∞ and, by assumption, V is connected, one has

|Vn+1| ≥ |V n|+ 1 ≥ |Vn|+ 2, |V0,n+1| ≥ |V0,n|+ 1

It follows that, if Λ is any finite set, there exists N ∈ N such that

Λ ⊆ VN

Therefore {Vn} is an exhaustive sequence of finite subsets recovering the all the
vertices set V .

One can check that

V0 := {y1} ∪
⋃
n≥1

~∂Vn (3.1)

and

V =
⋃

y∈V0

{y} ∪Ny.

Remark 3.1. (i) For each x ∈ V \ V0, there exists at least one y ∈ V0 such
that x belongs to the plaquette at y.

(ii) Each y ∈ V0 belongs to its plaquette (i.e. the plaquette {y} ∪Ny) but no
other one with center in V0.

The set V0 given by (3.1) (or equivalently the family {V0,n; n = 1, 2, · · · } ) is
called tessellation on the graph G.
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4. Quantum Markov Fields

In this section we propose a definition for backward Markov fields, for the same
graph G = (V, E) with the given tessellation {V0,n : n = 1, 2, · · · }.

The map
x ∈ V −→ Hx “ state space on x ”

defines a bundle on V whose fiber is a finite dimensional Hilbert spaceHx. Denote
Ax := B(Hx), x ∈ V . Define for any finite subset Λ ⊆ V the algebra

AΛ :=
⊗
x∈Λ

Ax.

then one get on a canonical way, the quasi-local algebra

AV :=
⊗
x∈V

Ax

defined as the closure of the local algebra

AV,loc :=
⋃
Λ∈F

AΛ,

where F is given by (2.2).
Analogously, one can define for any subset Λ′ ⊆ V , the algebraAΛ′ :=

⊗
x∈Λ′ Ax.

Notice that for Λ ⊆ Λ′ ⊆ V one can see AΛ as C∗-subalgebra of AΛ′ through the
following embedding

AΛ ≡ AΛ ⊗ 1IΛ′\Λ ⊆ AΛ′ .

Definition 4.1. Consider a triplet C ⊆ B ⊆ A of unital C∗-algebras. Recall [2]
that a quasi-conditional expectation with respect to the given triplet is a com-
pletely positive (CP), unital linear map E : A → B such that E(ca) = cE(a), for
all a ∈ A, c ∈ C.

We give the definition of general of backward quantum Markov field, which is
independent of the tessellation.

Definition 4.2. A state ϕ on AV is said to be backward quantum Markov field
if for any sequence {Λn}∞n=0 of finite subsets of V satisfying Λn ⊆ Λn+1, there
exists a pair (ϕΛ0 , {EΛn,Λn+1}∞n=0}) with ϕΛ0 is a state on AΛ0 and EΛn,Λn+1 is
a quasi-conditional expectation with respect to the triplet AΛn ⊆ AΛ̄n

⊆ AΛn+1

such that
ϕ = lim

n→∞
ϕΛ0 ◦ EΛ0,Λ1 ◦ · · · ◦ EΛn,Λn+1 , (4.1)

where the limit is taken in the weak-*-topology.

Remark 4.3. In Definition 4.2, the condition Λn ⊆ Λn+1 for every n ∈ N implies
that Λn ↑ V and the limit state obtained by the right side of the equation (4.1)
is defined on the full algebra AV ,

If ϕ is a backward quantum Markov field in the sense of Definition 4.2, then it
satisfies Definition 4.2 of [5] for any increasing sequence {Λn}∞n=0 of finite subsets
of V such that Λ̄n = Λn+1, to get such a sequence of subsets, we consider Λ0 ∈ F ,
and for ∈ n ≥ 1 put

Λn = Λ̄n−1.
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Clearly one has Λn ⊆ Λn+1 and Λn ↑ V .

