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Abstract. We prove that for a right linear bounded normal operator on a
quaternionic Hilbert space (quaternionic bounded normal operator) the norm
and the numerical radius are equal. As a consequence of this result we give
a new proof of the known fact that a non zero quaternionic compact normal
operator has a non zero right eigenvalue. Using this we give a new proof of
the spectral theorem for quaternionic compact normal operators. Finally, we
show that every quaternionic compact operator is norm attaining and prove
the Lindenstrauss theorem on norm attaining operators, namely, the set of all
norm attaining quaternionic operators is norm dense in the space of all bounded
quaternionic operators defined between two quaternionic Hilbert spaces.

1. Introduction

It is well known that for a bounded normal operator on a complex Hilbert
space, the norm and the numerical radius are the same. In this note, we prove
this result for right linear normal operators on a quaternionic Hilbert space. As
a consequence of this result, we show that every compact normal operator on a
quaternionic Hilbert space has a non zero right eigenvalue. This is a crucial point
in proving the spectral representation theorem for such operators.

The spectral theorem for compact normal operators on a quaternionic Hilbert
space is appeared in a recent article by Ghiloni et al [4]. The authors mainly
used the left multiplication on the space of all bounded right linear operators
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on a quaternionic Hilbert space. The spectral theorem for matrices with quater-
nionic entries was studied in [1]. In this article, we give a new proof of the
spectral theorem for compact operators on general quaternionic Hilbert spaces
(see [4, Theorem 1.2]). First, we prove that the norm and the numerical radius
of a quaternionic normal operator are the same. To prove this, we associate a
unique complex normal operator with the given quaternionic normal operator
which preserve the norm and the numerical radius. Using this technique and the
classical result, we obtain the result. As a consequence, we prove that a quater-
nionic compact normal operator has a non zero right eigenvalue. Finally, with
this idea, we give a new proof of the spectral theorem for quaternionic compact
normal operators. Later, we extend the Lindenstrauss theorem on norm attaining
operators to the quaternionic case. A simple proof in the classical case can be
found in [6].

Organization of the article: In the second section we give necessary details
of quaternionic Hilbert spaces and right linear operators on such spaces. In
the third section we prove that for a normal quaternionic operator the norm
and the numerical radius are equal. Using this we prove the spectral theorem
for quaternionic compact operators. In the final section, we consider the norm
attaining operators and prove the well known Lindenstrauss theorem on norm
attaining operators in the case of quaternionic operators.

2. Preliminaries

We denote the division ring of real quaternions by H. If q ∈ H, then q =
q0 + q1i + q2j + q3k, where qn ∈ R for n = 0, 1, 2, 3 and i, j, k satisfy the following
conditions:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j.

The conjugate of q is q = q0− q1i− q2j − q3k and |q| :=
√

q2
0 + q2

1 + q2
2 + q2

3. The
imaginary part of H is defined by Im(H) = {q ∈ H : q = −q} . The set of all unit
imaginary quaternions is denoted by S, that is S := {q ∈ Im(H) : |q| = 1} and
the unit sphere of H by SH.

Here we list out some of the properties of quaternions, which we need later.

(1) For p, q ∈ H, we have pq = q p, |pq| = |p||q| and |p| = |q|.
(2) We define an equivalence relation on H as, p ∼ q if and only if p = s−1qs for

some s 6= 0 ∈ H. The equivalence class of p is [p] := {s−1qs : 0 6= s ∈ H}.
(3) For each m ∈ S, Cm := {α + mβ : α, β ∈ R} is a real subalgebra of H and

is called as the slice complex plane generated by 1 and m.
(4) We have Cm ∩ Cn = R if m 6= ±n, and H = ∪m∈SCm.

