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ALMOST PERIODICITY OF ABSTRACT VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS
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Abstract. The main purpose of this paper is to investigate almost periodic
properties of various classes of (a, k)-regularized C-resolvent families in Banach
spaces. We contemplate the work of many other authors working in this field,
giving also some original contributions and applications. In general case, (a, k)-
regularized C-resolvent families under our considerations are degenerate and
their subgenerators are multivalued linear operators or pairs of closed linear
operators. We also consider the class of (a, k)-regularized (C1, C2)-existence
and uniqueness families, where the operators C1 and C2 are not necessarily
injective, and provide several illustrative examples of abstract Volterra integro-
differential equations which do have almost periodic solutions.

1. Introduction and preliminaries

There is an enormous literature devoted to the study of various types of almost
periodic properties of abstract integro-differential equations in Banach spaces (for
abstract differential equations of first and second order, we refer the reader to [4]-
[5], [7], [11]-[13], [16], [23], [27], [36] and [43]; there is a huge number of other
research papers that we cannot cite here because of space limitations). Compre-
hensive survey of results on abstract non-degenerate almost periodic differential
equations can be found in the monograph [28] by Y. Hino, T. Naito, N. V. Minh
and J. S. Shin.

Copyright 2016 by the Tusi Mathematical Research Group.
Date: Received: Jan. 11, 2017; Accepted: Jun 2, 2017.
2010 Mathematics Subject Classification. Primary 35B15; Secondary 47D06, 47D62, 34G25.
Key words and phrases. abstract Volterra integro-differential equations, (a, k)-regularized C-

resolvent families, multivalued linear operators, degenerate integro-differential equations, almost
periodicity.

353



354 M. KOSTIĆ

The genesis of this paper is motivated by the fact that we have not been able
to locate any significant reference which treats the almost periodicity of (a, k)-
regularized C-resolvent families in Banach spaces, even in the case that they are
non-degenerate in time or that C = I. We focus special attention on the analysis
of almost periodic properties of abstract degenerate Volterra integro-differential
equations, which has not been the usual case with the investigations carried out
so far. In the present state of our knowledge, we do know to quote only two
research papers concerning almost periodic and asymptotically almost periodic
properties of abstract degenerate differential equations: the paper [41] by Q.-P.
Vu (devoted to the study of asymptotical almost periodicity) and the paper [34]
by N. T. Lan; in both papers, the authors have considered abstract degenerate
differential equations of first order.

In [37, Section 11.4], J. Prüss has analyzed the almost periodic solutions,
Stepanov almost periodic solutions and asymptotically almost periodic solutions
of the following abstract non-degenerate Cauchy problem

u′(t) =

∫ ∞

0

A0(s)u
′(t− s) ds +

∫ ∞

0

dA1(s)u(t− s) + f(t), t ∈ R,

where A0 ∈ L1([0,∞) : L(Y,X)), A1 ∈ BV ([0,∞) : L(Y,X)), X and Y are Ba-
nach spaces such that Y is densely and continuously embedded into X. Unques-
tionably, this was the first work where the existence and uniqueness of various
types of almost periodic solutions of abstract non-degenerate Volterra integro-
differential equations have been considered. Only a year after the appearing the
monograph [37], Q.-P. Vu [42] enquired into the almost periodicity of the abstract
Cauchy problems like

u′(t) = Au(t) +

∫ ∞

0

dBu(τ)u(t− τ) + f(t), t ∈ R,

where A is a closed linear operator acting on a Banach space X, (B(t))t≥0 is a
family of closed linear operators on X and f : R → X is continuous. Mention
should also be made of paper [2] by R. Agarwal, B. de Andrade and C. Cuevas,
where the authors have considered various types of periodicity for solutions of
the following fractional differential equation

Dα
t u(t) = Au(t) + Dα−1f(t, u(t)), t ∈ R,

where 1 < α < 2, Dα
t u(t) is a Riemann-Liouville fractional type derivative of

order α, A : D(A) ⊆ X → X is a linear, densely defined, sectorial operator
on a complex Banach space X, and f : R×X → X is a pseudo-almost periodic
function satisfying suitable conditions in the space variable x. Further information
on various types of almost periodic solutions of abstract non-degenerate Volterra
equations and abstract non-degenerate fractional differential equations can be
obtained by consulting the references [3], [15] and [17], written by C. Lizama and
his collaborators.

The organization and main ideas of this paper are described as follows. After
giving some preliminary results and definitions, in Section 2 we recollect the
most important facts about multivalued linear operators in Banach spaces (for
further information concerning the theory of multivalued linear operators, we
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refer the reader to the monographs [14] by R. Cross, [22] by A. Favini and A.
Yagi, [32] by the author, and references cited therein). In a separate subsection,
we consider multivalued linear operators as subgenerators of various types of
(a, k)-regularized (C1, C2)-existence and uniqueness families, with the operators
C1 and C2 being not necessarily injective. After that, we single out the class of
(a, k)-regularized C-resolvent families for special considerations. In Definition 2.6
and Proposition 2.7 (Definition 4.10 and Proposition 4.11), we introduce the class
of degenerate K-convoluted C-groups (degenerate (a, k)-regularized C-resolvent
group families) and prove its composition property. The main aim of Section 3 is
to observe that a great number of structural results proved by Q. Zheng, L. Liu
[45] and T.-J. Xiao, J. Liang [43, Section 7.1.1] continue to hold in degenerate
case. This section is almost completely written in expository manner and the
proofs are given only for a few results. Our main contributions are presented in
Section 4, where we investigate almost periodic properties of (a, k)-regularized
C-resolvent families subgenerated by multivalued linear operators and almost
periodic properties of (a, k)-regularized C-resolvent families generated by a pair
of closed linear operators A, B with domains and ranges contained in a complex
Banach space X. The abstract results obtained in Section 4 seem to be completely
new even in non-degenerate case and they can be simply incorporated in the study
of existence and uniqueness of almost periodic solutions of the following abstract
degenerate Volterra equation

Bu(t) =

∫ t

0

a(t− s)Au(s) ds + f(t), t ≥ 0,

and the following abstract Volterra inclusion

u(t) ∈ A
∫ t

0

a(t− s)u(s) ds + f(t), t ≥ 0,

where a ∈ L1
loc([0,∞)), a 6= 0, f : [0,∞) → X is continuous and A is a closed

multivalued linear operator on X.
We use the standard notation throughout the paper. Unless specifed otherwise,

we shall always assume henceforth that X is a complex Banach space. If Y is
also such a space, then we denote by L(X, Y ) the space of all continuous linear
mappings from X into Y ; L(X) ≡ L(X, X). If A is a closed linear operator acting
on X, then the domain, kernel space and range of A will be denoted by D(A),
N(A) and R(A), respectively. Since no confusion seems likely, we will identify A
with its graph. By [D(A)] we denote the Banach space D(A) equipped with the
graph norm ‖x‖[D(A)] := ‖x‖+ ‖Ax‖, x ∈ D(A). By X∗ we denote the dual space
of X.

Given s ∈ R in advance, set dse := inf{l ∈ Z : s ≤ l}. By C([0, τ) : X), where
0 < τ ≤ ∞, we denote the space consisting of all X-valued continuous functions
on the interval [0, τ). The Gamma function is denoted by Γ(·) and the principal
branch is always used to take the powers; the convolution like mapping ∗ is given
by f ∗ g(t) :=

∫ t

0
f(t− s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ), ζ > 0.

Fairly complete information about fractional calculus and fractional differential
equations can be obtained by consulting [9], [19], [29]-[32] and references cited
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therein. The Mittag-Leffler function Eα,β(z), defined by

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
, z ∈ C,

is known to play a crucial role in the anaysis of fractional differential equations.
For the basic properties of Mittag-Leffler functions, we refer the reader to [9] and
[19].

Throughout the paper, we shall always assume that the function k(t) is a scalar-
valued continuous kernel on [0,∞). The following condition on function k(t) will
be used occasionally:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and
there exists β ∈ R such that

k̃(λ) := L(k)(λ) := lim
b→∞

∫ b

0
e−λtk(t) dt :=

∫∞
0

e−λtk(t) dt exists for all λ ∈

C with <λ > β. Put abs(k) :=inf{<λ : k̃(λ) exists}, δ̃(λ) := 1 and denote
by L−1 the inverse Laplace transform.

We refer the reader to [4], [43, Chapter 1] and [31, Section 1.2] for further infor-
mation concerning the vector-valued Laplace transform.

The basic facts about the theory of abstract degenerate differential equations
of first and second order can be obtained by consulting the monographs [22] by
A. Favini, A. Yagi and [39] by G. A. Sviridyuk, V. E. Fedorov. The theory of
abstract degenerate Volterra integro-differential equations is an active field of
research. We can recommend for the reader the forthcoming monograph [32].

Let I = R or I = [0,∞), and let f : I → X be continuous. Given ε > 0, we
call τ > 0 an ε-period for f(·) iff

‖f(t + τ)− f(t)‖ ≤ ε, t ∈ I. (1.1)

The set constituted of all ε-periods for f(·) is denoted by ϑ(f, ε). It is said that
f(·) is almost periodic, a.p. for short, iff for each ε > 0 the set ϑ(f, ε) is relatively
dense in I, which means that there exists l > 0 such that any subinterval of I of
length l meets ϑ(f, ε). We call f(·) weakly almost periodic, w.a.p. for short, iff
for each x∗ ∈ X∗ the function x∗(f(·)) is almost periodic. A family of functions
F ⊆ XI is said to be uniformly almost periodic iff for each ε > 0 there exists
l > 0 such that any subinterval of I of length l contains a number τ > 0 such
that (1.1) holds for all f ∈ F .

By AP (I : X) we denote the vector space consisting of all almost periodic
functions from the interval I into X. Equipped with the sup-norm, AP (I : X)
becomes a Banach space.

In [32, Theorem 2.10.16], we have recently reconsidered S. El Mourchid’s re-
sult [20, Theorem 2.1] concerning the connection between the imaginary point
spectrum and hypercyclicity of strongly continuous semigroups. The analysis
contained in [32, Example 2.10.17] enables one to simpy construct examples of
degenerate first order Cauchy problems (DFP)R and (DFP)L whose strong solu-
tions exist and are almost periodic for all initial values belonging a non-trivial
subspace X0 of the pivot space X = BUC(R); cf. Section 2 for the notion, and
Example 4.15-Example 4.16 for similar applications.
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For the sequel, we need the following definition.