Now we introduce a class of backward quantum Markov field that depends on
the tessellation {V0,n, n = 1, 2, · · · }

Definition 4.4. A state ϕ on AV is said to be backward quantum Markov field
with respect to the tessellation {V0,n, n = 1, 2, · · · }, ( or V0-backward quantum
Markov field) if for any sequence {Λn}∞n=0 of finite subsets satisfying

Λn ⊆ Λn+1, ~∂Λ ∩ V0 = ∅ (4.2)

there exists a pair (ϕΛ0 , {EΛn,Λn+1}∞n=0}) with ϕΛ0 is a state on AΛ0 and EΛn,Λn+1

is a quasi-conditional expectation with respect to the triplet AΛn ⊆ AΛ̄n
⊆ AΛn+1

such that

ϕ = lim
n→∞

ϕΛ0 ◦ EΛ0,Λ1 ◦ · · · ◦ EΛn,Λn+1 ,

where the limit is taken in the weak-*-topology.

Now we fix the following product state

ϕ0 :=
⊗
x∈V

ϕ0
x

on the algebra AV , where ϕ0
x is a state on Ax for every x ∈ V . Denote for Λ ⊆ V ,

ϕ0
Λ :=

⊗
x∈Λ

ϕ0
x,

which is the restriction of the state ϕ0
V to AΛ.

We aim to construct a quantum Markov field on the algebra AV through a
perturbation of the product state ϕ0

V .

5. Construction of conditional density amplitudes

It is well known from [2] that quasi-conditional expectations are more conve-
nient than Umegaki conditional expectations (see Definition 5.1) to express the
non-commutative Markov property, therefore we will perturb ϕ-conditional ex-
pectations (see [2]) to get quasi-conditional expectations using a commuting set
of operators with the considered tessellation.

For any ordered pair y ∈ V0 and x ∈ Ny, let be given an operator

K̃(x,y) ∈ A{x,y}

such that it is invertible and the C∗-subalgebra

K = {K̃∗
{x,y} , K̃{x,y} : y ∈ V0, x ∈ Ny}

C∗

(5.1)

is commutative.

Definition 5.1. A Umegaki conditional expectation is a norm one projection from
a C∗-algebra onto one of its C∗-subalgebra .
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Definition 5.2. Let A1,A2 be two C∗-algebras with units respectively I1 and I2

and let A = A1⊗A2. An element K ∈ A is called a conditional density amplitude
with respect to a state ϕ on I1 ⊗A2 if

Eϕ(K∗K) = I1,

where Eϕ is the Umegaki conditional expectation from A onto A1 ⊗ I2 defined
by linear extension of

Eϕ(a1 ⊗ a2) = ϕ(I1 ⊗ a2)a1 ⊗ I2.

We also call K is a conditional density amplitude for the ϕ-conditional expecta-
tion Eϕ.

For each x ∈ V by E0
{x}c we denote the Umegaki conditional expectation from

the algebraA onto the algebraA{x}c defined on localized elements a =
⊗

z∈V az =
ax ⊗ a{x}c by

E0
{x}c(ax ⊗ a{x}c) = ϕ0

x(ax)a{x}c .

One can prove the following

Lemma 5.3. For every pair of vertices (x, y) ∈ V 2

[E0
{x}c , E0

{y}c ] = 0.

Lemma 5.4. For any Λ ∈ F

E0
Λc :=

∏
x∈Λ

E0
{x}c

is well defined, moreover it is a Umegaki conditional expectation from AV onto
AΛc and one has for aΛ ∈ AΛ, aΛc ∈ AΛc

E0
Λc(aΛ ⊗ aΛc) = ϕ0

Λ(aΛ)aΛc . (5.2)

Remark 5.5. The map E0
Λc can be defined, through the equation (5.2), for an

arbitrary part (not necessarily finite) Λ of V and it is still Umegaki conditional
expectation from AV onto AΛc

Proposition 5.6. Let y ∈ V0, the operator

BNy := E0
{y}c

∣∣∣∣∣∣
∏

x∈Ny

K̃{x,y}

∣∣∣∣∣∣
2 ∈ ANy

is invertible.

