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SEMIGROUP HOMOMORPHISMS ON MATRIX ALGEBRAS

BERNHARD BURGSTALLER

Communicated by L. Molnár

Abstract. We explore the connection between ring homomorphisms and semi-
group homomorphisms on matrix algebras over rings or C∗-algebras.

1. Introduction

It is an interesting question what possibly small portion of information dis-
tinguishes multiplicative semigroup homomorphism between rings and ring ho-
momorphisms between rings. Rings on which every semigroup isomorphism is
automatically additive are called to have unique addition and there exists a vast
literature on this topic, see R.E. Johnson [4] and many others. It is not possi-
ble to characterize semigroups which are the multiplicative semigroup of a ring
axiomatically, see S.R. Kogalovskij [5]. There is also an extensive investigation
when the occurring rings happen to be matrix rings of the form Mn(R), and
here one is interested in classifying all semigroup homomorphisms between them.
Confer J. Landin and I. Reiner [6], M. Jodeit Jr. and T.Y. Lam [3] and many oth-
ers. The prototype answer appears to be that every semigroup homomorphism
φ : GLn(K) → GLm(K) with K a division ring and m < n is of the form

φ(x) = ψ(det(x))

for a semigroup homomorphism ψ : R∗/[R∗, R∗] → GLm(K) and Dieudonné’s
determinant, see D.Ž. Djoković [1]. For integral domains R, Mn(R) has unique
addition [3]. Most investigations on semigroup homomorphisms of matrix alge-
bras have ground rings principal ideal domains, fields or division rings.
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Since a ring R is Morita equivalent to its matrix ring Mn(R) it is often no big
restriction if one considers matrix rings. For exampleK-theory cannot distinguish
between the ring and its stablization by matrix. Similar things can be said for
C∗-algebras and their notion of Morita equivalence and topological K-theory.

In this short note we show that a semigroup homomorphisms φ : M2(R) → S
for rings R and S is a ring homomorphism if and only if it satisfies the single
relation φ(e11) + φ(e22) = φ(1). An analogous statement holds for C∗-algebras.
See Proposition 2.1, Corollary 2.4 and Proposition 3.3 .

Import and much deeper related results are the classification of ∗-semigroup
endomorphisms on the C∗-algebra B(H) for H an infinite Hilbert space by L.
Molnár [7] and of bijective semigroup homomorphisms between standard operator
algebras of Banach spaces by P. Šemrl [8] and J. Molnár. Notice that B(H) ∼=
Mn(B(H)) is matrix-stable for which our observation applies. When finishing
this note we came also accross the strongly related paper [2] by J. Hakeda, but
it considers bijective ∗-semigroup isomorphisms between ∗-algebras.

We will also investigate how group homomorphisms (of the form φ⊗ idM16) on
unitary and general linear groups of matrix C∗-algebras can be extended to ring or
∗-homomorphisms, see Propositions 3.1 and 3.2. It seems to be an interesting and
widely open question which group homomorphisms between groups GL(Mn(R))
for typically noncommutative non-division rings R with zero divisors even exist, if

not restrictions of ring homomorphisms on Mn(R). For example

(
p 1− p

1− p p

)
is an invertible matrix for an orthogonal projection p ∈ B(H), but no entry is
invertible and Dieudonné’s determinant is not applicable.

2. Algebra homomorphisms and semigroup homomorphisms

For a ring A we shall denote Mn(A) also by A ⊗Mn. For algebras A latter
denotes the algebra tensor product. We write eij ∈Mn and eij := 1⊗eij ∈ A⊗Mn

for the usual matrix units. We also use the notation φn for φ⊗ idMn : A⊗Mn →
B⊗Mn, and reversely allow this notation sloppily also for any function φ for the
canonical matrix map φn. A ∗-semigroup homomorphism between C∗-algebras
means an involution respecting semigroup homomorphism. For unital algebras we
write λ for λ1, where λ is a scalar. We say φ is K-homogeneous if φ(λx) = λφ(x)
for all x and scalars λ ∈ K.

Proposition 2.1. Let A,B be rings where A is unital and ϕ : A ⊗M2 → B an
arbitrary function. Then the following are equivalent:

(a) ϕ is a ring homomorphism.
(b) ϕ is a semigroup homomorphism such that

ϕ(1) = ϕ(e11) + ϕ(e22). (2.1)

Proof. Clearly (a) implies (b). Assume (b). We have ϕ(xij ⊗ eij)ϕ(ykl ⊗ ekl) =
ϕ(xijykl ⊗ eil)δj,k for 1 ≤ i, j, k, l ≤ 2. One has

ϕ(x) = ϕ(1)ϕ(x)ϕ(1) =
2∑

i,j=1

ϕ(xij ⊗ eij)
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for all x =
∑2

i,j=1 xij ⊗ eij ∈ A⊗M2 by (2.1). Now notice that(
1 a
0 0

) (
b 0
1 0

)
=

(
a+ b 0

0 0

)
for all a, b ∈ A. Applying here ϕ, using its multiplicativity and observing the
upper left corner we obtain ϕ(a ⊗ e11) + ϕ(b ⊗ e11) = ϕ(a ⊗ e11 + b ⊗ e11) and
similar so for all other corners. We conclude that ϕ is additive. �

Corollary 2.2. Let A and B be rings where A is unital. Then ϕ : A → B
is a ring homomorphism if and only if ϕ ⊗ idM2 is a semigroup homomorphism
sending zero to zero.