Definition 1.1. Let I = R or I = [0,∞), and let (F (t))t∈I ⊆ L(X) be a strongly
continuous operator family. It is said that (F (t))t∈I is (weakly) almost periodic
iff for each x ∈ X the mapping t 7→ F (t)x, t ∈ I is (weakly) almost periodic. It is
said that (F (t))t∈I is uniformly almost periodic iff the family {F (·)x : ‖x‖ ≤ 1}
is uniformly almost periodic.

The concept of almost periodicity was first studied by H. Bohr in 1925 and
later generalized by V. Stepanov, H. Weyl and A. S. Besicovitch, amongst many
others. Almost periodic Banach space valued functions has been investigated
in [8], [24], [35] and [44]; concerning almost automorphic and almost periodic
functions in Banach spaces, we can also recommend the monographs [24]-[25] by
G. M. N’Guérékata and [18] by T. Diagana.

The most intriguing properties of almost periodic vector-valued functions are
collected in the following lemma.

Lemma 1.2. Let f ∈ AP (R : X). Then the following holds:

(i) f(t) is bounded, i.e., supt∈R ‖f(t)‖ < ∞;
(ii) if g ∈ AP (R : X), h ∈ AP (R : C), then f + g and hf ∈ AP (R : X);

(iii) Pr(f) := limt→∞
1
t

∫ t

0
e−irsf(s) ds exists for all r ∈ R (Bohr’s transform

of f(·)) and Pr(f) := limt→∞
1
t

∫ t+α

α
e−irsf(s) ds for all α, r ∈ R;

(iv) if Pr(f) = 0 for all r ∈ R, then f(t) = 0 for all t ∈ R;
(v) σ(f) := {r ∈ R : Pr(f) 6= 0} is at most countable;
(vi) if c0 * X, which means that X does not contain an isomorphic copy of

c0, and g(t) =
∫ t

0
f(s) ds (t ∈ R) is bounded, then g ∈ AP (R : X);

(vii) if (gn)n∈N is a sequence in AP (R : X) and (gn)n∈N converges uniformly to
g, then g ∈ AP (R : X);

(viii) if f ′ ∈ BUC(R : X), then f ′ ∈ AP (R : X).

Before proceeding any further, we would like to mention that the necessary and
sufficient condition for X to contain c0 is given in [4, Theorem 4.6.14]: c0 ⊆ X iff
there exists a divergent series

∑∞
n=1 xn in X which is unconditionally bounded,

i.e., there exists M ≥ 0 such that∥∥∥∥∥
m∑

j=1

xnj

∥∥∥∥∥ ≤ M,

whenever nj ∈ N (j = 1, 2, · · ·, m) such that n1 < n2 < · · · < nm.
Let us recall that a non-empty subset Λ of R is called harmonious iff for each

ε > 0 the set ⋂
λ∈Λ

{
τ ∈ R :

∣∣eiλτ − 1
∣∣ ≤ ε

}
is relatively dense in R. It is well known that a subset of a harmonious set Λ is
harmonious as well as that for any finite set F the set Λ + F is also harmonious.
Any non-empty finite set and certain lacunary infinite sequences are harmonious,
as well.
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Almost periodicity of functions with values in a general vector topological space
has been introduced and analyzed for the first time by G. M. N’Guérékata in [26];
see also [10], [24] and references cited therein. For the sake of convenience and
better exposition, our results will be formulated in the setting of Banach spaces.

2. Multivalued linear operators in Banach spaces

Let X and Y be Banach spaces. A multivalued map (multimap)A : X → P (Y )
is said to be a multivalued linear operator (MLO) iff the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;
(ii) Ax +Ay ⊆ A(x + y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y, then we say that A is an MLO in X. It is well-known that, for any
x, y ∈ D(A) and λ, η ∈ C with |λ|+ |η| 6= 0, we have λAx+ ηAy = A(λx+ ηy).
If A is an MLO, then A0 is a linear submanifold of Y and Ax = f + A0 for
any x ∈ D(A) and f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)}. Then the set
A−10 = {x ∈ D(A) : 0 ∈ Ax} is called the kernel of A and it is denoted by either
N(A) or Kern(A). The inverse A−1 of an MLO is defined by D(A−1) := R(A)
and A−1y := {x ∈ D(A) : y ∈ Ax}. It can be simply verified that A−1 is an
MLO in X, as well as that N(A−1) = A0 and (A−1)−1 = A. If N(A) = {0},
i.e., if A−1 is single-valued, then A is said to be injective. It is worth noting that
Ax = Ay for some two elements x and y ∈ D(A), iff Ax ∩ Ay 6= ∅; furthermore,
if A is injective, then the equality Ax = Ay holds iff x = y.

For any mapping A : X → P (Y ) we define Ǎ := {(x, y) : x ∈ D(A), y ∈ Ax}.
Then A is an MLO iff Ǎ is a linear relation in X×Y, i.e., iff Ǎ is a linear subspace
of X × Y.

If A, B : X → P (Y ) are two MLOs, then we define its sum A+ B by D(A+
B) := D(A) ∩ D(B) and (A + B)x := Ax + Bx, x ∈ D(A + B). It is clear that
A+ B is likewise an MLO.

Let A : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z is an SCLCS.
The product ofA and B is defined by D(BA) := {x ∈ D(A) : D(B)∩Ax 6= ∅} and
BAx := B(D(B)∩Ax). Then BA : X → P (Z) is an MLO and (BA)−1 = A−1B−1.
The scalar multiplication of an MLO A : X → P (Y ) with the number z ∈ C,
zA for short, is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A). It is
clear that zA : X → P (Y ) is an MLO and (ωz)A = ω(zA) = z(ωA), z, ω ∈ C.

The integer powers of an MLO A : X → P (X) are defined recursively as
follows: A0 =: I; if An−1 is defined, set

D(An) :=
{
x ∈ D(An−1) : D(A) ∩ An−1x 6= ∅

}
,

and

Anx :=
(
AAn−1

)
x =

⋃
y∈D(A)∩An−1x

Ay, x ∈ D(An).

We can prove inductively that (An)−1 = (An−1)−1A−1 = (A−1)n =: A−n, n ∈ N
and D((λ−A)n) = D(An), n ∈ N0. Let us recall that, if A is single-valued, then
the above definitions are consistent with the usual definition of powers of A.
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If A : X → P (Y ) and B : X → P (Y ) are two MLOs, then we write A ⊆ B iff
D(A) ⊆ D(B) and Ax ⊆ Bx for all x ∈ D(A). Assume now that a linear single-
valued operator S : D(S) ⊆ X → Y has domain D(S) = D(A) and S ⊆ A,
where A : X → P (Y ) is an MLO. Then S is called a section of A; in this case,
we have Ax = Sx +A0, x ∈ D(A) and R(A) = R(S) +A0.

Suppose that A is an MLO in X. Then we say that a point λ ∈ C is an
eigenvalue of A iff there exists a vector x ∈ X \ {0} such that λx ∈ Ax; we call x
an eigenvector of operator A corresponding to the eigenvalue λ. Observe that, in
purely multivalued case, a vector x ∈ X \ {0} can be an eigenvector of operator
A corresponding to different values of scalars λ. The point spectrum of A, σp(A)
for short, is defined as the union of all eigenvalues of A.

It is said that an MLO A : X → P (Y ) is closed if for any two sequences
(xn) in D(A) and (yn) in Y such that yn ∈ Axn for all n ∈ N we have that the
preassumptions limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax.

If A : X → P (Y ) is an MLO, then we define the adjoint A∗ : Y ∗ → P (X∗) of
A by its graph

A∗ :=
{(

y∗, x∗
)
∈ Y ∗ ×X∗ :

〈
y∗, y

〉
=
〈
x∗, x

〉
for all pairs (x, y) ∈ A

}
.

It is simpy verified that A∗ is a closed MLO, and that 〈y∗, y〉 = 0 whenever
y∗ ∈ D(A∗) and y ∈ A0.

We will use the following important lemmae.

Lemma 2.1. (cf. [32, Section 1.1]) Let Ω be a locally compact, separable metric
space, and let µ be a locally finite Borel measure defined on Ω. Suppose that
A : X → P (Y ) is a closed MLO. Let f : Ω → X and g : Ω → Y be µ-integrable,
and let g(x) ∈ Af(x), x ∈ Ω. Then

∫
Ω

f dµ ∈ D(A) and
∫

Ω
g dµ ∈ A

∫
Ω

f dµ.

Lemma 2.2. (cf. [32, Section 1.2]) Suppose that A : X → P (Y ) is a closed
MLO. Assume, further, that x0 ∈ X, y0 ∈ Y and 〈x∗, x0〉 = 〈y∗, y0〉 for all
pairs (x∗, y∗) ∈ X∗ × Y ∗ satisfying that 〈x∗, x〉 = 〈y∗, y〉 whenever y ∈ Ax. Then
y0 ∈ Ax0.

Before we switch to Subsection 2.1, we need to remind ourselves of the basic
facts regarding the C-resolvent sets of multivalued linear operators in Banach
spaces and the well-posedness of related abstract degenerate Volterra inclusions.
Our standing assumptions is that A is an MLO in X, as well as that C ∈ L(X)
and CA ⊆ AC (this is equivalent to say that, for any (x, y) ∈ X × X, we have
the implication (x, y) ∈ A ⇒ (Cx,Cy) ∈ A; by induction, we immediately get
that CAk ⊆ AkC for all k ∈ N). It is worth noting here that we allow C to be
possibly non-injective. Then the C-resolvent set of A, ρC(A) for short, is defined
as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued bounded operator on X.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A)); the
resolvent set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ−A)−1 (λ ∈ ρ(A)).
The basic properties of C-resolvent sets of single-valued linear operators continue
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to hold in our framework; for example, the Hilbert resolvent formula and the
generalized resolvent equation formulae are still valid in our setting ([30]-[31]).

In [32], we have recently considered the C-wellposedness of following abstract
degenerate Volterra inclusion:

Bu(t) ⊆ A
t∫

0

a(t− s)u(s) ds + F(t), t ∈ [0, τ), (2.1)

where a ∈ L1
loc([0, τ)), a 6= 0, A : X → P (X) and B : X → P (X) are given

multivalued linear operators, and F : X → P (X) is a given mutivalued mapping,
as well as the following fractional Sobolev inclusions:

(DFP)R :

{
Dα

t Bu(t) ∈ Au(t) + F(t), t ≥ 0,
(Bu)(j)(0) = Bxj, 0 ≤ j ≤ dαe − 1,

where we assume that B = B is single-valued, and

(DFP)L :

{
BDα

t u(t) ⊆ Au(t) + F(t), t ≥ 0,
u(j)(0) = xj, 0 ≤ j ≤ dαe − 1,

where α > 0 and Dα
t denotes the Caputo fractional derivative ([9], [31]).