Proof. Consider B{y}∪Ny :=
∣∣∣∏x∈Ny

K̃{x,y}

∣∣∣2 ∈ A{y}∪Ny and denote its spectrum

by σ(B{y}∪Ny), which is a closed subset of the complex field, while the operator

B{y}∪Ny is positive definite then sigma(BycupNy ⊆]0, ‖K̃{y}∪Ny‖]. Now the spec-
trum σ(B{y}∪Ny) is closed and does not contain zero then there is ε > 0 such that
σ(B{y}∪Ny) ⊆ [ε, ‖B‖], therefore

B{y}∪Ny ≥ ε1I.
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Using the positivity and identity preservation of the map Umegaki-conditional
expectation E0

{y}c , one gets E0
{y}c(B) ≥ ε1I, which means BNy = E0

{y}c is invertible.
�

In the sequel, we assume that for every y ∈ V0 the operator BNy belongs to the
commutant K′ of the algebra K defined by (5.1) in the full algebra AV , note that

under this condition the the operators B
pm1/2
Ny

belongs also to K′.

Lemma 5.7. The operator

K{y}∪Ny :=

 ∏
x∈Ny

K̃{x,y}

 B
−1/2
Ny

is a ϕ0
{y}-conditional density amplitude in the algebra A{y}∪Ny .

Proof. Using the commutativity of the algebra K we get

E0
{y}c

(
K∗
{y}∪Ny

K{y}∪Ny

)
= E0

{y}c

B
−1/2
Ny

 ∏
x∈Ny

K̃{x,y}

∗  ∏
y∈Ny

K̃{x,y}

 B
−1/2
Ny


= (B

−1/2
Ny

)∗E0
{y}c

 ∏
x∈Ny

K̃∗
{x,y}K̃{x,y}

 B
−1/2
Ny

= (B
−1/2
Ny

)∗BNyB
−1/2
Ny

= 1I.

�

Now, for each Λ ∈ F , we define

~∂0Λ :=
⋃

y∈∂Λ∩V0

Ny.

By construction the family

{K∗
{y}∪Ny

, K{y}∪Ny : x ∼ y ∈ V }
is commutative, therefore the following operator is well defined

KΛ∪~∂0Λ :=
∏

y∈Λ∩V0

K{y}∪Ny ∈ AΛ∪~∂0Λ ⊆ AΛ̄ for every Λ ∈ F . (5.3)

Remark 5.8. 1. In general, it is possible that AΛ∪~∂0Λ is a proper sub-algebra

of AΛ̄. Since, by the construction of the tessellation, the set Λ ∪ ~∂0Λ
cannot contain elements of V0.

2. If Λ ∩ V0 = ∅, we convent that KΛ∪~∂0Λ = 1I.

Theorem 5.9. For any Λ ∈ F , the operator KΛ∪~∂0Λ defined by (5.3) is a condi-

tional density amplitude for the Umegaki conditional expectation E0
(Λ∩V0)c.
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Proof. By construction the family {K{y}∪Ny , K
∗
{y}∪Ny

: y ∈ Λ∩V0} is commutative,

then one can write

K∗
Λ∪~∂0Λ

KΛ∪~∂0Λ =
∏

y∈Λ∩V0

K∗
{y}∪Ny

K{y}∪Ny

and using the following property of the tessellation for disjoint elements y and z
of V0 the plaquette at y does not contain z , we conclude that K{y}∪Ny is localized
in {z}c. Then, by Lemma 5.4, one gets

E0
{z}c(K∗

{y}∪Ny
K{y}∪Ny) = K∗

{y}∪Ny
K{y}∪Ny

then after a small iteration, we obtain

E0
(Λ∩V0)c

(
K∗

Λ∪~∂0Λ
KΛ∪~∂0Λ

)
=

∏
y∈Λ∩V0

E0
{y}c(K∗

{y}∪Ny
K{y}∪Ny).

By Lemma 5.7, one has E0
{y}c(K∗

{y}∪Ny
K{y}∪Ny) = 1I, hence we get

E0
(Λ∩V0)c

(
K∗

Λ∪~∂0Λ
KΛ∪~∂0Λ

)
= 1I

�

The following auxiliary results can be easily proved.