A right H-module H is called a quaternionic pre-Hilbert space if there exists
a Hermitian quaternionic scalar product; namely a function 〈·, ·〉 : H × H → H
satisfying the following:

(1) 〈u, vp + wq〉 = 〈u, v〉 p + 〈u, w〉 q for all u, v, w ∈ H and p, q ∈ H
(2) 〈u, v〉 = 〈v, u〉 for all u, v ∈ H
(3) 〈u, u〉 ≥ 0 for all u ∈ H and 〈u, u〉 = 0 iff u = 0.
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Let H be a quaternionic pre-Hilbert space with Hermitian quaternionic scalar
product 〈·, ·〉 on H. Such an inner product 〈·, ·〉 satisfies the Cauchy-Schwarz
inequality:

|〈u, v〉|2 ≤ 〈u, u〉 〈v, v〉 for all u, v ∈ H.

Define ‖u‖ = 〈u, u〉
1
2 , for every u ∈ H. Then ‖ · ‖ is a norm in the usual real

sense. If the normed space (H, ‖ · ‖) is complete, then H is called a quaternionic
Hilbert space.

The norm induced by this inner product satisfy the parallelogram law:

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) for all u, v ∈ H.

We denote the unit sphere of the Hilbert space H by SH .
An operator T : H → H is said to be right linear if

(1) T (x + y) = Tx + Ty for all x, y ∈ H
(2) T (xq) = (Tx)q for all x ∈ H, q ∈ H.

A right linear operator T : H → H is said to be bounded if there exists a M > 0
such that ‖Tx‖ ≤ M ‖x‖ for all x ∈ H. For such an operator the norm is defined
by

‖T‖ = sup {‖Tu‖ : u ∈ SH} .

We denote the space of all bounded right linear operators on H by B(H). For
T ∈ B(H), the null space is defined by N(T ) = {x ∈ H : Tx = 0} and the range
space is defined by R(T ) = {Tx : x ∈ H}.

Let T ∈ B(H). Then there exists a unique operator T ∗ ∈ B(H) such that
〈u, Tv〉 = 〈T ∗u, v〉 for all u, v ∈ H. This operator T ∗ is called the adjoint of T.

Let T ∈ B(H). Then T is said to be self-adjoint if T = T ∗, anti self-adjoint
if T ∗ = −T , normal if TT ∗ = T ∗T and unitary if TT ∗ = T ∗T = I. If T is
self-adjoint and 〈x, Tx〉 ≥ 0 for all x ∈ H, then T is said to be positive.

Let T ∈ B(H) be positive. Then there exists a unique positive operator S ∈
B(H) such that S2 = T. Such a S is called the square root of T and is denoted

by S = T
1
2 .

If S ∈ B(H), then the operator |S| := (S∗S)
1
2 is called as the modulus of S.

In fact, there exists a partial isometry V (‖V x‖ = ‖x‖ for all x ∈ N(V )⊥) such
that T = V |T | and N(V ) = N(T ). This decomposition is unique and is known
as the polar decomposition of T (We refer to [2, Theorem 2.20] for more details).

Let T ∈ B(H) and q ∈ H. Define

∆q(T ) := T 2 − T (q + q) + I|q|2,

where, if r ∈ R, the operator Tr ∈ B(H) is defined by setting (Tr)x := (Tx)r for
all x ∈ H. The spherical spectrum of T is defined as

σS(T ) := {q ∈ H : ∆q(T ) is not invertible in B(H)}.

The spherical point spectrum is defined as

σpS(T ) := {q ∈ H : ∆q(T ) is not one-to-one }.

All the above mentioned material can be found in [2].
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The numerical range and the numerical radius of T are defined by

W (T ) = {〈x, Tx〉 : x ∈ SH}
and

w(T ) = sup {|〈x, Tx〉| : x ∈ SH},
respectively.

For a normal operator on a complex Hilbert space the numerical range is con-
vex, whereas, this is not the case for normal operators on quaternionic Hilbert
spaces (see [3] for details).

Let T ∈ B(H). Then T is said to be compact if T (B) is pre-compact for every
bounded subset B of H. Equivalently, (T (xn)) has a convergent subsequence for
every bounded sequence (xn) of H.

3. Numerical radius of a normal operator

Suppose that H is a non zero quaternionic Hilbert space with Hermitian quater-
nionic scalar product 〈·, ·〉. Let m ∈ S and J ∈ B(H) be an anti self-adjoint,
unitary operator. Define HJm

± := {u ∈ H : Ju = ±um}. Then HJm
± is a non-zero

closed subset of H. The restriction of the inner product on H to HJm
± is a Cm-

valued inner product and with respect to this inner product HJm
± is a Hilbert

space. In fact, if we consider H as a Cm linear space, H has the decomposition:
H = HJm

+ ⊕HJm
− (see [2, pages 21-22] for details). We need the following results

to prove our main theorem.