In the following general definition, we introduce various types of solutions to
the abstract degenerate inclusion (2.1).

Definition 2.3. ([32]) A function u ∈ C([0, τ) : X) is said to be a pre-solution of
(2.1) iff (a∗u)(t) ∈ D(A) and u(t) ∈ D(B) for t ∈ [0, τ), as well as (2.1) holds. By
a solution of (2.1), we mean any pre-solution u(·) of (2.1) satisfying additionally
that there exist functions uB ∈ C([0, τ) : X) and ua,A ∈ C([0, τ) : X) such that

uB(t) ∈ Bu(t) and ua,A(t) ∈ A
∫ t

0
a(t− s)u(s) ds for t ∈ [0, τ), as well as

uB(t) ∈ ua,A(t) + F(t), t ∈ [0, τ).

Strong solution of (2.1) is any function u ∈ C([0, τ) : X) satisfying that there
exist two continuous functions uB ∈ C([0, τ) : X) and uA ∈ C([0, τ) : Y ) such
that uB(t) ∈ Bu(t), uA(t) ∈ Au(t) for all t ∈ [0, τ), and

uB(t) ∈ (a ∗ uA)(t) + F(t), t ∈ [0, τ).

2.1. Degenerate (a, k)-regularized C-resolvent family. Let X and Y be two
complex Banach spaces. In [32], we have recently introduced the following defi-
nitions:

Definition 2.4. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, A : X → P (X) is an MLO, C1 ∈ L(Y,X), and C2 ∈ L(X).

(i) Then it is said that A is a subgenerator of a (local, if τ < ∞) mild (a, k)-
regularized (C1, C2)-existence and uniqueness family (R1(t), R2(t))t∈[0,τ) ⊆
L(Y,X) × L(X) iff the mappings t 7→ R1(t)y, t ≥ 0 and t 7→ R2(t)x,
t ∈ [0, τ) are continuous for every fixed x ∈ X and y ∈ Y, as well as the
following conditions hold:( t∫

0

a(t− s)R1(s)y ds, R1(t)y − k(t)C1y

)
∈ A, t ∈ [0, τ), y ∈ Y and (2.2)
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t∫
0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x, whenever t ∈ [0, τ) and (x, y) ∈ A.

(2.3)
(ii) Let (R1(t))t∈[0,τ) ⊆ L(Y, X) be strongly continuous. Then it is said that A

is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C1-existence
family (R1(t))t∈[0,τ) iff (2.2) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(X) be strongly continuous. Then it is said that A is
a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C2-uniqueness
family (R2(t))t∈[0,τ) iff (2.3) holds.

Definition 2.5. Suppose that 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, A : X → P (X) is an MLO, C ∈ L(X) and CA ⊆ AC. Then it is
said that a strongly continuous operator family (R(t))t∈[0,τ) ⊆ L(X) is an (a, k)-
regularized C-resolvent family with a subgenerator A iff (R(t))t∈[0,τ) is a mild
(a, k)-regularized C-uniqueness family having A as subgenerator, R(t)C = CR(t)
and R(t)A ⊆ AR(t) (t ∈ [0, τ)).

Any (a, k)-regularized C-resolvent family under our consideration will be also
a mild (a, k)-regularized C-existence family and the condition 0 ∈ supp(a) will
be assumed.

We say that an (a, k)-regularized C-resolvent family (R(t))t≥0 is exponentially
bounded (bounded) iff there exists ω ∈ R (ω = 0) such that the family {e−ωtR(t) :
t ≥ 0} ⊆ L(X) is bounded. If k(t) = gα+1(t), where α ≥ 0, then it is also said that
(R(t))t∈[0,τ) is an α-times integrated (a, C)-resolvent family; 0-times integrated
(a, C)-resolvent family is further abbreviated to (a, C)-resolvent family. We pay
special attention to the case a(t) ≡ 1, resp. a(t) ≡ t, when we say that (R(t))t≥0

is an α-times integrated C-semigroup (C-semigroup, if α = 0), resp. an α-times
integrated C-cosine function (C-cosine function, if α = 0). Similar terminological
agreement is accepted for the class of mild (a, k)-regularized (C1, C2)-existence
and uniqueness families.

By χ(R) we denote the set consisting of all subgenerators of (R(t))t∈[0,τ). It is

clear that for each subgenerator A ∈ χ(R) we have A ∈ χ(R). The set χ(R) can
have infinitely many elements; furthermore, if A ∈ χ(R), then A ⊆ Aint, where
the integral generator of (R(t))t∈[0,τ) is defined by

Aint :=

{
(x, y) ∈ X×X : R(t)x−k(t)Cx =

∫ t

0

a(t−s)R(s)y ds for all t ∈ [0, τ)

}
.

The integral generator Aint of (R(t))t∈[0,τ) is always a closed subgenerator of
(R(t))t∈[0,τ), provided that τ = ∞. IfA and B are two subgenerators of (R(t))t∈[0,τ)

and α, β ∈ C with α + β = 1, then C(D(A)) ⊆ D(B), Aint ⊆ C−1AC and
αA+βB is also a subgenerator of (R(t))t∈[0,τ); furthermore, if C is injective, then
Aint = C−1AC. We similarly define the notion of integral generator of a mild
(a, k)-regularized C2-uniqueness family (R2(t))t∈[0,τ).
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In this paper, we will use the following definition of a (local) K-convoluted
C-group; cf. [30, Section 2.6] for more details about non-degenerate case.

Definition 2.6. Let C ∈ L(X) and K ∈ L1
loc([0, τ)), K 6= 0. Suppose that

τ ∈ (0,∞] and ±A are the integral generators of K-convoluted C-semigroups
(SK,±(t))t∈[0,τ). Put SK(t) := SK,+(t), t ∈ [0, τ) and SK(t) := SK,−(−t), t ∈
(−τ, 0). Then we say that (SK(t))t∈(−τ,τ) is a K-convoluted C-group with the
integral generator A.

Any (local, degenerate or non-degenerate in time) K-convoluted C-semigroup
(SK(t))t∈[0,τ), resp. K-convoluted C-cosine function (CK(t))t∈[0,τ), where C is
not necessarily injective, satisfies the well known composition properties stated
in [30, Proposition 2.1.5, resp. Theorem 2.1.13]. Similar composition properties
hold for (local) C-semigroups and (local) C-cosine functions. Although we do not
intend to analyze the class of degenerate K-convoluted C-groups in more detail,
we will use hereafter some special cases of the general composition property of
degenerate K-convoluted C-groups. This composition property is stated in the
following proposition, which can be viewed of some independent interest (the

continuity of mapping t 7→ SK(t)x, t ∈ (−τ, τ) for x ∈ D(A) is irrelevant here;
cf. also the short discussion after Definition 4.10).

Proposition 2.7. Suppose that (SK(t))t∈(−τ,τ) is a K-convoluted C-group with
the integral generator A. Then, for every t, s ∈ (−τ, τ) with t < 0 < s and x ∈ X,
one has:

SK(t)SK(s)x = SK(s)SK(t)x

=


s∫

t+s

K(r − t− s)SK(r)Cx dr +
0∫
t

K(t + s− r)SK(r)Cx dr, t + s ≥ 0,

t+s∫
t

K(t + s− r)SK(r)Cx dr +
s∫
0

K(r − t− s)SK(r)Cx dr, t + s < 0.

Proof. Let −τ < t < 0 < s < τ and t + s ≥ 0. Proceeding as in the proof of
[30, Theorem 2.6.7], we obtain similarly as in non-degenerate case that, for every
x ∈ X,

SK(t)

s∫
0

SK(σ)x dσ

=

s∫
t+s

Θ(r)SK(t + s− r)Cx dr +

s∫
t+s

K(r − s− t)C

r∫
0

SK(σ)x dσ dr

=

0∫
t

Θ(t + s− r)SK(r)Cx dr +

s∫
t+s

K(r − s− t)C

r∫
0

SK(σ)x dσ dr,

where Θ(t) =
∫ t

0
K(s) ds, t ∈ [0, τ). Applying the partial integration on the second

addend in the above equality and using a straightforward computation, we get
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that, for every x ∈ X,

SK(t)SK(s)x

=
d

ds

[
SK(t)

s∫
0

SK(σ)x dσ

]

=

∫ 0

t

K(t + s− r)SK(r)Cx dr

+
d

ds

[
Θ(−t)

∫ s

0

SK(r)Cx dr −
∫ s

t+s

Θ(r − s− t)SK(r)Cx dr

]

=

∫ 0

t

K(t + s− r)SK(r)Cx dr +

∫ t+s

s

K(r − s− t)SK(r)Cx dr.

We can analogously prove that, for t + s < 0 and x ∈ X, we have

SK(t)SK(s)x =

t+s∫
t

K(t + s− r)SK(r)Cx dr +

s∫
0

K(r − t− s)SK(r)Cx dr.

Since (SK(−t))t∈(−τ,τ) is a K-convoluted C-group with the integral generator −A,
the obtained composition properties imply that SK(t)SK(s) = SK(s)SK(t) for all
t, s ∈ (−τ, τ). The proof of the theorem is thereby completed. �

In the case that ±A are the integral generators of C-semigroups (T±(t))t∈[0,τ),
then the C-group (T (t))t∈(−τ,τ), defined similarly as above, satisfies the much
simpler group property T (t + s)C = T (t)T (s) for all t, s ∈ (−τ, τ) with t + s ∈
(−τ, τ). We will use this functional equality for transferring [45, Theorem 2.1] to
degenerate C-groups (see Theorem 3.1 below).

Henceforward, we will investigate only the global case τ = ∞.

3. Almost periodicity of abstract degenerate first and second
order Cauchy problems

We start this section by reconsidering the structural results proved by Q. Zheng
and L. Liu in [45]. The assumption on denseness of R(C) is crucial in this paper,
but the careful inspections of proofs show that the injectivity of regularizing
operator C is superfluous in almost all places (if D(A) is dense in X, A generates
a C-semigroup (T (t))t≥0 (C-cosine function (C(t))t≥0) and C is injective, then
(T (t))t≥0 is non-degenerate since T (0) = C (C(0) = C), which automatically
implies that A is single-valued).

