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ON THE GENERALIZED FREE ENERGY INEQUALITY

N. BEBIANO,1 and J. DA PROVIDÊNCIA2

Communicated by Y. T. Poon

Abstract. The generalized free energy inequality known from statistical me-
chanics is stated in the finite dimension setting and the maximizing matrix
is restored. Our approach uses the maximum-entropy inference principle and
numerical range methods.

1. Introduction

The maximum entropy principle goes back to Boltzmann in the nineteenth
century [6] and is one of the standard techniques in quantum inference problems
[9].

Pure states of a quantum system are described by vectors of a Hilbert space H,
throughout assumed of finite dimension. Quantum observables are represented by
Hermitian matrices in the algebra Mn of complex n×n matrices, n ∈ N. We focus
on the case of two observables encoded into a single matrix A = H + iK ∈ Mn

with real part

H = <(A) =
1

2
(A + A∗)

and imaginary part

K = =(A) =
1

2i
(A− A∗).

The set of Hermitian matrices

Dn := {ρ ∈ Mn : ρ ≥ 0, Trρ = 1},
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where ρ ≥ 0 means that the matrix ρ is positive semi-definite, is the so called
state space. In physics, elements of Dn are called density matrices and we use
synonymously the terms state and density matrices. The eigenvalues of a density
matrix are nonnegative and give the probabilities of the physical states described
by the corresponding eigenvectors. Density matrices of rank one represent pure
states and density matrices of rank greater than one represent mixed states. Let
ρ ∈ Mn, ρ ≥ 0, Trρ = 1 represent a density matrix. The expected values of H
and K in the state ρ are given, respectively, by

TrHρ = x, TrKρ = y. (1.1)

The von Neumann entropy of the state ρ ∈ Dn is

S(ρ) = −Trρ log ρ, (1.2)

where by convention 0 log 0 = 0. The von Neumann entropy quantifies the degree
of disorder of the state ρ [12]. The equilibrium mixed state is identified with the
most disordered state compatible with the expected values of the observables H
and K.

The following problem arises: given TrHρ and TrKρ, to determine ρ which
describes the equilibrium mixed state.

This problem, known in information theory as the maximum entropy inference
problem, consists on the maximization of the entropy S = −Trρ log ρ with respect
to ρ subject to the constraint (1.1). This is equivalent to the maximization, with
respect to ρ, of the functional

Ξ(β, γ, ρ) = βTrρH + γTrρK − Trρ log ρ, (1.3)

where β, γ ∈ R are Lagrange multipliers. This functional is precisely the gener-
alized free energy, known from statistical mechanics, multiplied by β.

The maximum entropy inference problem [4, 9, 10] is mathematically related
to the concept of numerical range, a classical object in operator theory [8]. We
recall that the numerical range of A is the set of complex numbers

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1},
which is convex as asserted by the Toeplitz-Hausdorff Theorem [5, 11]. In other
words W (A) is the set of all expected values of H and K in pure states. We
notice that x + iy ∈ W (H + iK), with x, y given by (1.1).

A generalization of the numerical range, introduced by Westwick, is the c-
numerical range of A ∈ Mn with c = (c1, . . . , cn) ∈ Rn, defined by

Wc(A) = {
n∑

j=1

cjx
∗
jAxj : {x1, . . . xn} is an orthonormal basis of Cn}.

Obviously, Wc(A) reduces to W (A) for c = (1, 0, . . . , 0).
The n! points

zσ =
∑

j

cσ(j)αj, σ ∈ Sn,

where Sn is the symmetric group of degree n and α1, . . . αn denote the eigenvalues
of A, are called σ-points and they obviously belong to Wc(A). We recall that
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Wc(A) is convex and when A is normal, Wc(A) is the convex hull of the σ-points
[1, 13]. In our study, we assume that x + iy is in the interior of W (H + iK).
Points in a line segment on the boundary of W (H + iK) are generated by linear
combinations of the vectors that generate the end points of that line segment,
which are readily determined.

The rest of this note is organized as follows. In Section 2 the famous gener-
alized free energy inequality in statistical mechanics is derived. With the help
of maximum entropy method, the maximum entropy inference problem is solved
and the maximizing matrix is restored. In Section 3, a solution is illustrated with
an Example.