Lemma 5.10. For every Λ1 ⊆ Λ2 ⊆ V , one has

E0
Λ1
◦ E0

Λ2
= E0

Λ1
.

Lemma 5.11. For finite subsets of Λ, Λ′ of V with Λ̄ ∩ Λ′ = ∅, one has

K(Λ∪Λ′)∪~∂(Λ∪Λ′) = KΛ∪ ~∂0ΛKΛ′∪~∂0Λ′ . (5.4)

Theorem 5.12. For Λ0 ⊆ Λ̄0 ⊆ Λ, one has

(i) For z ∈ V0 ∩ (Λ \ Λ̄0)

E0
{z}c(K∗

Λ∪~∂0Λ
aΛ0KΛ∪~∂0Λ) = K∗

(Λ\{z})∪~∂0(Λ\{z})aΛ0K(Λ\{z})∪~∂0(Λ\{z}) (5.5)

for every aΛ0 ∈ AΛ0;
(ii)

E0
(Λ\Λ̄0)∩V0

(K∗
Λ∪~∂0Λ

aΛ0KΛ∪~∂0Λ) = K∗
Λ̄0∪~∂0(Λ̄0)

aΛ0KΛ̄0∪~∂0(Λ̄0)

for every aΛ0 ∈ AΛ0;

Proof. (i) For a general Λ0, if z ∈ (Λ\ Λ̄0)∩V0, Nz can intersect ~∂Λ0, but not Λ0.
Therefore, K{z}∪Nz and aΛ0 are localized on disjoint parts then they commute,
and while the family {K{y}∪Ny , K

∗
{y}∪Ny

: y ∈ Λ ∩ V0} is commutative. It follows

from (5.4) that

E0
{z}c(K∗

Λ∪~∂0Λ
aΛ0KΛ∪~∂0Λ)

= E0
{z}c(

∏
y∈Λ∩V0

K∗
{y}∪Ny

aΛ0

∏
y∈Λ∩V0

K{y}∪Ny)

= E0
{z}c

(
(K∗

{z}∪Nz
K{y}∪Ny)× (K∗

(Λ\{z})∪~∂0(Λ\{z})aΛ0K(Λ\{z})∪~∂0(Λ\{z}))
)

= E0
{z}c

(
K∗
{z}∪Nz

K{y}∪Ny

)
K∗

(Λ\{z})∪~∂0(Λ\{z})aΛ0K(Λ\{z})∪~∂0(Λ\{z})
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and by Lemma 5.7 one has E0
{z}c

(
K∗
{z}∪Nz

K{y}∪Ny

)
= 1I. Hence, we get

E0
{z}c(K∗

Λ∪~∂0Λ
aΛ0KΛ∪~∂0Λ) = K∗

(Λ\{z})∪~∂0(Λ\{z})aΛ0K(Λ\{z})∪~∂0(Λ\{z})

(ii) Iterating the procedure of (5.5) to cover all z ∈ (Λ \ Λ̄0) ∩ V0 one finds

E0
(Λ\Λ0)∩V0

(
K∗

Λ∪~∂0Λ
aΛ0KΛ∪~∂0Λ

)
=

 ∏
z∈(Λ\Λ̄0)∩V0

E0
{z}c

 (
K∗

Λ∪~∂0Λ
aΛ0KΛ∪~∂0Λ

)
= K∗

Λ̄0∪~∂0(Λ̄0)
aΛ0KΛ̄0∪~∂0(Λ̄0).

�

Remark 5.13. Keeping the notations of Theorem 5.12 if ~∂Λ0 ∩ V0 = ∅ then using
the same argument one gets

E0
Λ\Λ0

(K∗
Λ∪~∂0Λ

aΛ0KΛ∪~∂0Λ) = K∗
Λ0∪~∂0Λ0

aΛ0KΛ0∪~∂0Λ0

for every a0 ∈ AΛ0 .

6. Main result

In this section, we prove a main result of the paper. First we need an auxiliary
result.