Unless specified otherwise, we assume that (T (t))t∈R is a global C-group with
the integral generator A; as explained above, this means that A generates a
C-semigroup (T (t))t≥0 and −A generates a C-semigroup (T (−t))t≥0 (a class of
very simple counterexamples shows that the equality T+(t)T−(t) = C2 stated in
the proof of implication (b) ⇒ (c) of [45, Theorem 3.1] does not hold for C-
degenerate groups, even in the case that C = I). Then it is very simple to prove
that the assumption irx ∈ Ax for some r ∈ R implies that T (t)x = eirtCx, t ∈ R.
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Keeping in mind this fact, as well as Lemma 1.2, the parts (i)-(ii), (iv) and (vii),
it is straightforward to extend the assertion of [45, Theorem 2.1] to degenerate
C-groups; cf. also Theorem 3.3, Theorem 3.4, Proposition 4.1 and Theorem 4.5
below.

Theorem 3.1. Suppose that R(C) = D(A) = X. Then (T (t))t∈R is almost pe-
riodic iff (T (t))t∈R is bounded and the set D consisting of all eigenvectors of
operator A which corresponds to purely imaginary eigenvalues of operator A is
total in X (i.e., the linear span of D is dense in X).

Before proceeding further, we would like to point out that Theorem 3.1 does
not hold without assuming the denseness of A. For example, the a.p. degenerate
group (T (t) ≡ 0)t∈R has the integral generator {0} ×X but the set D is empty.

Furthermore, almost periodic C-groups (T (t))t∈R for which R(C) = D(A) = X
andA is not single-valued really exist. To see this, observe that for each C ∈ L(X)
we have that (T (t) ≡ C)t∈R is a global C-group whose integral generator A is
given by A = X ×N(C); this simply implies that ρC(A) = ∅, provided that the
operator C is not injective.

Arguing as in [45], we can prove the following:

1. If c0 * X, ±A are the integral generators of global bounded C-uniqueness
families (T (±t))t≥0 and the mapping t 7→ T (t)y, t ∈ R is almost periodic
for all y ∈ R(A), then the mapping t 7→ T (t)x, t ∈ R is almost periodic

for all x ∈ D(A) (cf. [45, Proposition 2.4]). Here we use the parts (vi)
and (vii) of Lemma 1.2.

2. Let us recall that X is weakly sequentially complete iff every weak Cauchy
sequence in X converges weakly. If this is the case, then the denseness of
R(C) and D(A) in X implies that the concepts weak almost periodicity
and almost periodicity of a global C-group (T (t))t∈R are mutually equiv-
alent; furthermore, the almost periodicity of (T (t))t∈R implies its uniform
periodicity provided, in addition to the above, that {eλt : λ ∈ σp(A)} is
uniformly almost periodic. Keeping in mind Lemma 1.2, the proofs of
these statements are almost the same as those of parts (a) and (b) in [45,
Theorem 2.5]; cf. also the proof of [7, Theorem 3] and observe that for
each r ∈ R the graph of ir − A is a closed convex subset of X × X, as
well as that the partial integration and Lemma 2.1 together imply that
for each r ∈ R we have

1

t

[
Cx− e−irtT (t)x

]
∈ lim

t→∞
(ir −A)

1

t

∫ t

0

e−irsT (s)x ds, x ∈ X.

For the sequel, we need some preliminaries from the pioneering paper [7] by
H. Bart and S. Goldberg. By AP (Λ : X), where Λ is a non-empty subset of
R, we denote the vector subspace of AP (R : X) consisting of all functions f ∈
AP (R : X) for which the inclusion σ(f) ⊆ Λ holds good. It can be easily seen
that AP (Λ : X) is a closed subspace of AP (R : X) and therefore Banach space
itself.
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The translation semigroup (W (t))t≥0 on AP ([0,∞) : X), given by [W (t)f ](s) :=
f(t + s), t ≥ 0, s ≥ 0, f ∈ AP ([0,∞) : X) is consisted solely of surjective isome-
tries W (t) (t ≥ 0) and can be extended to a C0-group (W (t))t∈R of isometries on
AP ([0,∞) : X), where W (−t) := W (t)−1 for t > 0. Furthermore, the mapping
E : AP ([0,∞) : X) → AP (R : X), defined by

[Ef ](t) := [W (t)f ](0), t ∈ R, f ∈ AP ([0,∞) : X),

is a linear surjective isometry and Ef is the unique continuous almost periodic
extension of a function f from AP ([0,∞) : X) to the whole real line. We have
that [E(Bf)] = B(Ef) for all B ∈ L(X) and f ∈ AP ([0,∞) : X).

The following is an extension of [45, Theorem 3.3] to degenerate C-semigroups.

Theorem 3.2. Suppose that (T (t))t≥0 is an almost periodic C-semigroup with
the integral generator A. Then there exists a bounded, strongly continuous, almost
periodic operator family (S(t))t∈R ⊆ L(X) commuting with C and satisfying:

S(t) = T (t), t ≥ 0 and S(t)S(s) = S(t + s)C, t, s ∈ R. (3.1)

Furthermore, if (T (t))t≥0 is uniformly almost periodic, then (S(t))t∈R is likewise
uniformly almost periodic. In the case that C is injective, we have that (S(t))t∈R
is a global C-group with the integral generator A (i.e., (S(−t))t≥0 is a global
C-semigroup with the integral generator −A).

Proof. Since (T (t))t≥0 is almost periodic, it must be uniformly bounded. Let
M := supt≥0 ‖T (t)‖. Define S(t)x := [E(Tx(·))](t), t ∈ R, x ∈ X, where Tx(t) :=
T (t)x, x ∈ X, t ≥ 0. Since E is a linear surjective isometry between the spaces
AP ([0,∞) : X) and AP (R : X), we have that

‖S(t)x‖ ≤ sup
s∈R

‖S(s)x‖ = sup
s≥0

‖S(s)x‖ = sup
s≥0

‖T (s)x‖ ≤ M‖x‖, x ∈ X, t < 0,

so that S(t) ∈ L(X) for all t ∈ R, and supt∈R ‖S(t)‖ = M < ∞. It can be easily
seen that S(·) commutes with C. On the other hand, we have that

S(t)S(s)x

= S(t)
[
E(Tx(·))

]
(s) =

[
E(S(t)Tx(·))

]
(s) =

[
E(CW (t)Tx(·))

]
(s)

= C
[
E(W (t)Tx(·))

]
(s) = C

[
W (s)W (t)Tx(·)

]
(0) = C

[
W (t + s)Tx(·)

]
(0)

= C
[
E(Tx(·))

]
(t + s) = CS(t + s)x, t ≥ 0, s ≤ 0.

Since S(t) and S(s) commute, the proof of (3.1) is completed, which simply
implies that (S(t))t∈R is uniformly almost periodic provided that (T (t))t≥0 is. If
the operator C is injective, a simple computation shows that the integral generator
B of a global C-semigroup (S(−t))t≥0 equals −A (in general case, we can only
prove that B ⊆ C−1[−A]C and −A ⊆ C−1BC). �

If C is injective, then R(C) endowed with the norm ‖·‖R(C) := ‖C−1 ·‖ becomes
a Banach space; we will denote this space simply by [R(C)].

Now we are ready to prove the following extension of [45, Theorem 3.4]:

Theorem 3.3. Suppose that (T (t))t≥0 is a global C-semigroup with the integral

generator A, as well as R(C) = D(A) = X. Then (T (t))t≥0 is almost periodic
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iff (T (t))t≥0 is bounded and the set D consisting of all eigenvectors of operator
A which correspond to purely imaginary eigenvalues of operator A is total in X.
Furthermore, in the case that the operator C is injective, then we have that A = A
is single-valued as well as that:

(i) C \ iR ⊆ ρC(A); if the number ir is a pole of ρC(A), then ir is its simple
pole (in particular, ir ∈ σp(A)), and its residue is Pr defined by

Prx = lim
t→+∞

1

t

∫ t

0

e−irsT (s)x ds, x ∈ X.

(ii) If σp(A) is bounded, then A ∈ L([R(C)], X).

Proof. Suppose that (T (t))t≥0 is almost periodic. Then it is clear that (T (t))t≥0

is bounded. Let (S(t))t∈R be given by Theorem 3.2. Repeating literally the proof
of Necessity in [45, Theorem 3.1], with T (·) replaced by S(·) therein, we obtain
that the set D is total in X. For the converse, we can use the arguments contained
in the proof of Sufficiency in the above-mentioned theorem since Lemma 1.2(vii)
holds for the functions defined on the semi-axis [0,∞) (recall that the mapping
E defined above is a linear surjective isometry) and the assumption ir ∈ Ax for
some r ∈ R and x ∈ X implies T (t)x = eirtCx, t ≥ 0. The remnant is a part of
[45, Theorem 3.3]. �

3. The periodicity of abstract (degenerate) Volterra integro-differential equa-
tions is not our focus here (cf. the paper [6] by V. Barbu and A. Favini
for some interesting applications given in this direction). We only want
to observe the following: Suppose that (T (t))t∈R is a global C-group with
the integral generator A. Then we say that a number p > 0 is a period of
(T (t))t∈R iff T (t + p) = T (t) for all t ∈ R. If this is the case, then it can
be easily seen that(

Cx,

∫ p

0
e−λsT (s)x ds

1− e−λp

)
∈ λ−A, x ∈ X, λ ∈ C \ 2πip−1Z;

furthermore, if the set Dp consisting of all eigenvectors of operator A
which corresponds to eigenvalues λ ∈ C \ 2πip−1Z of operator A is total
in X, then p is a period of (T (t))t∈R (see [45, Theorem 5.1]). Similar
statements can be proved for global C-cosine functions (see [45, Theorem
5.2-Theorem 5.3]).

In the remaining part of this section, we analyze almost periodicity of abstract
degenerate second order Cauchy problems. Let A be the integral generator of a
C-cosine function (C(t))t≥0. Set C(−t) := C(t), S(t) :=

∫ t

0
C(s) ds and S(−t) :=

−S(t) (t ≥ 0). As it is well known, S(·) is said to be a sine function associated
with C(·). It can be easily seen that d’Alambert functional equation 2C(t)C(s) =
C(t + s)C + C(t− s)C holds for all t, s ∈ R.

The assertion of [45, Theorem 4.1] can be reformulated for degenerate cosine
functions in the following way; the proof is standard and omitted therefore (the
only thing worth noting is that the assumption −r2x ∈ Ax for some r ∈ R and
x ∈ X implies C(t)x = cos(rt)Cx, t ∈ R):
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Theorem 3.4. Let R(C) = D(A) = X. Then (C(t))t∈R ((S(t))t∈R) is almost
periodic iff (C(t))t∈R ((S(t))t∈R) is bounded and the set D consisted of all eigen-
vectors of A which corresponds to the real non-positive eigenvalues of A is total
in X.