Proposition 3.1. [2, Proposition 3.11] If T : HJm
+ → HJm

+ is a bounded Cm− lin-

ear operator, then there exists unique bounded, right H− linear operator T̃ : H →
H such that T̃ (u) = T (u), for every u ∈ HJm

+ .
Furthermore,

(1) ‖T̃‖ = ‖T‖
(2) JT̃ = T̃ J

(3) (T̃ )∗ = T̃ ∗

(4) If S : HJm
+ → HJm

+ is a bounded Cm− linear operator, then S̃T = S̃T̃

(5) If S is the inverse of T, then S̃ is the inverse of T̃ .

On the other hand, if V ∈ B(H), then there exists a unique U ∈ B(HJm
+ ) such

that Ũ = V if and only if JV = V J .

If T is normal (but not self-adjoint), there exists an anti self-adjoint, unitary
J ∈ B(H) such that TJ = JT (see [2, Theorem 5.9] for details). Hence Propo-
sition 3.1 holds with V = T . If T is self-adjoint, then the existence of an anti
self-adjoint, unitary J ∈ B(H) such that TJ = JT is guaranteed by [2, Theorem
5.7(b)].

Remark 3.2. If S, T ∈ B(HJm
+ ), then it can be easily shown that S̃ + T = S̃ + T̃

by following the same steps as in [2, Proposition 3.11].

Theorem 3.3. Let T ∈ B(H) be normal. Then w(T ) = ‖T‖.
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Proof. First note that SHJm
+

⊆ SH . Let T+ ∈ B(HJm
+ ) be such that T̃+ = T as in

Proposition 3.1. Then

w(T ) = sup {|〈Tx, x〉| : x ∈ SH} ≥ sup {|〈Tx, x〉| : x ∈ SHJm
+
}

= sup {|〈T+x, x〉| : x ∈ SHJm
+
}

= w(T+).

Since T+ is normal, we have ‖T+‖ = w(T+). But ‖T+‖ = ‖T‖. This shows that
w(T ) ≥ ‖T‖. But the other inequality is clear. Thus w(T ) = ‖T‖. �

As a consequence we obtain a new proof of the following known result.

Theorem 3.4. [4, Theorem 1.1] If T ∈ B(H) is compact and normal, then there
exists a q ∈ σpS(T ) such that |q| = ‖T‖.

Proof. If T = 0, then it suffices to set q = 0. Suppose T 6= 0. By Theorem
3.3, there exists a sequence (xn) in SH such that |〈xn, Txn〉| → ‖T‖ as n → ∞.
If necessary, choose a subsequence of (xn), (we again denote it by (xn)) such
that 〈xn, Txn〉 → q for some q ∈ H \ {0} with |q| = ‖T‖. Since T is compact,
there exists a subsequence (xnk

) of (xn) such that (Txnk
) is convergent. Let

y := lim
k→∞

Txnk
. Observe that ‖Txnk

‖ ≤ ‖T‖‖xnk
‖ ≤ ‖T‖ for every k. It follows

that ‖y‖ ≤ ‖T‖ = |q|. Then

‖Txnk
− xnk

q‖2 = 〈Txnk
− xnk

q, Txnk
− xnk

q〉

= ‖Txnk
‖2 − 〈xnk

, Txnk
〉q − q̄〈xnk

, Txnk
〉+ |q|2

→ ‖y‖2 − |q|2 ≤ 0.

Hence ‖y‖ = |q|; in particular, y 6= 0. So T (xnk
) − xnk

q → 0 as n → ∞.
Since (Txnk

) converges to y, it follows that xnk
q → y. Thus Ty = lim

k→∞
T (xnk

q) =

lim
k→∞

T (xnk
)q = yq. Thanks to Proposition 4.5 of [4], we have that q ∈ σpS(T ). �

Using Theorem 3.4 as in the case of complex compact operators, we can give
a new proof of the spectral theorem for quaternionic compact normal operators
(see [4, Theorem 1.2]).