Proposition 6.1. Let Λ1, Λ2 ∈ F with Λ1 ⊆ Λ2. Define

EΛ1,Λ2(a) = E0
(Λ2\Λ̄1)c

(
K∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
aK(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
(6.1)

for a ∈ AV . Then EΛ1,Λ2 is a quasi-conditional expectation with respect to the
following triplet AΛ1 ⊆ AΛ̄1

⊆ AΛ2.

Proof. The map EΛ1,Λ2 is clearly linear and valued in AΛ̄1
. Unitality: using

commutativity of the family {E{z}c : z ∈ (Λ2 \Λ1)∩V0} (by Lemma 5.3), one can
write

E0
(Λ2\Λ1)c = E0

((Λ2\Λ̄1)∩V c
0 )c ◦ E0

((Λ2\Λ1)∩V0)c (6.2)

and using Theorem 5.9 for Λ = Λ2 \ Λ̄1 we obtain

E0
((Λ2\Λ̄1)∩V0)c

(
K∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
K(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
= 1I

then using (6.2) one finds

E0
(Λ2\Λ̄1)c

(
K∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
K(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
= E0

((Λ2\Λ̄1)∩V c
0 )c(1I) = 1I

hence,
EΛ1,Λ2(1I) = 1I

. Complete positivity: One can check that for any y ∈ V0 the map

a 7→ E{y}c(a) := E0
{y}c(K∗

{y}∪Ny
aK{y}∪Ny)
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is completely positive. Now using the commutativity of the operators K{y}∪Ny , y ∈
V0 one gets

EΛ1,Λ2 = E0
(Λ2\Λ̄1)∩V0

◦

 ∏
y∈(Λ2\Λ̄1)∩V0

E{y}c


then EΛ1,Λ2 is the composition of completely positive maps, so it is completely
positive.

Let a ∈ AΛ2 , c ∈ AΛ1 , while K∗
(Λ2\Λ1)∪~∂0(Λ2\Λ1)

∈ A(̄Λ2\Λ1) then it commutes

with c, then using the fact that

E0
(Λ2\Λ1)c(cd) = cE0

(Λ2\Λ1)c(d)

for every d ∈ A, one gets

EΛ1,Λ2(ca) = E0
(Λ2\Λ̄1)c

(
K∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
caK(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
= E0

(Λ2\Λ̄1)c

(
cK∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
aK(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
= cE0

(Λ2\Λ̄1)c

(
K∗

(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)
aK(Λ2\Λ̄1)∪~∂0(Λ2\Λ̄1)

)
= cEΛ1,Λ2(a).

Hence, EΛ1,Λ2 is a quasi-conditional expectation with respect to the given triplet.
�

Now we pass to our main result.

Theorem 6.2. For each Λ ∈ F define the state ϕ̃Λ on A by

ϕ̃Λ(a) := ϕ0(K∗
Λ∪~∂0Λ

aKΛ∪~∂0Λ).

Then the net {ϕ̃Λ}Λ∈F converges in the weak-*-topology, moreover the limiting
state ϕ is a backward Markov field on AV with respect to the tessellation V0.

Proof. First we prove the existence of the limit. Due to the density argument, it
is sufficient to establish the existence of the limit in the local algebra AV,loc.

Let a ∈ AV,loc then a ∈ AΛ0 for some Λ0 ∈ F . For Λ ∈ F with Λ0 ⊆ Λ, we
have

ϕ̃Λ(a) = ϕ0
(
K∗

Λ∪~∂0Λ
aKΛ∪~∂0Λ

)
= ϕ0 ◦ E(Λ\Λ̄0)c

(
K∗

Λ∪~∂0Λ
aKΛ∪~∂0Λ

)
and by Theorem 5.12 one gets

E(Λ\Λ̄0)c

(
K∗

Λ∪~∂0Λ
aKΛ∪~∂0Λ

)
= K∗

Λ̄0∪~∂0Λ̄0
aKΛ̄0∪~∂0Λ̄0

,

so

ϕ̃Λ(a) = ϕ0(K∗
Λ̄0∪~∂0Λ̄0

aKΛ̄0∪~∂0Λ̄0
) = ϕ̃Λ̄0

(a).