Corollary 2.3. Let A,B be algebras over a field K where A is unital and ϕ :
M2 ⊗ A→ B an arbitrary function. Then the following are equivalent:

(a) ϕ is an algebra homomorphism.
(b) ϕ is a semigroup homomorphism which is linear on Ke11 +Ke22.

If K = C then we may also add

(c) ϕ is a semigroup homomorphism which is linear on R1 and satisfies

ϕ(i) = iϕ(e11) + iϕ(e22). (2.2)

Proof. (a) ⇒ (b) ⇒ (c) are trivial. (b) ⇒ (a): ϕ is K-homogeneous and by
Proposition 2.1 a ring homomorphism. (c) ⇒ (a): ϕ is R-linear by ϕ(λ1x) =
λϕ(1)ϕ(x) (λ ∈ R). If we take (2.2) to the four then we get (2.1). Combining
(2.2) and (2.1) gives ϕ(i) = iϕ(1) and thus ϕ is C-linear. The assertion follows
then from Proposition 2.1. �

Corollary 2.4. Let A,B be C∗-algebras where A is unital and ϕ : M2 ⊗ A→ B
an arbitrary function. Then the following are equivalent:

(a) ϕ is a ∗-homomorphism.
(b) ϕ is a ∗-semigroup homomorphism satisfying identity (2.2).

Proof. Taking (2.2) to the four yields (2.1). Hence ϕ is a ring homomorphism by
Proposition 2.1 and thus Q-linear. By [9, Theorem 3.7] ϕ is continuous and thus
C-linear by combining (2.2) and (2.1). �

Corollary 2.5. Let A and B be C∗-algebras where A is unital. Then ϕ : A→ B
is a ∗-homomorphism if and only if ϕ ⊗ idM2 is a ∗-semigroup homomorphism
and ϕ(0) = 0 and ϕ(i) = iϕ(1).

Proof. By Corollary 2.2 ϕ ⊗ idM2 is a ring homomorphism, thus Q-linear and
continuous by [9, Theorem 3.7]. �

Proposition 2.6. Let A,B be C∗-algebras where A is unital and ϕ : GL(M2 ⊗ A)
→ B an arbitrary function (norm closure). Then the following are equivalent:

(a) ϕ extends to a ∗-homomorphism M2 ⊗ A→ B.
(b) ϕ is a ∗-semigroup homomorphism satisfying identity (2.2).

Similarly, ϕ extends to an algebra homomorphism if and ony if ϕ is a semigroup
homomorphism which is continuous on R1 and satisfies identity (2.2).
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Proof. Assume that ϕ is a semigroup homomorphism satisfying (2.2). Consider
the matrices

γc :=

(
c λ
λ 0

)
, αa :=

(
1 a
0 λ

)
, βb :=

(
b λ
1 0

)
for λ ∈ R\{0} and a, b, c ∈ A. They are invertible; just notice that they are
evidently bijective operators on H⊕H for a representation of A on a Hilbert space
H. Letting λ → 0 we see that all single matrix entries aij ⊗ eij (for all aij ∈ A)

and all matrices indicated in the proof of Proposition 2.1 are in GL(M2 ⊗ A).
Taking (2.2) to the four yields identity (2.1). By the proof of Proposition 2.1 we

see that ϕ(a) =
∑n

i,j=1 ϕ(aij ⊗ eij) for all a ∈ GL(M2 ⊗ A), which we use now as
a definition for ϕ for all a ∈ A ⊗M2. Also by the proof of Proposition 2.1 we
have ϕ(aij ⊗ eij + bij ⊗ eij) = ϕ(aij ⊗ eij) + ϕ(bij ⊗ eij) for all aij, bij ∈ A, which
shows that the extended ϕ is additive.

Since every element in a C∗-algebra can be written as a finite sum of invertible
elements of the form λu with λ ∈ C and u unitary we see that ϕ is multiplicative.
If the originally given ϕ respects involution this also shows that the new ϕ does
so; in this case we are done with Corollary 2.4.

Otherwise, for proving the second equivalence we proceed: Since ϕ is a ring
homomorphism it is Q-linear. By continuity ϕ(λ1) = λϕ(1) for all λ ∈ R and for
λ = i by (2.1) and (2.2). Hence ϕ is C-linear. �

3. C∗-homomorphisms and group homomorphisms

The methods of this section applies analogously to rings A and B, or Banach
algebras where we use topology, if every element in such rings allows to be written
as a finite sum of invertible elements. This is true for C∗-algebras.