Definition 3.5. Let H0 be a quaternionic closed subspace of a quaternionic
Hilbert space H. Then H0 is said to be invariant under T ∈ B(H) if T (H0) ⊆ H0.
If H0 and H⊥

0 are both invariant under T , then H0 is said to be a reducing subspace
for T .

Example 3.6. Let T ∈ B(H) and Tφ = φq, where |q| = ‖T‖ and φ ∈ SH . Then
H0 := spanH{φ} is a non trivial reducing subspace for T . As H0 is right linear
we can see that H0 is an invariant subspace for T . To show that H0 reduces T ,
it is enough to prove H0 to be invariant under T ∗. Note that

|q|2 = ‖Tφ‖2 = 〈T ∗Tφ, φ〉 = q̄〈T ∗φ, φ〉.
Thus 〈T ∗φ, φ〉 = q. As |〈T ∗φ, φ〉| = |q|, we have T ∗φ = φp for some p ∈ H. Then
q = 〈T ∗φ, φ〉 = 〈φp, φ〉 = p̄. Thus p = q̄. As T ∗ is right linear, we can conclude
that T ∗(H0) ⊆ H0.
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Lemma 3.7. Let T ∈ B(H) be normal and H0, a reducing subspace for T . Let
T0 := T |H0. Then

(1) T ∗0 = T ∗|H0

(2) T0 is normal.

Proof. Let x, y ∈ H0. Then

〈T ∗0 x, y〉 = 〈x, T0y〉 = 〈x, Ty〉 = 〈T ∗x, y〉.

We can conclude that T ∗0 x− T ∗x ∈ H⊥
0 . Also, since H0 reduces both T and T ∗,

it follows that T ∗0 x − T ∗x ∈ H0. That is T ∗0 x = T ∗x for each x ∈ H0. This
completes the proof of (1).

To prove (2), let x ∈ H0. Then we have

〈T ∗0 T0x, x〉 = 〈Tx, Tx〉
= 〈x, T ∗Tx〉
= 〈x, TT ∗x〉
= 〈TT ∗x, x〉
= 〈T0T

∗|H0x, x〉
= 〈T0T

∗
0 x, x〉.

Now the conclusion follows from the polarization identity. �

Theorem 3.8. Let T ∈ B(H) be compact and normal. Then there exists a system
of eigenvectors (φn) and corresponding right quaternion eigenvalues (qn) such that

Tu =
∞∑

n=1

φnqn 〈φn|u〉 , for all u ∈ H. (3.1)

Moreover, if (qn) is infinite, then qn → 0 as n →∞.
The series on the right hand side of Equation (3.1) converges in the operator

norm of B(H).

Proof. If T = 0, then there is nothing to prove. Hence assume that T 6= 0. Set
T1 = T and H1 = H. Since T1 is compact and normal by Theorem 3.4, there
exists a φ1 ∈ H1 \ {0} and q1 ∈ H \ {0} such that Tφ1 = φ1q1. Also, note
that ‖T1‖ = |q1|. By Example 3.6, the space H1 := spanH{φ1}⊥ is a reducing
subspace for T . Next, let T2 := T1|H2 . Then either T2 = 0 or T2 6= 0. If
T2 = 0, there is nothing to proceed further. If T2 6= 0, then T2 is normal by
(2) of Lemma 3.7. Thus, again by Theorem 3.4 there exists q2 ∈ H \ {0} with
|q2| = ‖T2‖, φ2 ∈ H2 \ {0} such that Tφ2 = T2φ2 = φ2q2. Note that |q2| ≤ |q1|
and φ1 and φ2 are orthogonal by construction.