Remark 3.5. Observe that the injectivity of C (we do not need the condition

R(C) = D(A) = X here) and the almost periodicity of (S(t))t∈R imply that
there exists a > 0 such that σp(A) ⊆ (−∞,−a2]; cf. the final part of proof of
[45, Theorem 4.1] and the proof of Sufficiency in [43, Theorem 1.2, pp. 242-243]
for non-degenerate case.

It is well known that the almost periodicity of (C(t))t∈R does not imply the
almost periodicity of (S(t))t∈R, even in the case that C = I ([21]); the most
simplest counterexample is: C(t) = I, t ∈ R and S(t) = tI, t ∈ R. Using the
argumentation already employed in non-degenerate case [45], we can deduce the
following:

4. If c0 * X, then the almost periodicity of (C(t))t∈R taken together with
the boundedness of (S(t))t∈R imply the almost periodicity of (S(t))t∈R;
see [45, Theorem 4.3(a)-(b)].

5. If c0 * X, the integral generator of a global bounded C-cosine function
(C(t))t∈R is densely defined and the mapping t 7→ S(t)y, t ∈ R is almost
periodic for all y ∈ R(A), then (C(t))t∈R is almost periodic (cf. the proof
of [45, Proposition 2.4]).

6. In the case that the state space X is weakly sequentially complete, as well
as that R(C) = D(A) = X, then any w.a.p. C-sine (or C-cosine) function
is automatically a.p.

7. The almost periodicity of (C(t))t∈R ((S(t))t∈R) implies its uniform period-
icity provided, in addition to the weak sequential completeness of X, that
the family {eλt : λ2 ∈ σp(A)} is uniformly almost periodic. The proofs of
[6./7.] follows similarly as in that of [45, Theorem 4.4].

8. Any degenerate semigroup (T (t))t≥0 is exponentially bounded. By the
proof of [4, Lemma 3.14.3], the above is also true for degenerate co-
sine functions. Keeping in mind this fact, we can repeat almost liter-
ally the proof of [43, Theorem 1.6, pp. 247-249] in order to see that
the (weak) almost periodicity of a sine function (S(t))t∈R implies that for
each u ∈ D(A) the mapping t 7→ C(t)u, t ∈ R is (weakly) almost peri-
odic. Strictly speaking, a more general result holds true: Suppose that A
is the integral generator of an exponentially bounded C-cosine function
(C(t))t≥0 (we do not need the denseness of A nor the range of C in X,
C can be non-injective). Then the (weak) almost periodicity of a C-sine
function (S(t))t∈R implies that for each u ∈ D(A) the mapping t 7→ C(t)u,
t ∈ R is (weakly) almost periodic. This can be seen by considering the
function g(t, x) := S(t)y − ω2

0S(t)x, t ≥ 0, where y ∈ Ax is arbitrarily
chosen and ω0 is strictly greater than the exponential type of (C(t))t≥0.
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Then the computation given on pp. 247-248 of [43] shows that

− 1

2ω0

∫ ∞

−∞
e−ω0|t−s|g(s, x) ds = S(t)x, t ∈ R,

and the final conclusion follows as in non-degenerate case.

Suppose now that k ∈ N and A is a closed, single-valued linear operator with
non-empty resolvent set, say λ0 ∈ ρ(A). Then it is well known that:

(i) A generates a global exponentially bounded k-times integrated semigroup
iff A generates a global exponentially bounded (λ0 − A)−k-semigroup.

(ii) A generates a global exponentially bounded (2k)-times ((2k + 1)-times)
integrated cosine function iff A generates a global exponentially bounded
(λ0 − A)−k-cosine function ((λ0 − A)−k−1-cosine function).

Slight extensions of the above statements are clarified in [30, Proposition 2.3.12,
Proposition 2.3.13]. The fomulae obtained in these propositions show that it is
very difficult to expect the boundedness of induced (λ0 −A)−k-semigroups, resp.
(λ0 − A)−k-cosine functions ((λ0 − A)−k−1-cosine functions), in the case that A
does not generate a strongly continuous semigroup (cosine operator function).
Nevertheless, Q. Zheng and L. Liu have investigated in [45, Section 6] various
questions about almost periodicity of induced regularized semigroups and cosine
functions, giving also a necessary and sufficient condition for the generation of
almost periodic tempered distribution semigroups.

9. Let us recall that X. Gu, M. Li and F. Huang have investigated the almost
periodicity of C-semigroups, integrated semigroups and C-cosine groups
in [23], by assuming that the range of C is not necessarily dense in X.
Their results lean heavily on the use of Hille-Yosida’s spaces for closed
single-valued linear operators which do not have eigenvalues in (0,∞),
and we would like to point out that these results cannot be so easily
reformulated in degenerate case.

It is also worth observing the following:

10. LetA be an MLO. Denote by D (E) the set consisting of all eigenvectors of
operator A which correspond to purely imaginary eigenvalues of operator
A (to non-positive real eigenvalues of operator A). By D0 (E0) we denote
the set consisting of all eigenvectors of operator A which correspond to
purely imaginary non-zero eigenvalues of operator A (to negative real
eigenvalues of operator A).

Suppose that n ∈ N0, A is a subgenerator of an n-times integrated
C2-uniqueness family (Sn(t))t≥0, r ∈ R and irx ∈ Ax. Then Sn(t)x −
gn+1(t)C2x = ir

∫ t

0
Sn(s)x ds, t ≥ 0, which simply implies that the map-

ping t 7→ Sn(t)x, t ≥ 0 is infinitely differentiable with all derivatives at
zero of order less than or equal to n−1 being zeroes. Hence, the mapping
t 7→ (dn/dtn)Sn(t)x = eirtC2x, t ≥ 0 is almost periodic for all y ∈ span(D)
and the mapping t 7→ (dn−1/dtn−1)Sn(t)x, t ≥ 0 is almost periodic for all
y ∈ span(D0). Similarly, if A is a subgenerator of an n-times integrated
C2-cosine uniqueness family (Cn(t))t≥0, r ∈ R and −r2x ∈ Ax, then

Cn(t)x− gn+1(t)C2x = ir
∫ t

0
(t− s)Cn(s)x ds, t ≥ 0, which simply implies
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that the mapping t 7→ Cn(t)x, t ≥ 0 is infinitely differentiable with all
derivatives at zero of order less than or equal to n−1 being zeroes. Hence,
the mapping t 7→ (dn/dtn)Cn(t)x = cos(rt)C2x, t ≥ 0 is almost periodic
for all y ∈ span(E), as well as the mappings t 7→ (dn−1/dtn−1)Cn(t)x,
t ≥ 0 and t 7→ (dn−2/dtn−2)Cn(t)x, t ≥ 0 are almost periodic for all
y ∈ span(E0). Here, dl/dtl· = g−l ∗ · for l ∈ −N.

In [12], I. Cioranescu has investigated the conditions under which the abstract
non-degenerate inhomogeneous Cauchy problem (DFP)L of first and second order
(α ∈ {1, 2}) has a unique strong almost periodic solution for all initial values
x ∈ D∞(A). The notions of (bounded, almost periodic) distribution group and
(bounded, almost periodic) cosine distribution have been introduced for the first
time in this paper (cf. [30] for further information concerning these subjects),
and the spectral characterizations of generators of such distribution groups and
cosine distributions have been given. We will further reconsider the structural
results proved by I. Cioranescu in our forthcoming paper [33].

4. Almost periodic solutions of abstract Volterra
integro-differential equations

We start our work in this section by stating the following simple but important
result.

Proposition 4.1. Suppose that abs(|a|) < ∞, abs(k) < ∞ and A is a subgen-
erator of a mild, strongly Laplace transformable, (a, k)-regularized C2-uniqueness
family (R2(t))t≥0. Denote by D the set consisting of all eigenvectors x of operator
A which corresponds to eigenvalues λ ∈ C of operator A for which the mapping

fλ,x(t) := L−1

(
k̃(z)

1− λã(z)

)
(t)C2x, t ≥ 0

is almost periodic. Then the mapping t 7→ R2(t)x, t ≥ 0 is almost periodic for all
x ∈ span(D); furthermore, the mapping t 7→ R2(t)x, t ≥ 0 is almost periodic for

all x ∈ span(D) provided additionally that (R2(t))t≥0 is bounded.

Proof. Let x ∈ D be an eigenvector of operator A which corresponds to an
eigenvalue λ ∈ C of operator A. Then

λ

t∫
0

a(t− s)R2(s)x ds = R2(t)x− k(t)C2x, t ≥ 0.

Performing the Laplace transform, we get that R2(t)x = fλ,x(t), t ≥ 0. This
immediately implies the final conclusions since the parts (ii) and (vii) of Lemma
1.2 hold for the functions defined on the semi-axis [0,∞). �

Remark 4.2. Suppose that R2(t)A ⊆ AR2(t), t ≥ 0 and x ∈ span(D). Then the
mapping t 7→ u(t) := R2(t)x, t ≥ 0 is a strong solution of the abstract Cauchy
inclusion (2.1) with B = I and F(t) = k(t)C2x, t ≥ 0.
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Remark 4.3. Suppose that x ∈ D, λx ∈ Ax and C2x 6= 0. Then the scalar-valued
function

ϑ(t) := t 7→ L−1

(
k̃(z)

1− λã(z)

)
(t), t ≥ 0 (4.1)

is almost periodic. Since it is well known that almost periodic functions are
uniform limits of trigonometric polynomials in BUC(R), the most important
case in which the above holds is that there exist integer n ∈ N, real numbers
r1(λ), ···, rn(λ), positive real number ω(λ), and complex numbers α1(λ), ···, αn(λ),
such that

k̃(z)

1− λã(z)
=

α1(λ)

z − ir1(λ)
+ · · ·+ αn(λ)

z − irn(λ)
, <z > ω(λ). (4.2)

It is worth noting that (4.2) holds for substantially large classes of kernels a(t) and
regularizing functions k(t); for example, (4.2) holds in the case that a(t) = k(t) =

sin t, λ ∈ (−∞, 1) ⊆ σp(A), n = 2, ir1,2(λ) = ±
√

λ− 1, α1,2(λ) = ±2−1
√

λ− 1
−1

.

