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Lp FOURIER TRANSFORMATION ON NON-UNIMODULAR
LOCALLY COMPACT GROUPS
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Communicated by M. S. Moslehian

Abstract. Let G be a locally compact group with modular function ∆ and
left regular representation λ. We define the Lp Fourier transform of a function
f ∈ Lp(G), 1 ≤ p ≤ 2, to be essentially the operator λ(f)∆

1
q on L2(G) (where

1
p + 1

q = 1) and show that a generalized Hausdorff–Young theorem holds. To do
this, we first treat in detail the spatial Lp spaces Lp(ψ0), 1 ≤ p ≤ ∞, associated
with the von Neumann algebra M = λ(G)′′ on L2(G) and the canonical weight
ψ0 on its commutant. In particular, we discuss isometric isomorphisms of
L2(ψ0) onto L2(G) and of L1(ψ0) onto the Fourier algebra A(G). Also, we
give a characterization of positive definite functions belonging to A(G) among
all continuous positive definite functions.

Introduction

Suppose that G is an abelian locally compact group with dual group Ĝ. Then
the Hausdorff–Young theorem states that if f ∈ Lp(G), where 1 ≤ p ≤ 2, then

its Fourier transform F(f) belongs to Lq(Ĝ), where 1
p

+ 1
q

= 1 (cf. [23, p. 117]).

In the case of Fourier series, i.e. when G is the circle group and Ĝ the integers,
this is a classical result due to F. Hausdorff and W. H. Young. [24, p. 101]. An
extension of this theorem to all unimodular locally compact groups was given
by R. A. Kunze [14]. In this paper we shall treat the case of general, i.e. not
necessarily unimodular, locally compact group.
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In order to describe our results, we first briefly recall those of [14]. Suppose
that f is an integrable function on a unimodular group G. Then we consider the
Fourier transform F(f) to be the operator λ(f) of left convolution by f on L2(G).
(As pointed out by Kunze [14], this point of view is justified by the fact that in the

abelian case λ(f) is unitarily equivalent to the operator on L2(Ĝ) of multiplication

by the (ordinary) Fourier transform f̂ . The Fourier transformation maps L1(G)
into the space L∞(G′), defined as the von Neumann algebra M generated by
λ(L1(G)). More generally, one can define λ(f) as an (unbounded) operator on
L2(G) even for functions f not in L1(G). It then turns out that λ maps each
Lp(G), 1 ≤ p ≤ 2, norm-decreasingly into a certain space Lq(G′) of closed densely
defined operators on L2(G) (where 1

p
+ 1

q
= 1). This is the Hausdorff–Young

theorem. Kunze introduced the spaces Lq(G′) as spaces of measurable operators
(in the sense of [21]) with respect to the canonical gage on M [14, p. 533]. An
equivalent but simpler way of introducing the Lq(G′) is to consider the trace ϕ0

on M characterized by ϕ0(λ(h) ∗ λ(h)) = ‖h‖2
2 for certain functions h, and then

take Lq(G′) to be Lq(M,ϕ0) as defined by E. Nelson [15], viewing it as a space
of “ϕ0-measurable” operators [15, Theorem 5]. (In either case, the Lq spaces
obtained are isomorphic to the abstract Lq spaces of J. Dixmier [5] associated
with a trace on a von Neumann algebra.)

In the general (non-unimodular) case, ϕ0 is no longer a trace, and the lack
of adequate spaces Lq into which the Lp(G) were to be mapped for a long time
prevented the formulation of a Hausdorff–Young theorem, except for some special
cases ([7, §8], [20, Proposition 15]). In [10], however, U. Haagerup constructed
abstract Lp spaces corresponding to an arbitrary von Neumann algebra, and
combining methods from [10] with the recent theory of spatial derivatives by A.
Connes [2], M. Hilsum has developed a spatial theory of Lp spaces [12]. If M
is a von Neumann algebra acting on a Hilbert space H and ψ is a weight on
its commutant M ′, then the elements of Lp(M,H,ψ) are (in general unbounded)
operators on H satisfying a certain homogeneity property with respect to ψ. We
shall see that when using these spaces (in the particular case of M = λ(G)′′, H =
L2(G), and ψ = the canonical weight on M ′) and when defining the Lp Fourier

transform of an Lp function f to be the operator ξ → f ∗∆
1
q ξ on L2(G) (where ∆

is the modular function of the group), one gets a nice Lp Fourier transformation
theory and in particular a Hausdorff–Young theorem.