Let H3 := spanH{φ1, φ2}⊥. Since T is normal and H3 is a reducing subspace
for T3 := T |H3 , we have that T3 is normal and compact. Now either T3 = 0 or
T3 6= 0. If T3 6= 0, then there exists a quaternion q3 ∈ H \ {0} and φ3 ∈ H3 \ {0}
such that Tφ3 = T3φ3 = φ3q3 and |q3| ≤ |q2|. By construction we have that φ3 is
orthogonal to both φ1 and φ2.
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Proceeding in this way, we end up with either Tn = 0 for some n ∈ N or there
exists a sequence (qn) of non zero quaternions and a sequence of vectors (φn) ⊂ H
satisfying:

(1) Tφn = φnqn and |qn| = ‖Tn‖ for each n ∈ N,
(2) |qn+1| ≤ |qn| for each n ∈ N,
(3) φr is orthogonal to φs for each r, s ∈ N and r 6= s.

Next, we claim that if (qn) is infinite, then qn → 0 as n → ∞. If this is not
the case, there exists ε > 0 such that |qn| > ε for infinitely many n ∈ N. Let
S = {r ∈ N : |qr| > ε}. Then we have Tφr = φrqr for each r ∈ S. Thus, for
r, s ∈ S, we have

‖Tφr − Tφs‖2 = ‖φrqr − φsqs‖2 = |qr|2 + |qs|2 > 2ε2.

This shows that (Tφr) is not Cauchy in H. But, this contradicts the fact that T
is compact. Hence our assumption that qn 9 0 is wrong.

Next, we obtain the representation of T as in Equation (3.1).

For x ∈ H, define xn := x −
n−1∑
r=1

φr〈φr, x〉 for each n ∈ N. Then 〈xn, φr〉 = 0

for each r = 1, 2, . . . , n− 1.
We have the following two cases:

Case 1: Tn = 0 for some n ∈ N

In this case, we have 0 = Tnxn = Txn. Thus, Tx =
n−1∑
r=1

φrqr〈φr, x〉 for each

x ∈ H. That is, T is a finite rank operator with rank n− 1.
Case 2: Tn 6= 0 for any n ∈ N

Since xn ∈ H⊥
n for each n ∈ N, it can be easily checked by the Pythagorean

property that ‖xn‖ ≤ ‖x‖ for each n ∈ N. Thus,

‖Tx−
n∑

r=1

φrqr〈φr, x〉‖ = ‖Tnxn‖ ≤ |qn|‖xn‖ ≤ |qn|‖x‖ → 0 as n →∞.

That is Tx =
∞∑

n=1

φnqn〈φn, x〉 for each x ∈ H. �

Remark 3.9. Note that if q is a right eigenvalue for T and p ∈ [q], then p is
also a right eigenvalue for T . Hence by Theorem 3.8, we have that σpS(T ) =
{[qn] : n ∈ N} and σS(T ) ⊆ σpS(T ) ∪ {0}.

4. Norm attaining Operators

In this section we extend the Lindenstrauss theorem on norm attaining oper-
ators from the classical case to the quaternionic case. Explicitly, we show that
the set of all quaternionic norm attaining operators is dense in the space of all
bounded quaternionic operators with respect to the operator norm.

Recall that a bounded right linear operator T is said to be norm attaining if
there exists a x0 ∈ SH such that ‖Tx0‖ = ‖T‖. As ‖Tx‖ = ‖|T |x‖ for all x ∈ H
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and ‖T‖ = ‖|T |‖, it follows that T is norm attaining if and only if |T | is norm
attaining.

We show that every quaternionic compact operator is norm attaining. In the
case of operators on a complex Hilbert space, this can be proved by the help of
Banach-Alaouglu’s theorem. In our case we prove it by using Theorem 3.4.

We denote the set of all norm attaining operators defined between H1 and H2

by N (H1, H2) and N (H, H) by N (H).

Proposition 4.1. Let T ∈ B(H) be compact. Then T ∈ N (H).

Proof. Since T is compact, |T | is compact as well (see [5]). The operator |T |
is also self-adjoint and hence normal because it is positive by definition (see [4,
Proposition 2.17(b)]). Hence by Theorem 3.4, ‖T‖ is a right eigenvalue. Hence
the result follows. �

Lemma 4.2. Let T ∈ B(H) be normal and T+ be such that T̃+ = T as in
Proposition 3.1. Then T+ ∈ N (HJm

+ ) if and only if T ∈ N (H).