2. Generalized free energy inequality

Next, we derive the free energy inequality for two observables, also known as
the generalized free energy inequality, and characterize the occurrence of equality.
In [2, 3] inequalities in the same framework have been obtained.

Theorem 2.1. For H, K Hermitian matrices, and any ρ positive semidefinite,
and fixed parameters β, γ ∈ R we have

log TreβH+γK ≥ Trρ(βH + γK − log ρ) (2.1)

with equality occurring if and only if

ρ = ρ0 :=
eβH+γK

TreβH+γK
. (2.2)

Proof. As the trace is invariant under unitary similarity transformations, let us
replace ρ by UρU∗ in (1.3), where U is a unitary matrix. Obviously, Trρ log ρ
remains unchanged. The maximum of

TrUρU∗(βH + γK − log(UρU∗)) (2.3)

with respect to U , occurs when

[UρU∗, (βH + γK)] = 0,

where, as usual, [X, Y ] = XY − Y X denotes the commutator of X and Y .
This easily follows, assuming that the maximum is reached for U in the compact
unitary group Un, replacing U by exp(iεS)U , where S is an arbitrary Hermitian
matrix and ε a sufficiently small real number, and expanding (2.3) up to first order
in ε. Since this term must vanish for any S, we conclude that [UρU∗, (βH+γK)] =
0. Therefore, the Hermitian matrices UρU∗ and (βH + γK) are simultaneously
unitarily diagonalizable. Let us denote the real eigenvalues of ρ and (βH + γK),
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respectively, by η1, . . . , ηn and by λ1, . . . , λn, so that we may write

TrUρU∗(βH + γK − log(UρU∗)) =
∑

j

(ηjλj − ηj log ηj)

=
∑

j

ηj(log eλj − log ηj) = −
∑

j

ηj

(
log

(
ηje

−λj

∑
k

eλk

)
− log

∑
k

eλk

)

= −
∑

j

eλj∑
k eλk

(
ηje

−λj

∑
k

eλk

)
log

(
ηje

−λj

∑
k

eλk

)
+ log

∑
j

eλj

≤ −
∑

j

eλj∑
k eλk

(
ηje

−λj

∑
k

eλk − 1

)
+ log

∑
j

eλj

= log
∑

j

eλj = log TreβH+γK ,

where the inequality follows because x log x ≥ x−1. Thus, we get the inequality
in (2.1). It is obvious that the equality occurs if and only if ηj = eλj/

∑
k eλk . �

It is convenient to introduce the function Ψ : R2 → R defined as

Ψ(β, γ) = log Tr eβH+γK . (2.4)

Having in mind (1.3) and (2.1), we get Ψ(β, γ) ≥ Ξ(β, γ, ρ), for any (β, γ) ∈ R2.

Theorem 2.2. For ρ0 given by (2.2), H, K Hermitian commuting matrices and
Ψ : R2 → R defined in (2.4), the following holds

Trρ0H =
∂Ψ

∂β
, Trρ0K =

∂Ψ

∂γ
.

Proof. From [H, K] = 0 it follows that

eβH+γK = eβHeγK .

Thus
∂(eβH+γK)

∂β
= HeβH+γK ,

∂(eβH+γK)

∂γ
= KeβH+γK ,

so that
∂Ψ

∂β
=

TrHeβH+γK

TreβH+γK
,

∂Ψ

∂γ
=

TrKeβH+γK

TreβH+γK
.

The result follows trivially. �

Theorem 2.3. For ρ0 defined in (2.2) and H, K Hermitian matrices, then
Trρ0(H + iK) is a boundary point of Wρ0(H + iK).

Proof. Let us consider the Hermitian matrix

<(e−iθ(H + iK)) = cos θH + sin θK, θ ∈ R.

We recall that that Wρ0(cos θH + sin θK) gives the projection of the convex set
Wρ0(H + iK) in the direction θ. Consider now the direction θ0 such that

cos θ0 =
β√

β2 + γ2
, sin θ0 =

γ√
β2 + γ2

.
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Let λ1(θ0) ≥ . . . ≥ λn(θ0), denote the eigenvalues of cos θ0H + sin θ0K and let

β0 =
√

β2 + γ2. The eigenvalues of βH + γK = β0(cos θ0H + sin θ0K) are

β0λ1(θ0) ≥ . . . ≥ β0λn(θ0).