The paper is organized as follows. In Section 1 we fix the notations and describe
our set-up. In Section 2, we study the Lp spaces of [12] in our particular case;
we give a reformulation of the α-homogeneity property appearing in [2] that does
not involve modular automorphism groups and we characterize Lp(ψ0) operators
among all (−1

p
)-homogeneous operators. In Section 3, we treat the case p = 2

and obtain explicit expressions for the L2 Fourier transformation F2 = P , called
the Plancherel transformation, as well as for its inverse.

Next, in Section 4, we deal with the case of a general p ∈ [1, 2] ; we define
the Lp Fourier transformation Fp, and using interpolation (specifically, the three
lines theorem) we prove our version of the Hausdorff–Young theorem.
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Finally, in Section 5, we define an Lp Fourier cotransformation Fp taking
Lp(ψ0), 1 ≤ p ≤ 2, into Lq(G) and we investigate the relations between co-
transformation and Fourier inversion. A detailed study of the p = 1 case gives a
new characterization of A(G)+ functions among all continuous positive definite
functions on G.

1. Preliminaries and notation

Let G be a locally compact group with left Haar measure dx. We denote by
K(G) the set of continuous functions on G with compact support and by Lp(G),
1 ≤ p ≤ ∞, the ordinary Lebesgue spaces with respect to dx. The modular
function ∆ on G is given by∫

f(xa−1)dx = ∆(a)

∫
f(x)dx

for all f ∈ K(G) and a ∈ G. For functions f on G we put

f̌(x) = f(x−1), f̃(x) = f(x−1), f∗(x) = ∆−1(x)f(x−1)

and
(Jf)(x) = ∆− 1

2 (x)f(x−1)

for all x ∈ G. More generally, for each p ∈ [1,∞], we define

(Jpf)(x) = ∆−1/p(x)f(x−1), x ∈ G.
Then in particular J1f = f ∗, J2f = Jf, J∞f = f̃ . Note that for each p ∈ [1,∞],
the operation Jp is a conjugate linear isometric involution of Lp(G).

We shall often make use of the following non-unimodular version of Young’s
inequalities for convolution:

Lemma 1.1. (Young’s convolution inequalities.) Let p1, p2, p ∈ [1,∞] and 1
p1

+
1
q1

= 1. Assume that 1
p1

+ 1
p2
− 1

p
= 1. Then for all f1 ∈ Lp1(G) and f2 ∈ Lp2(G)

the convolution product f1 ∗∆
1
q1 f2 exists and belongs to Lp(G), and

‖f1 ∗∆
1
q1 f2‖p ≤ ‖f1‖p1‖f2‖p2 .

This theorem is well-known in the unimodular case as well as in the special cases
(p1, p2, p) = (p1, q1,∞) (where it follows from Hölder’s inequality), (p1, p2, p) =
(1, p, p) or (p1, p2, p) = (p, 1, p) [11, (20.14)], The general case has also been noted
[13, Remark 2.2]. It can be proved by modifying the proof of [11, (20.18)] or by
interpolation from the special cases mentioned above.

For operators T on the Hilbert space L2(G) we use the notation D(T ) (domain
of T ), R(T ) (range of T ), N(T ) (kernel of T ). If T is preclosed, we denote by
[T ] the closure of T . If T is a positive self-adjoint operator and P the projection
onto N(T )⊥, then by definition T it, t ∈ R, is the partial isometry coinciding with
the unitary (TP )it on N(T )⊥ and O on N(T ). By convention, when speaking of
operators, “bounded” always means “bounded and everywhere defined”.

We denote by λ and ρ the left and right regular representations of G on L2(G),
i.e. the unitary representations given by

(λ(x)f)(y) = f(x−1y),
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(ρ(x)f)(y) = ∆
1
2 (x)f(yx),

for all x, y ∈ G and f ∈ L2(G). The corresponding representations of the algebra
L1(G) (as in [4, 13.3]) are given by

λ(h)f = h ∗ f and ρ(h)f = f ∗∆−1
2 ȟ

for all h ∈ L1(G) and f ∈ L2(G).
We denote by M the von Neumann algebra of operators on L2(G) generated

by λ(G) (or λ(K(G)), or λ(L1(G))). In other words, M is the left von Neumann
algebra of K(G), where K(G) is considered as a left Hilbert algebra [3, Definition
2.1] with convolution, involution *, and the ordinary inner product in L2(G).
The commutant M ′ of M is the von Neumann algebra generated by ρ(G), and
M ′ = JMJ .