As Λ → V , we find that Λ0 ⊆ Λ up to some order, hence the net {ϕ̃(a)}Λ∈F ;Λ0⊆Λ

is stationary. This means that

lim
Λ→V ;Λ0⊆Λ

ϕ̃Λ(a) = ϕΛ̄0
(a) =: ϕ(a).



216 L. ACCARDI, F. MUKHAMEDOV, and A. SOUISSI

Therefore the limit exist on the local algebra, and yet it exists on the full algebra
AV .

Now we establish that the state ϕ is a quantum Markov field.
Let {Λn | n ∈ N}n∈N be a family of subset of F satisfying

Λn ⊆ Λn+1, ~∂Λn ∩ V0 = ∅

Let EΛn,Λn+1 be given by (6.1). Then, for a ∈ AVn , we have

ϕ̃Λn ◦ EΛn,Λn+1(a)

= ϕ0
(
K∗

Λn∪~∂0Λn
EΛn,Λn+1(a)KΛn∪~∂0Λn

)
= ϕ0

(
K∗

Λn∪~∂0Λn
E0

(Λn+1\Λ̄n)c

(
K∗

(Λn+1\Λ̄n)∪~∂0(Λn+1\Λ̄n)
aK(Λn+1\Λ̄n)∪~∂0(Λn+1\Λ̄n)

)
KΛn∪~∂0Λn

)
Since KΛn∪~∂0Λn

∈ AΛ̄n
⊆ A(Λn+1\Λ̄n)c and E0

(Λn+1\Λ̄n)c is a Umegaki conditional

expectation from AV onto A(Λn+1\Λ̄n)c then one finds

ϕ̃Λn ◦ EΛn,Λn+1(a)

= ϕ0E0
(Λn+1\Λ̄n)c

(
K∗

Λn∪~∂0Λn
K∗

(Λn+1\Λ̄n)∪~∂0(Λn+1\Λ̄n)
aK(Λn+1\Λ̄n)∪~∂0(Λn+1\Λ̄n)KΛn∪~∂0Λn

)
and by the assumption (4.2) one has

~∂Λn ∩ V0 = ∅

then Λ̄n ∩ V0 = Λn ∩ V0 and

KΛn∪~∂0Λn
=

∏
y∈Λn∩V0

K{y}∪Ny =
∏

y∈Λ̄n∩V0

K{y}∪Ny = KΛ̄n∪~∂0Λ̄n
.

From Lemma 5.4 it follows that

KΛn+1∪~∂0Λn+1
= KΛ̄n∪Λ̄1

K(Λn+1\Λ̄n)∪~∂0(Λn+1\Λ̄n)

then we obtain

ϕ̃Λn ◦ EΛn,Λn+1(a) = ϕ0 ◦ E0
(Λn+1\Λ̄n)c(K

∗
Λn+1∪~∂0Λn+1

aKΛn+1∪~∂0Λn+1
)

Hence, by construction one gets

ϕ0
V = ϕ0

V ◦ E(Λn+1\Λ̄n)c

so

ϕ̃Λn ◦ EΛn,Λn+1(a) = ϕ0
V (K∗

Λn+1∪~∂0Λn+1
aKΛn+1∪~∂0Λn+1

) = ϕ̃Λn+1(a). (6.3)

Now iterating the equation (6.3), we obtain

ϕ̃n = ϕ̃Λ0 ◦ EΛ0,Λ1 ◦ · · · ◦ EΛn−1,Λn .

Therefore

ϕV = lim ϕΛ0 ◦ EΛ0,Λ1 ◦ · · · ◦ EΛn−1,Λn ,

where ϕΛ0 = ϕ̃Λ0dAΛ0
. �
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The provided construction allows us to produce a lot of interesting examples
of quantum Markov fields on arbitrary connected, infinite, locally finite graphs.
Note that the construction is based on a specific tessellation on the considered
graph, it allows us to express the Markov property for the local structure of the
graph. We note that even in the classical case, the proposed construction gives
other ways to define Markov fields different to the existing ones (see [12]). This
construction opens new perspectives in the theory of phase transitions in the
scheme of quantum Markov fields (comp. [9]).
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