From (2.2), it follows that the eigenvalues of ρ0 are

χ exp(β0λ1(θ0)) ≥ . . . ≥ χ exp(β0λn(θ0)),

where χ = (eβ0λ1(θ0) + . . . + eβ0λn(θ0))−1. The projection of Wρ0(H + iK) in the
direction θ0 is the line segment with endpoints

χ(λ1(θ0) exp(β0λ1(θ0)) + . . . + λn(θ0) exp(β0λn(θ0)))

and

χ(λn(θ0) exp(β0λ1(θ0)) + . . . + λ1(θ0) exp(β0λn(θ0))).

Notice that the eigenvalues of ρ0 and cos θ0H + sin θ0K are ordered in exactly
the same manner if −π/2 ≤ θ0 ≤ π/2 and in the opposite way if π/2 ≤ θ0 ≤ 3π/2,
because the exponential is an increasing function of its argument. Since

λ1(θ0) exp(β0λ1(θ0)) + . . . + λn(θ0) exp(β0λn(θ0))

is an endpoint of the projection of Wρ0(H + iK) in the direction θ0, it is obvious
that Trρ0(H+iK) is a boundary point of Wρ0(H+iK), as it lies on the supporting
line of Wρ0(H + iK) perpendicular to the direction θ0. �

In the case of commuting H and K, the following holds.

Theorem 2.4. For ρ0 given by (2.2), and if H, K commute, then Trρ0(H + iK)
is a σ-point on the boundary of Wρ0(H + iK).

Proof. We clearly have

[ρ0, H] = [ρ0, K] = [H, K] = 0.

Therefore, we may assume that the Hermitian matrices ρ0, H and K are in
diagonal form. Thus, the result follows. �

3. The maximum entropy inference method

In Theorem 2.1 we have proved that

ρ0(β, γ) =
exp(βH + γK)

Tr exp(βH + γK)

gives the equilibrium mixed state, for the values of the parameters β, γ that
produce x, y according to (1.1). Substituting in (1.1) ρ by ρ0 given by (2.2), we
conclude that

TrHeβH+γK

TreβH+γK
= x(β, γ),

TrKeβH+γK

TreβH+γK
= y(β, γ). (3.1)

To solve the maximum entropy inference problem, we have to determine (β, γ),
from the knowledge of x(β, γ) and y(β, γ), that is, we determine the pre-image
(β, γ) of the function f : R2 → R2, such that (β, γ) → (x(β, γ), y(β, γ)). This
allows the restorement of the maximizing matrix in (2.2), as illustrated in the
next example.
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Theorem 2.2 states the relation between the parameters β, γ and the constraints
on TrHρ and TrKρ. We may observe that the set of points (x(β, γ), y(β, γ))
in (3.1), associated with the Lagrange multipliers β, γ, for β = β0 cos θ, γ =
β0 sin θ, 0 ≤ θ ≤ 2π, and fixed β0, tends to ∂W (H + iK) when β0 → +∞. It is
instructive to investigate the maximum entropy inference problem for β0(cos θH+
sin θK), for fixed β0 and arbitrary θ, and for fixed θ and arbitrary β0. This is done
in the next Example. The procedure is valid for any finite number of dimensions
and may be easily implemented.

Figure 1. The curves described by x(β, γ), y(β, γ) with β =
β0 cos θ, γ = β0 sin θ, for β0 = 0.125, 0.25, 0.5, 1, 2, +∞, with
0 ≤ θ < 2π, and when θ = nπ/6, n = 1, 2, . . . , 12, with 0 ≤ β0 <
+∞. The horizontal and the vertical axes, represent, respectively,
x(β, γ) and y(β, γ).

Example 3.1. Let us consider the observables

H =
1

2

0 1 1
1 0 1
1 1 0

 , K =
i

2

 0 −i i
i 0 −i
−i i 0


and

A =

0 1 0
0 0 1
1 0 0

 , A = H + iK.