A function ξ ∈ L2(G) is called left (resp. right) bounded if left (resp. right)
convolution with ξ on K(G) extends to a bounded operator on L2(G), i.e. if there
exists a bounded operator λ(ξ) (resp. λ′(ξ)) such that ∀k ∈ K(G) : λ(ξ)k = ξ ∗ k
(resp. λ′(ξ)k = k ∗ ξ). The set of left (resp. right) bounded L2(G)-functions is
denoted Al (resp. Ar). Obviously, K(G) ⊆ Al,K(G) ⊆ Ar, and for ξ ∈ K(G)

we have λ′(ξ) = ρ(∆− 1
2 ξ̌). Note that ξ ∈ L2(G) is left bounded if and only if the

operator η → λ′(η)ξ : Ar → L2(G) extends to a bounded operator on L2(G);
if this is the case, we have λ(ξ)η = λ′(η)ξ for all η ∈ Ar. (Our definition of
left-boundedness therefore agrees with [1, Définition 2.1]). If ξ ∈ Al and T ∈M ,
then Tξ ∈ Al and λ(Tξ) = Tλ(ξ).

We denote by ϕ0 the canonical weight on M [1, Définition 2.12]. Then the
weight ψ0 on M ′ given by ψ0(y) = ϕ0(JyJ) for all y ∈ (M ′)+ is called the
canonical weight on M ′. The corresponding modular automorphism groups are
given by

σϕ0
t (x) = ∆itx∆−it, x ∈M,

σψ0
t (y) = ∆−ity∆it, y ∈M ′,

for all t ∈ R. Here, ∆ denotes the multiplication operator on L2(G) by the func-
tion ∆ (note that we shall not distinguish in our notation between the function
∆ and the corresponding multiplication operator). With this definition, ∆ is in
fact the modular operator of K(G) (as defined in [3, Lemma 2.2]).

It follows from the defining property of ϕ0 [1, Théorème 2.11] that for all y ∈M ′

we have

ψ0(y ∗ y) =

{
‖η‖2

2 if y = λ′(η) for some η ∈ Ar,
∞ otherwise

We identify the Hilbert space completion Hψ0 of nψ0 = {y ∈ M ′|ψ0(y ∗ y) <∞}
with L2(G) via η → λ′(η).

Now recall that by definition [2, Definition 1], D(L2(G), ψ0) is the set of ξ ∈
L2(G) such that y 7→ yξ : nψ0 → L2(G) extends to a bounded operator Rψ0(ξ) :
Hψ0 → L2(G), i.e., in view of the identification of Hψ0 with L2(G), such that
η 7→ λ′(η)ξ : Ar → L2(G) extends to a bounded operator on L2(G). Thus
D(L2(G), ψ0) = Al, and for all ξ ∈ D(L2(G), ψ0) we have Rψ0(ξ) = λ(ξ).
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If ϕ is a normal semi-finite weight on M , then by definition [2], dϕ
dψ0

is the

unique positive self-adjoint operator T satisfying

∀ξ ∈ Al : ϕ(λ(ξ)λ(ξ)∗) =

{
‖T 1

2 ξ‖2 if ξ ∈ D(T
1
2 )

∞ otherwise

and

T
1
2 = [T

1
2 |

Al∩D(T
1
2 )

].

In particular, we have
dϕ0

dψ0

= ∆

(cf. [2, Lemma 10 (b)] together with the proof of [2, Lemma 10 (a)].

If ϕ is a functional, then by the definition of dϕ
dψ0

we have Al ⊆ D
(
( dϕ
dψ0

)
1
2

)
and ( dϕ

dψ0
)

1
2 =

[
( dϕ
dψ0

)
1
2 |Al

]
. Finally, we note that the predual space M∗ of the von

Neumann algebra M may be viewed as a space of functions on the group in the
following manner: for each ϕ ∈M∗, define u : G→ C by

u(x) = ϕ(λ(x)), x ∈ G.