Proposition 3.1. Let ϕ : A → B be an arbitrary function between unital C∗-
algebras A and B.

Then ϕ is a unital ∗-homomorphism if and only if ϕ is C-homogeneous and
ϕ⊗ idM16 restricts to a group homomorphism

U(A⊗M16) → U(B ⊗M16).

Proof. Since ϕ16 is unital, necessarily ϕ is unital. Embedding U(Mn(A)) ⊆
U(M16(A)) via u 7→ diag(u, 1) it is clear that ϕn restricts to group homomor-
phims between the unitary groups too for 1 ≤ n ≤ 16. As ϕ(u)ϕ(u∗) = 1 for
u ∈ U(A), ϕ(u∗) = ϕ(u)∗.

To simplify notation, let us say that a is a scaled unitary in A if a ∈ CU(A).
The set of scaled unitaries forms a monoid. Since ϕ is C-homogeneous, the maps
ϕ⊗ idMn restrict also to monoid homomorphisms CU(A⊗Mn) → CU(B ⊗Mn)
between the set of scaled unitaries.

Let a, b be scaled unitaries in A. Define scaled unitaries

u =

(
1 a
−a∗ 1

)
, v =

(
b −1
1 b∗

)
. (3.1)
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Their product is the scaled unitary

uv =

(
a+ b −1 + ab∗

1− ba∗ a∗ + b∗

)
.

Applying here ϕ ⊗ id using ϕ2(uv) = ϕ2(u)ϕ2(v) and observing the upper left
corner we obtain ϕ(a+ b) = ϕ(a) + ϕ(b).

Now write a′ for the product uv and define b′ to be also the product uv, however,
with a and b replaced by other scaled unitaries c and d, respectively, in A.

Now consider the same matrices u and v as in (3.1) above, but with a replaced
by a′ and b by b′. These are four times four matrices. Consider again the product
uv of these newly defined matrices u and v. It has a′ + b′ in the 2× 2 upper left
corner and so the entry a + b + c + d in the 1 × 1 upper left corner. Applying
ϕ⊗ idM4 to this identity of 4× 4-matrices and using

ϕ4(uv) = ϕ4(u)ϕ4(v) =

(
ϕ2(1) ϕ2(a

′)
ϕ2(−a′∗) ϕ2(1)

) (
ϕ2(b

′) ϕ2(−1)
ϕ2(1) ϕ2(b

′∗)

)
yields ϕ(a + b + c + d) = ϕ(a + b) + ϕ(c + d) = ϕ(a) + ϕ(b) + ϕ(c) + ϕ(d) by
comparing the upper left corner.

Repeating this recursive procedure two more times we get additivity of ϕ of
sixteen scaled unitaries. Since we may write any element of A as the sum of four
scaled unitaries it is obvious that ϕ is a ∗-homomorphism. �

Proposition 3.2. Let ϕ : A → B be an arbitrary function between unital C∗-
algebras A and B.

Then ϕ is a unital ring homomorphism if and only if ϕ ⊗ idM2 restricts to a
group homomorphism

GL(A⊗M2) → GL(B ⊗M2).

Proof. In more general rings where elements can be written as sums of invertible
elements we may prove this exactly by the same recursive procedure as in the
last proof. All we have to do is to replace scaled unitaries by invertible elements.
Observe that a and b can also be chosen to be zero in (3.1), where we replace a∗

and b∗ by a−1 and b−1. In the C∗-case we observe, however, that we can choose
any elements a and b in (3.1) (simply check surjectivity and injectivity of the
involved matrices for a representation on Hilbert space), so that we end up with
additivity and hence multiplicativity of ϕ after one step of the procedure. �

Proposition 3.3. Let ϕ : GL(A ⊗M2) → B be an arbitrary function where A
and B are C∗-algebras and A is unital.

Then ϕ extends to a ∗-homomorphism A ⊗M2 → B if and only if ϕ is a ∗-
semigroup homomorphism which is uniformly continuous and satisfies the identity

ϕ

(
i 0
0 i

)
= lim

λ→0, λ∈R+

iϕ

(
1 λ
λ 0

)
+ iϕ

(
0 λ
λ 1

)
.

An analogous equivalence holds true without the star prefixes (omitting ∗-).
Proof. Since ϕ is uniformly continuous it is clear that it maps Cauchy sequences
to Cauchy sequences. We can thus extend it continuously to GL(A⊗M2) via the
limits of Cauchy sequences. The assertion follows then from Proposition 2.6. �
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related topics, 465–472, The Béla Szőkefalvi-Nagy memorial volume. Proceedings of the
memorial conference, Szeged, Hungary, August 2–6, 1999, Basel: Birkhäuser, 2001.
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