It may be seen that

σ(βH + γK) = {β, (−β −
√

3γ)/2, (−β +
√

3γ)/2}, β, γ ∈ R,

and so W (A) is a regular triangle having one vertical side. From (2.4) it follows
that

Ψ(β, γ) = log
(
eβ + e(−β−

√
3γ)/2 + e(−β +

√
3γ)/2

)
,
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and so

∂Ψ

∂β
=

2eβ − e(−β−
√

3γ)/2 − e(−β+
√

3γ)/2

2
(
eβ + e(−β−

√
3γ)/2 + e(−β +

√
3γ)/2

) = x(β, γ),

∂Ψ

∂γ
=

(−
√

3e(−β−
√

3γ)/2 +
√

3e(−β+
√

3γ)/2

2
(
eβ + e(−β−

√
3γ)/2 + e(−β +

√
3γ)/2

) = y(β, γ). (3.2)

Next, we consider x(β, γ), y(β, γ) in (3.2), for

β = β0 cos θ, γ = β0 sin θ.

Fixing β0 and varying θ we obtain a closed curve surrounding the origin. Fixing θ

Figure 2. The maximum entropy and the angle θ are presented,
respectively, on the vertical and horizontal axis, for β = 8 cos θ, γ =
8 sin θ. Notice the pronounced peaks for θ = ±π/3, π. See Example
3.1

and varying β0, we obtain curves connecting the origin with corners of W (H+iK).
These curves are displayed in Fig. 1 for β0 = 0.125, 0.25, 0.5, 1, 2, in the
limit β0 → +∞, and for θ = nπ/6, n = 1, 2, . . . , 12. In the limit β0 → +∞,
∂W (H + iK)) is obtained i.e., the limit of the solution ρ0 corresponds for any
θ to a pure state, with entropy S = 0, meaning that ρ0 is unitarily similar to
diag(1, 0, 0), except at the angles θ = ±π/3, π, where S = log 2, so that then ρ0

is unitarily similar to diag(1/2, 1/2, 0). From the matrix ρ0, and having in mind
(1.2) and (2.4), the values of the entropy and of the generalized free energy follow.
In Fig 2, the entropy S is represented for β0 = 8. In fig 3, the generalized free
energy times β is represented for β0 = 8.

Notice the peculiar behavior for θ = ±π/3, π, where the entropy attains its
maximum value, always greater than log 2, and the generalized free energy multi-
plied by β attains its minimum value. On the other hand, at the angles ±2π/3, 0,
the maximum entropy attains its minimum value and the free energy multiplied
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by β attains its maximum value. If β0 is large enough, the entropy is very close
to 0 for almost any 0 ≤ θ ≤ 2π, except for θ = π,±π/3, where it is very close
to log 2 suggesting a discontinuous behavior of density matrix. The maximum of
the entropy becomes increasingly sharper, and the minimum increasingly broader
as β0 increases. We notice that the limit of ρ0 as β0 → +∞ is diag(0, 1, 0)
and diag(0, 0, 1), diag(1, 0, 0), respectively for −π/3 < θ < π/3, −π < θ <
−π/3, π/3 < θ < π, while it becomes diag(1/2, 0, 1/2), diag(1/2, 1/2, 0) and
diag(0, 1/2, 1/2), since Trρ0 = 1, respectively for θ = π/3, θ = −π/3, θ = π.

More specifically, we find

lim
β0→+∞

ρ0(β0, θ) =

 diag(1, 0, 0) for − π/3 < θ < π/3
diag(0, 1, 0) for π/3 < θ < π

diag(0, 0, 1) for − π < θ < −π/3

Figure 3. The generalized free energy multiplied by β, i.e. Ψ,
and the angle θ are represented, respectively, on the vertical and
horizontal axis, for β = 8 cos θ, γ = 8 sin θ, Notice the peculiar
behavior for θ = ±2π/3, 0, and for θ = ±π/3, π.

and

lim
β0→+∞

ρ0(β0, θ) =


1
2
diag(1, 1, 0) for θ = π/3
1
2
diag(0, 1, 1) for θ = π

1
2
diag(1, 0, 1) for θ = −π/3,

since Trρ0 = 1, so that the limit of ρ0 is a pure state except for θ = −π/3, π/3, π,
that is, when θ is the angle of the perpendicular direction to one of the line seg-
ments in the boundary of W (H + iK). At these points, an effective discontinuity
of the limit of the density matrix arises.
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