If a(t) = gn(t) +
∑n−1

j=0 ajgj(t), k(t) = gn(t) +
∑n−1

j=0 bjgj(t), where aj, bj ∈ C for

1 ≤ j ≤ n− 1 and there exists a non-empty subset Ω of σp(A) such that for each
λ ∈ Ω the polynomial

Pλ(z) = zn − λ
n−1∑
j=1

an−jz
j − λ, z ∈ C

has purely imaginary, pairwise disjoint, roots ir1(λ), · · ·, irn(λ), then (4.2) holds
with appropriately chosen complex numbers α1(λ), · · ·, αn(λ).

The situation is much more complicated in purely fractional case. For example,
if a(t) = gα(t), where α ∈ (0,∞)\N, and (4.2) holds for pairwise disjoint numbers
rj(λ) and non-zero complex numbers αj(λ) (1 ≤ j ≤ n), then it is necessary to
have λ ∈ (iR)α, λ = (irj(λ))α (1 ≤ j ≤ n), and the independence of function

k(t) =
n∑

j=1

αj(λ)

[
eirj(λ)t − λtαE1,1+α

(
irj(λ)t

)]
, t ≥ 0

on parameter λ; cf. the Laplace transform identity [9, (1.26)]. From an applica-
tion point of view, this is very difficult to be satisfied.

The following useful lemma is probably known in the existing literature; we
will include the proof for the sake of clarity (cf. also [38, Theorem 1.3(iii)] for a
similar result).

Lemma 4.4. Let (R(t))t≥0 ⊆ L(X) be a bounded strongly continuous operator
family, and let x ∈ X. If a ∈ L1

loc([0, τ)), a 6= 0, ã(ir) exists for some r ∈ R and

PR
r x := lim

t→∞

1

t

∫ t

0

e−irsR(s)x ds
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exists, then P a∗R
r x = limt→∞

1
t

∫ t

0
e−irs(a ∗ R)(s)x ds exists as well, and the fol-

lowing holds:

P a∗R
r x = ã(ir)PR

r x. (4.3)

Proof. Let ε > 0 be given, and let ‖R(t)‖ ≤ M ′, t ≥ 0. Then there exists M > 0
such that ∣∣∣∣∣

∫ ∞

M

e−irsa(s) ds

∣∣∣∣∣ < ε. (4.4)

Furthermore,

1

t

∫ t

0

e−irs(a ∗R)(s)x ds

=
1

t

∫ t

0

∫ s

0

e−ir(s−v)e−irvR(v)x dv ds

=
1

t

∫ t

0

∫ v

t

e−ir(s−v)e−irvR(v)x ds dv

=
1

t

∫ t

0

[∫ t−v

0

e−irsa(s) ds

]
e−irvR(v)x dv.

Hence, for any t > M, we have∥∥∥∥∥1

t

∫ t

0

e−irs(a ∗R)(s)x ds− ã(ir)PR
r x

∥∥∥∥∥
=

∥∥∥∥∥1

t

∫ t

0

[∫ ∞

t−v

e−irsa(s) ds

]
e−irvR(v)x dv

∥∥∥∥∥
=

∥∥∥∥∥1

t

[∫ t−M

0

+

∫ t

t−M

][∫ ∞

t−v

e−irsa(s) ds

]
e−irvR(v)x dv

∥∥∥∥∥.
Now the equality (4.3) follows from (4.4) and the following estimates:∥∥∥∥∥1

t

∫ t−M

0

[∫ ∞

t−v

e−irsa(s) ds

]
e−irvR(v)x dv

∥∥∥∥∥
≤ 1

t

∫ t−M

0

εM ′ dv = εM ′ t−M

t
,

∥∥∥∥∥1

t

∫ t

t−M

[∫ M

t−v

e−irsa(s) ds

]
e−irvR(v)x dv

∥∥∥∥∥
≤ 1

t

∫ t−M

t

[∫ M

0

|a(s)| ds

]
M ′ dv =

[∫ M

0

|a(s)| ds

]
M ′M

t
,



372 M. KOSTIĆ∥∥∥∥∥1

t

∫ t

t−M

[∫ ∞

M

e−irsa(s) ds

]
e−irvR(v)x dv

∥∥∥∥∥
≤ 1

t

∫ t−M

t

εM ′ dv = εM ′M

t
.

�

Now we are ready to state the following necessary conditions for an (a, k)-
regularized C-resolvent family (R(t))t≥0 to be almost periodic. In some sense,
this is a converse to Proposition 4.1.

Theorem 4.5. Let A be the integral generator of an almost periodic (a, k)-

regularized C-resolvent family (R(t))t≥0, let R(C) = D(A) = X, and let k(0) 6= 0.
Denote

R :=
{
r ∈ R : ã(ir) exists

}
. (4.5)

Suppose that k(t) and |a|(t) satisfy (P1), lim<z→∞ ã(z) = 0 as well as that

P k
r = lim

t→∞

1

t

∫ t

0

e−irsk(s) ds = 0, r ∈ R. (4.6)

Then (R(t))t≥0 is bounded and (Q) holds, where

(Q): PR
r x ∈ A[ã(ir)PR

r x], r ∈ R, x ∈ X and the mapping

R(t)PR
r x = L−1

(
k̃(z)ã(ir)

ã(ir)− ã(z)

)
(t)CPR

r x, t ≥ 0, x ∈ X,

is almost periodic for all r ∈ R and x ∈ X.

Suppose, in addition, that

R(t)PR
r x = k(t)CPR

r x, t ≥ 0, r ∈ R \ R, x ∈ X. (4.7)

Then the set D consisting of all eigenvectors of operator A which corresponds to
eigenvalues λ ∈ {0} ∪ {ã(ir)−1 : r ∈ R, ã(ir) 6= 0} of operator A is total in X.

Proof. The boundedness of (R(t))t≥0 follows from Lemma 1.2(i) and the uniform

boundedness principle. Let x ∈ X. Since R(C) = D(A) = X, we have that
R(0) = k(0)C. By [32, (271)], (R(t))t≥0 satisfies the following functional equality:

R(t)(a ∗R)(s)x− k(t)C(a ∗R)(s)x = (a ∗R)(t)R(s)x− k(s)(a ∗R)(t)Cx,
(4.8)

for all t, s ≥ 0. On the other hand, Lemma 4.4 implies that, for every r ∈ R, we
have that P a∗R

r x exists and (4.3) holds. Using this equation as well as (4.6) and
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(4.8) we get that, for every r ∈ R,

R(t)ã(ir)PR
r x− k(t)Cã(ir)PR

r x

= R(t)P a∗R
r x− k(t)CP a∗R

r x

= lim
σ→∞

1

σ

∫ σ

0

e−irs
[
R(t)(a ∗R)(s)x− k(t)C(a ∗R)(s)x

]
ds

= lim
σ→∞

1

σ

∫ σ

0

e−irs
[
(a ∗R)(t)R(s)x− k(s)C(a ∗R)(t)x

]
ds

= (a ∗R)(t) lim
σ→∞

1

σ

∫ σ

0

e−irs
[
R(s)x− k(s)Cx

]
ds

= (a ∗R)(t)PR
r x, t ≥ 0.

Hence, PR
r x ∈ A[ã(ir)PR

r x], r ∈ R and performing the Laplace transform we get
that the condition (Q) holds; notice only that the condition lim<z→∞ ã(z) = 0
implies that for each r ∈ R with ã(ir) 6= 0 we have that ã(ir) 6= ã(z) on some
right half plane. Assume now that ã(ir) = 0 for some r ∈ R. Then the previous
computation gives (a ∗ R)(t)PR

r x = 0, t ≥ 0 so that R(t)PR
r x = 0, t ≥ 0 as well

as R(0)PR
r x = k(0)CPR

r x and CPR
r x = 0 due to condition k(0) 6= 0. This simply

implies 0 = R(t)PR
r x = k(t)CPR

r x, t ≥ 0 and therefore 0 ∈ APR
r x. The validity

of (4.7) implies that 0 ∈ APR
r x for all r ∈ R \ R, as well. Therefore, if PR

r x 6= 0
for some r ∈ R, then PR

r x ∈ D. Suppose that x∗ ∈ X∗ and 〈x∗, y〉 = 0 for all
y ∈ D. Then

lim
σ→∞

1

σ

∫ σ

0

e−irs
〈
x∗, R(s)x

〉
ds =

〈
x∗, PR

r x
〉

= 0, r ∈ R,

so that the almost periodicity of mapping t 7→ R(t)x, t ≥ 0 yields by Lemma
1.2(iv) that 〈x∗, R(t)x〉 = 0 for all t ≥ 0. Especially, 〈x∗, k(0)Cx〉 = 〈x∗, Cx〉 =

0, whence we may conclude by our assumption R(C) = X that x∗ = 0. This
completes the proof of theorem. �

Remark 4.6. (i) Suppose thatA = A is single-valued and generates an almost
periodic (a, k)-regularized C-resolvent family (R(t))t≥0. Since the equation
[31, (22), Proposition 2.1.3] holds in our framework, we have that R(0) =

k(0)C. Therefore, if we disregard the condition R(C) = D(A) = X and
accept all other conditions from the first part of formulation of Theorem
4.5, then (R(t))t≥0 is still bounded and (Q) still holds. Let it be the
case, and let (4.7) be fulfilled. Then the final part of proof of Theorem
4.5 shows that span(D)◦ ⊆ R(C)◦, which simply implies by the bipolar

theorem that R(C) ⊆ span(D).
(ii) We feel duty bound to say that the condition (4.7) from the formulation

of Theorem 4.5 seems to be slightly redundant. This condition is satis-
fied in the usual considerations of almost periodicity of various types of
semigroups and cosine operator functions.

In the following two propositions, we will reconsider our conclusions from the
points [2,6,7] for (a, k)-regularized C-resolvent families.
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Proposition 4.7. Let A be the integral generator of a weak almost periodic (a, k)-

regularized C-resolvent family (R(t))t≥0, let R(C) = D(A) = X, and let k(0) 6= 0.
Suppose that k(t) is almost periodic, |a|(t) satisfies (P1), lim<z→∞ ã(z) = 0, (4.6)
holds (see (4.5)), and

lim
σ→∞

1

σ

∫ σ

0

e−irs
〈
x∗, R(s)x

〉
ds = 0, r ∈ R \ R, x∗ ∈ R

(
A∗), x ∈ X. (4.9)

Let X be weakly sequentially complete. Then (R(t))t≥0 is almost periodic.