Proof. If T+ ∈ N (HJm
+ ), then there exists x0 ∈ SHJm

+
such that ‖T+x0‖ = ‖T+‖.

Since ‖T+‖ = ‖T‖, the conclusion follows.
On the other hand, suppose T ∈ N (H). Choose x0 ∈ SH such that ‖Tx0‖ =

‖T‖. Let y0 :=
1√
2
(x0 − (Jx0)m). Then y0 ∈ HJm

+ . Also,

‖y0‖2 =
1

2
‖(x0 − (Jx0)m)‖2

=
1

2
〈(x0 − (Jx0)m), (x0 − (Jx0)m)〉

=
1

2

(
〈x0, x0〉 − 〈(Jx0)m, x0〉 − 〈x0, (Jx0)m〉+ 〈(Jx0)m, (Jx0)m〉

)
=

1

2

(
1− 〈(Jx0)m, x0〉 − 〈x0, (Jx0)m〉+ 1

)
.

Note that as J is anti self-adjoint, 〈x0, Jx0〉 = −〈x0, Jx0〉. With this, we have
〈(Jx0)m, x0〉 = −〈x0, Jx0〉m. Hence ‖y0‖ = 1.

Next using the fact that J commutes with T and T ∗ and T (HJm
+ ) ⊆ HJm

+ , we
can conclude that

‖T+y0‖2 = ‖Tx0‖2 = ‖T‖2 = ‖T+‖2.

Thus T+ attains norm at y0. �

Proposition 4.3. Let B ∈ B(H) be positive. Then for given ε > 0, there exists
a rank one positive operator C with ‖C‖ ≤ ε and a unit vector y ∈ N(B)⊥ such
that

(B + C)y = ‖B + C‖y.

That is B + C attains norm at y.

Proof. Let ε > 0. Since B ≥ 0, there exists an anti-self-adjoint, unitary operator
J such that JB = BJ . Let B+ be the unique operator on HJm

+ such that B̃+ = B.
Now, by the classical theorem ([6, Lemma 1]), there exists a rank one positive
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operator, denote it by C+ such that ‖C+‖ ≤ ε and B+ + C+ ∈ N (HJm
+ ). In fact,

there exists a unit vector y ∈ N(B+)⊥ such that (B+ + C+)y = ‖B+ + C+‖y.

Now, by Remark 3.2, B + C = ˜B+ + C+ and B + C ∈ N (H) by Lemma 4.2. It
is clear that C is a positive, rank one operator on H.

Also, we have that (B + C)y = (B+ + C+)y = ‖B+ + C+‖y = ‖B + C‖y. As
N(B) = N(B+), we can conclude that y ∈ N(B)⊥. �

Next, we extend Proposition 4.3 to the general case. For this purpose we use
the polar decomposition of a quaternionic operator. Here we give the details.

Theorem 4.4. The set N (H) is dense in B(H) with respect to the operator norm
of B(H).

Proof. Let T = V |T | be the polar decomposition of T . Given n ∈ N, By Propo-
sition 4.3, there exists a rank one, positive operator Cn with ‖Cn‖ ≤ 1

n
such that

|T |+ Cn ∈ N (H). In fact, there exists a sequence (xn) ⊂ H of unit vectors such
that (|T | + Cn)xn = ‖|T | + Cn‖xn for each n ∈ N. Define Kn := V Cn for each
n ∈ N. Note that xn ∈ N(T )⊥ = N(V )⊥. Since V |N(V )⊥ is an isometry, we have
that ‖(T + Kn)xn‖ = ‖V (|T | + Cn)xn‖ = ‖(|T | + Cn)xn‖ = ‖|T | + Cn‖. But
‖T + Kn‖ ≤ ‖|T |+ Cn‖ = ‖(T + Kn)xn‖. This shows that T + Kn attains norm
at xn. �

Remark 4.5. We can also prove that N (H1, H2) is norm dense in B(H1, H2) fol-
lowing the similar steps as in Theorem 4.4. For this purpose one has to obtain
the polar decomposition theorem for T ∈ B(H1, H2). Again this can be done by
following the similar steps in [2, Theorem 2.20].
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