Proof. Since (R(t))t≥0 is weakly almost periodic, the uniform boundedness the-
orem and Mackey’s theorem together imply that (R(t))t≥0 is bounded. Fix an
element x ∈ X. Then the weak sequential completeness of X in combination
with the weak almost periodicity of (R(t))t≥0 yields that for each number r ∈ R
there exists an element Mrx ∈ X such that〈

x∗, Mrx
〉

= lim
σ→∞

1

σ

∫ σ

0

e−irs
〈
x∗, R(s)x

〉
ds, x∗ ∈ X∗. (4.10)

Let a pair (y∗, x∗) ∈ A∗ and a number r ∈ R be fixed. Then〈
y∗, R(t)x− k(t)Cx

〉
=
〈
x∗, (a ∗R)(t)x

〉
, t ≥ 0.

Using this equality, as well as Lemma 4.4 and (4.6), it readily follows that〈
y∗, Mrx

〉
=
〈
x∗, ã(ir)Mrx

〉
, r ∈ R.

Owing to Lemma 2.2, the above implies

Mrx ∈ A
[
ã(ir)Mrx

]
, r ∈ R. (4.11)

The proof of Theorem 4.5 shows that 0 ∈ AMrx for all r ∈ R with ã(ir) = 0, as

well as that R(t)Mrx = L−1( k̃(z)ã(ir)
ã(ir)−ã(z)

)(t)CPR
r x, t ≥ 0, r ∈ R. Using Lemma 2.2

and (4.9), we get that

0 ∈ AMrx and R(t)Mrx = k(t)CMrx, r ∈ R \ R, t ≥ 0. (4.12)

Repeating literally the final part of proof of Theorem 4.5, we get that the set
D consisting of all eigenvectors of operator A which corresponds to eigenvalues
λ ∈ {0} ∪ {ã(ir)−1 : r ∈ R, ã(ir) 6= 0} of operator A is total in X. Now the final
conclusion follows by applying Proposition 4.1. �

Proposition 4.8. Let A be the integral generator of an almost periodic (a, k)-
regularized C-resolvent family (R(t))t≥0. Suppose that k(t) and |a|(t) satisfy (P1),
(4.6) holds, and the set

Λ :=
{
r ∈ R : ã(ir) 6= 0, ã(ir)−1 ∈ σp(A)

}
∪
{
r ∈ R : ã(ir) = 0

}
∪ (R \ R)

is harmonious. Then (R(t))t≥0 is uniformly almost periodic.

Proof. Without loss of generality, we may assume that R(·) is defined on the
whole real line R and strongly almost periodic there. Suppose that PR

r x 6= 0 for
some r ∈ R and x ∈ X with ‖x‖ ≤ 1. Then the proof of Theorem 4.5 shows that
r ∈ Λ. Since (R(t))t∈R is almost periodic, this inclusion in combination with the
uniform boundedness theorem yields that {R(·)x : x ∈ X, ‖x‖ ≤ 1} is a bounded
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subset of AP (Λ : X). Since Λ is harmonious, the claimed assertion follows from
[7, Theorem 13]. �

Remark 4.9. If A = A is single-valued, then it is sufficient to assume that the set

Λ′ :=
{
r ∈ R : ã(ir) 6= 0, ã(ir)−1 ∈ σp(A)

}
∪ (R \ R)

is harmonious. Speaking-matter-of-factly, due to the proof of Theorem 4.5 we
have that the assumption PR

r x 6= 0 for some r ∈ R with ã(ir) = 0 and some
x ∈ X with ‖x‖ ≤ 1 implies PR

r x ∈ A[ã(ir)PR
r x] = A0 = {0}, which is a

contradiction.

Now we would like to point out a few important facts concerning the possibili-
ties of transferring the assertion of Theorem 3.2 to (a, k)-regularized C-resolvent
families. First or all, we need to extend the notion introduced in Definition 2.6.

Definition 4.10. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)),

a 6= 0, C ∈ L(X), CA ⊆ AC and ±A are the integral generators of (a, k)-
regularized C-resolvent families (R±(t))t∈[0,τ). Put R(t) := R+(t), t ∈ [0, τ) and
R(t) := R(−t), t ∈ (−τ, 0). Then we say that (R(t))t∈(−τ,τ) is an (a, k)-regularized
C-resolvent group family with the integral generator A.

Observe that the mapping t 7→ R(t)x, t ∈ (−τ, τ) is continuous for all x ∈ D(A)
and that the strong continuity of (R(t))t∈(−τ,τ) in degenerate case (at zero) is
not automatically guaranteed by Definition 4.10. Nevertheless, a composition
property of (R(t))t∈(−τ,τ) can be deduced even in the case that the mapping

t 7→ R(t)x, t ∈ (−τ, τ) is not continuous for some x ∈ X \D(A) (we can similarly
introduce the class of (a, k)-regularized (C1, C2)-existence and uniqueness group
families and prove an analogous composition property; cf. [31, Section 2.8] for
more details):

Proposition 4.11. Let (R(t))t∈(−τ,τ) be an (a, k)-regularized C-resolvent group
family with the integral generator A. Set

kg(t) := k(t) for t ∈ [0, τ) and kg(t) := k(−t) for t ∈ (−τ, 0]

and, for every x ∈ X,(
a∗gR

)
(t)x :=

∫ t

0

a(t− s)R(s)x ds for t ∈ [0, τ),

(
a ∗g R

)
(t)x :=

∫ t

0

a(s− t)R(s)x ds for t ∈ (−τ, 0].

Then we have, for −τ < t, s < τ and x ∈ X,(
a ∗g R

)
(s)R(t)x−R(s)

(
a ∗g R

)
(t)x

= kg(t)
(
a ∗g R

)
(s)Cx− kg(s)C

(
a ∗g R

)
(t)x. (4.13)

Proof. Let x ∈ X be fixed. We will prove the composition property only in the
case that −τ < s ≤ 0 and 0 ≤ t < τ ; the proof in all other cases is similar.
Carrying out a straigtforward computation, we obtain that(

a ∗g R
)
(s)y = R(s)x− k(−s)Cx, whenever (x, y) ∈ A.
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Using this equality and elementary definitions, we get that:(
a∗gR

)
(s)R(t)x 3

(
a ∗g R

)
(s)
[
A
(
a ∗g R

)
(t)x + k(t)Cx

]
= k(t)

(
a ∗g R

)
(s)Cx +

(
a ∗g R

)
(s)A

(
a ∗R

)
(t)x

= k(t)
(
a ∗g R

)
(s)Cx + R(s)

(
a ∗g R

)
(t)x− k(−s)C

(
a ∗g R

)
(t)x.

This immediately implies (4.13). �

Remark 4.12. The composition property already established for K-convoluted C-
groups and the corresponding composition property presented in (4.13) are not
the same. Further comparisons of these composition properties are without scope
of this paper.

Suppose now that A is the integral generator of an almost periodic (a, k)-
regularized C-resolvent family (R(t))t≥0 satisfying that R(t)R(s) = R(s)R(t) for
all t, s ≥ 0. Set S(t)x := [E(Rx(·))](t), t ∈ R, x ∈ X, where Rx(t) := R(t)x, x ∈
X, t ≥ 0. Arguing as in the proof of Theorem 3.2, we get that (S(t))t∈R ⊆ L(X) is
a bounded, strongly continuous, almost periodic operator family satisfying that
S(t) = R(t) for all t ≥ 0 and S(t)S(s) = S(s)S(t) for all t, s ∈ R. Furthermore,
the uniform almost periodicity of (R(t))t≥0 is equivalent with that of (S(t))t∈R.
But, the equation (4.13) cannot be expected with (R(t))t∈R replaced by (S(t))t∈R.
To explain this in more detail, suppose that the functions t 7→ k(t), t ≥ 0 and
t 7→ (a ∗ R)(t)x, t ≥ 0 are almost periodic, as well. Let t ≥ 0 and s ≤ 0. Then
(4.13) and the properties of extension mapping E : AP ([0,∞) : X) → AP (R : X)
show that(

a ∗g S
)
(t)S(s)x =

[
W (s)

(
a ∗g S

)
(t)Rx(·)

]
(0)

=
[
W (s)

{
S(t)

(
a ∗g S

)
(·)x

+ k(·)
(
a ∗g S

)
(t)Cx− k(t)C

(
a ∗g S

)
(·)x

}]
(0)

= S(t)
[
E
((

a ∗g S
)
(·)x

)]
(s)

+ [E(k)](s)
(
a ∗g S

)
(t)x− k(t)C

[
E
((

a ∗g S
)
(·)x

)]
(s).

In general case, [E(k)](s) 6= k(−s) for s < 0 and the obtained composition
property is clearly different from (4.13). Additional problem is how to compute
[E((a ∗g S)(·)x)](s).

For the sequel, we need to remind ourselves of the notion of an exponentially
bounded (a, k)-regularized C-resolvent families generated by a pair of closed linear
operators A, B acting on X; cf. [32, Subsection 2.3.3] for more details.

Definition 4.13. ([32]) Suppose that the functions a(t) and k(t) satisfy (P1), as
well as that R(t) ∈ L(X, [D(B)]) for all t ≥ 0. Let C ∈ L(X) be injective, and
let CA ⊆ AC and CB ⊆ BC. Then the operator family (R(t))t≥0 is said to be an
exponentially bounded (a, k)-regularized C-resolvent family generated by A, B
iff there exists ω ≥ max(0, abs(a), abs(k)) such that the following holds:
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(i) The mappings t 7→ R(t)x, t ≥ 0 and t 7→ BR(t)x, t ≥ 0 are continuous
for every fixed element x ∈ X.

(ii) The family {e−ωtR(t) : t ≥ 0} ⊆ L(X, [D(B)]) is bounded.

(iii) For every λ ∈ C with <λ > ω and k̃(λ) 6= 0, the operator B − ã(λ)A is
injective, R(C) ⊆ R(B − ã(λ)A) and

k̃(λ)
(
B − ã(λ)A

)−1
Cx =

∞∫
0

e−λtR(t)x dt, x ∈ X.

Before proceeding further, we want to mention that the class of exponentially
bounded (a, k)-regularized C-resolvent family generated by A, B, where the op-
erator C ∈ L(X) is not injective, has not deserved the attention of authors so
far.

The most important properties of exponentially bounded (a, k)-regularized C-
resolvent families generated by A, B are clarified in [32, Theorem 2.3.15]. For
our purposes, it will be sufficient to recall the following facts:

(T1): Let x ∈ X. Then the function t 7→ u(t), t ≥ 0, defined by u(t) := R(t)x,
t ≥ 0 is a solution of problem (2.1) with A = A, B = B and F(t) =
k(t)Cx, t ≥ 0.

(T2): Let x ∈ D(A) ∩ D(B). Then the function t 7→ u(t), t ≥ 0, defined by
u(t) := R(t)Bx, t ≥ 0 is a strong solution of problem (2.1) with A = A,
B = B and F(t) = k(t)CBx, t ≥ 0. Furthermore,

u(t) = k(t)Cx +

∫ t

0

a(t− s)R(s)Ax ds, t ≥ 0. (4.14)

Taking the Laplace transform of both sides of (4.14), it is straightforward to
prove the following analogue of Proposition 4.1:

Proposition 4.14. Suppose that abs(|a|) < ∞, abs(k) < ∞ and (R(t))t≥0 is an
exponentially bounded (a, k)-regularized C-resolvent family generated by A, B.
Denote by D the set consisting of all non-zero vectors x ∈ D(A) ∩ D(B) such
that there exists λ ∈ C satisfying that λBx = Ax and the mapping ϑ(t), defined
through (4.1), is almost periodic. Then the mapping t 7→ R(t)Bx, t ≥ 0 is almost
periodic for all x ∈ span(D); furthermore, the mapping t 7→ R(t)y, t ≥ 0 is

almost periodic for all y ∈ B(span(D)) provided additionally that (R(t))t≥0 is
bounded.

Concerning the statement of Theorem 4.5, it is very difficult to say what will
be the consequences of almost periodicity of an exponentially bounded (a, k)-
regularized C-resolvent family (R(t))t≥0 generated by A, B (with the exception
of its boundedness, which is a trivial thing that must be satisfied). But, as a
simple consequence of Theorem 4.5, we can clarify some necessary conditions for
the operator family (BR(t))t≥0 ⊆ L(X) to be almost periodic. More precisely,
we always have that (BR(t))t≥0 is an exponentially bounded (a, k)-regularized

C-resolvent family generated by the multivalued linear operator AB−1 (recall
that AB−1 is closed provided that C = I, as well as that any multivalued lin-
ear operator is closable); cf. [32, Remark 3.2.6(iv)]. Since BR(0) = k(0)C, in
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the corresponding reformulation we do not need to employ the condition on the
denseness of domain of the multivalued linear operator AB−1. The interested
reader may try to rephrase the assertions of Proposition 4.7-Proposition 4.8 for
the operator family (BR(t))t≥0.

We close the paper by giving two illustrative examples. In the first one, we
continue the analysis of the existence and uniqueness of entire solutions to the
abstract Barenblatt-Zheltov-Kochina equation [32, Example 2.3.49].

Example 4.15. Suppose that ∅ 6= Ω ⊆ Rn is a bounded domain with smooth
boundary ∂Ω. By {λk} [= σ(∆)] we denote the eigenvalues of the Dirichlet Lapla-
cian ∆ in X := L2(Ω) (recall that 0 < −λ1 ≤ −λ2 · ·· ≤ −λk ≤ · · · → +∞ as
k → ∞; see [32] for further information), numbered in nonascending order with
regard to multiplicities. By {φk} ⊆ C∞(Ω) we denote the corresponding set of
mutually orthogonal [in the sense of L2(Ω)] eigenfunctions.

In the afore-mentioned example, we have analyzed the entire solutions of the
Barenblatt-Zheltov-Kochina equation

(λ−∆)ut(t, x) = ζ∆u(t, x), t ∈ R, x ∈ Ω,

equipped with the following initial conditions

u(0, x) = u0(x), x ∈ Ω; u(t, x) = 0, (t, x) ∈ R× ∂Ω, (4.15)

where ζ ∈ R \ {0} and λ = λk0 ∈ σ(∆). We have constructed an entire, expo-
nentially bounded, (1, t)-regularized I-resolvent family (W 1(t))t≥0 generated by
A := ζ∆, B := λ−∆, which additionally satisfies that there exists a finite con-
stant ω > 0 such that the operator families {e−ωzW 1(z) : z ∈ C} ⊆ L(X) and
{e−ωzBW 1(z) : z ∈ C} ⊆ L(X) are bounded (here, by entireness we mean that,
for every f ∈ X, the mappings z 7→ W 1(z)f, z ∈ C and z 7→ BW 1(z)f, z ∈ C
are holomorphic).

(i) Let ζ ∈ R \ {0} and λ = λk0 ∈ σ(∆). Consider the equation

(λ−∆)ut(t, x) = iζ∆u(t, x), t ∈ R, x ∈ Ω, (4.16)

equipped with the initial conditions of type (4.15). It can be easily seen
that (i−1W 1(ti))t≥0 is an entire, exponentially bounded, (1, t)-regularized
I-resolvent family generated by iA, B. Furthermore, if r = −ζ−1λ−1

k (λ−
λk) for some k ∈ N with k 6= k0, then (ir)−1Bφk = (iA)φk. Hence, Propo-
sition 4.14 implies that the mapping t 7→ i−1W 1(ti)Bf, t ≥ 0, appearing
in (T2), is almost periodic for any f ∈ span({φk : k ∈ N, k 6= k0}). By
the representation formula from [1, Theorem 2.3], it readily follows that
there exists a sufficiently large real number λ0 > 0 such that for each
f ∈ H2(Ω) ∩H1

0 (Ω), the expression

u(t) =
(
λ0B − iA

)−1
Bf +

(
λ0

(
λ0B − iA

)−1
B − I

)
i−1W 1(ti)Bf, t ≥ 0

defines a unique strong, almost periodic, solution of problem (4.16), with

the initial value u0 = (λ0B− iA
)−1

Bf in (4.15). In conclusion, we obtain
that for all initial values of u0 ∈ span({φk : k 6= k0}), the unique strong
solution of (4.16) is almost periodic. It is clear that we cannot expect
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the almost perodicity of mappings like t 7→ W 1(t)f, t ≥ 0 for all f ∈ X
because W 1(·) is entire.

(ii) In the following example of general type, we would like to exhibit an idea
concerning the use of regularizing functions k(t) of the form

k(t) = L−1

(
1

(z − ia1)(z − ia2) · · · (z − ian)

)
(t), t ≥ 0, (4.17)

where a1, a2, · · ·, an are real numbers. Suppose P (z), P1(z), Q(z), Q1(z)
are non-zero complex polynomials, dg(P1) < dg(Q1), A := P (∆), B :=
Q(∆), there exist a non-empty set Ω ⊆ C and a finite constant M > 0 such
that the operator λB−A is not injective, as well as all complex roots of the
polynomial z 7→ Q1(z)− λP1(z), z ∈ C belong to the interval [−iM, iM ]
and are pairwise disjoint (λ ∈ Ω). Let a(t) := L−1(P1(z)/Q1(z))(t), t ≥ 0
(for example, a(t) = sin t or a(t) = cos t). Suppose, further, that there
exist N ∈ N and ω > 0 such that ‖(B− ã(z)A)−1‖+‖B(B− ã(z)A)−1‖ =
O(1 + |z|N), <z > ω. Let n ≥ N + 2 and let |ai| > M (1 ≤ i ≤ n) in
(4.17). Then the complex characterization theorem for the Laplace trans-
form shows that there exists an exponentially bounded (a, k)-regularized
resolvent family generated by A, B; furthermore, the function ϑ(·) de-
fined above is almost periodic for all λ ∈ Ω. Hence, Proposition 4.14 is
susceptible to applications.

The existence and uniqueness of almost periodic solutions to abstract degen-
erate higher order Cauchy problems with integer order derivatives have not at-
tracted the attention of authors so far. In the second example, we will point
out a few relevant facts concerning almost periodic solutions of the abstract lin-
earized Boussinesq-Love equation; cf. the paper [40] by G. A. Sviridyuk and A.
A. Zamyshlyaeva for more details.

Example 4.16. Suppose that ∅ 6= Ω ⊆ Rn is a bounded domain with smooth
boundary ∂Ω, and X = L2(Ω). Of concern is the following Cauchy-Dirichlet
problem for linearized Boussinesq-Love equation:

(λ−∆)utt(t, x)− α(∆− λ′)ut(t, x) = β(∆− λ′′)u(t, x) + f(t, x), t ∈ R, x ∈ Ω,
(4.18)

u(0, x) = u0(x), ut(0, x) = u1(x), (t, x) ∈ R× Ω; u(t, x) = 0, (t, x) ∈ R× ∂Ω,
(4.19)

where λ, λ′, λ′′ ∈ R, α, β ∈ R and α, β 6= 0. We will use the same terminology
as in Example 4.15.

In [40, Theorem 5.1], the authors have proved the well-posedness results for
degenerate Cauchy problem (4.18)-(4.19) under the following conditions:

(i) λ ∈ ρ(∆), or
(ii) λ ∈ σ(∆) ∧ λ = λ′ ∧ λ 6= λ′′.

As observed in [32, Example 2.3.48], [40, Theorem 5.1] is inapplicable in the
following case:

(iii) λ ∈ σ(∆) ∧ λ 6= λ′ ∧ (α = 0 ⇒ λ 6= λ′′).
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If so, the existence and uniqueness of entire solutions of problem (4.18)-(4.19) (cf.
[32, Definition 2.3.45] for the notion) for all initial values of u0, u1 ∈ H2(Ω) ∩
H1

0 (Ω) follows from an application of [32, Theorem 2.3.46].
In what follows, we will consider the well-posedness of homogeneous problem

(4.18)-(4.19) in case (i), with u0, u1 ∈ H2(Ω) ∩H1
0 (Ω). By [40, Theorem 5.1(i)],

there exists a unique solution of this problem and has the following form:

u(t) =
∞∑

k=1

[
µ1

k

µ1
k − µ2

k

eµ1
kt − µ2

k

µ1
k − µ2

k

eµ2
kt

]〈
φk, u0

〉
φk

+
∞∑

k=1

eµ1
kt − eµ2

kt

(λ− λk)(µ1
k − µ2

k)

〈
φk, u1

〉
φk, t ∈ R,

where

µ1,2
k :=

−α(λ′ − λk)±
√

α2(λ′ − λk)2 − 4β(λ− λk)(λ′′ − λk)

2(λ− λk)
, k ∈ N.

Suppose that the following condition holds:

α2(λ′ − λk)
2 ≥ 4β(λ− λk)(λ

′′ − λk), k ∈ N.

Then µ1,2
k ∈ R, k ∈ R and the function t 7→ u(it), t ∈ R is almost periodic for

all u0, u1 ∈ span({φk : k ∈ N}), which is clearly dense in X. This fact cannot be
established in case (ii) since then there exists a strong solution of (4.18)-(4.19)
only for initial values of u0, u1 ∈ H2(Ω) ∩ H1

0 (Ω) that are orthogonal to the
functions φk for λ = λk (cf. [40, Theorem 5.1(ii)]).
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382 M. KOSTIĆ
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