Then u is a continuous function on the group determining ϕ completely. The
linear space of such functions, normed by ‖u‖ = ‖ϕ‖, is exactly the Fourier
algebra A(G) of G introduced by P. Eymard [6] (this follows from [6, Théorème
(3.10)]).
The identification of A(G) with M∗ is such that

〈ϕ, λ(f)〉 =

∫
ϕ(x)f(x)dx

for all ϕ ∈M∗ ' A(G) and all f ∈ L1(G).
Recall that by [4, 13.4.4] a continuous function ϕ on G is positive definite if

and only if

∀ξ ∈ K(G) :

∫
ϕ(x)(ξ ∗ ξ∗)(x)dx ≥ 0,

i.e. if and only if

∀ξ ∈ K(G) :

∫ ∫
ϕ(yx−1)ξ(y)ξ(x)dydx ≥ 0.

If ϕ ∈ A(G), then ϕ is positive definite if and only if the corresponding func-
tional ϕ ∈ M∗ is positive. We denote by A(G)+ the set of positive definite
ϕ ∈ A(G).

2. Homogeneous operators on L2(G) and the spaces Lp(ψ0)

Definition 2.1. Let α ∈ R. An operator T on L2(G) is called α-homogeneous if

∀x ∈ G : ρ(x)T ⊆ ∆−α(x)Tρ(x).
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Remark 2.2. (1) The O-homogeneous operators are precisely the operators affili-
ated with M .

(2) If T is α-homogeneous, then actually ρ(x)T = ∆−α(x)Tρ(x) for all x ∈ G
(to see this, replace x by x−1 in the definition).

(3) If T and S are both α-homogeneous, then T + S is α-homogeneous. If T
is α-homogeneous and S is β-homogeneous, then TS is (α + β)-homogeneous.
If T is densely defined and α-homogeneous, then T ∗ is also α-homogeneous. If
T is positive self-adjoint and α-homogeneous and β ∈ R+, then T β is (αβ)-
homogeneous (use ρ(x)T βρ(x−1) = (ρ(x)Tρ(x−1))β).

(4) If T is α-homogeneous for some α ∈ R, then the projection onto N(T )⊥

belongs to M (since N(T ) is invariant under all ρ(x), x ∈ G).
(5) If a preclosed operator T is α-homogeneous, then its closure [T ] is also

α-homogeneous.
(6) For each α ∈ R, ∆−α is α-homogeneous.

Lemma 2.3. Let T be a closed densely defined operator on L2(G) with polar
decomposition T = U |T |. Let α ∈ R. Then T is α-homogeneous if and only if
U ∈M and |T | is α-homogeneous.

Proof. If T is α-homogeneous, then, by Remark 2.2(3), |T | = (T ∗T )
1
2 is also α-

homogeneous. Then for all x ∈ G and ξ ∈ D(|T |) we have ρ(x)U |T |ξ = ρ(x)Tξ =
∆−α(x)Tρ(x)ξ = ∆−α(x)U |T |ρ(x)ξ = Uρ(x)|T |ξ, i.e. ρ(x)U ⊆ Uρ(x) on R(|T |).
Since the projection onto R(|T |) = N(|T |)⊥ belongs to M , we conclude that U
commutes with all ρ(x); thus U ∈M .

The “if”-part follows directly from Remarks 2.2(3) and 2.2(1). �

Lemma 2.4. Let T be a closed densely defined operator on L2(G) and α ∈ C. If

∀x ∈ G : ρ(x)T ⊆ ∆−α(x)Tρ(x),

then
∀f ∈ K(G) : λ′(f)T ⊆ Tλ′(∆αf).

Proof. Let f ∈ K(G) and ξ ∈ D(T ). Then for all η ∈ D(T ∗) we have

(ρ(f)Tξ|η) =

∫
f(x)(ρ(x)Tξ|η)dx

=

∫
f(x)∆−α(x)(Tρ(x)ξ|η)dx

=

∫
∆−α(x)f(x)(ρ(x)ξ|T ∗ η)dx

= (ρ(∆−αf)ξ|T ∗η).
This shows that ρ(∆−αf)ξ ∈ D(T ∗∗) = D(T ), and Tρ(∆−αf)ξ = ρ(f)Tξ for all
ξ ∈ D(T ), i.e.

ρ(f)T ⊆ Tρ(∆−αf).

Hence for all f ∈ K(G) we have

λ′(f)T = ρ(∆− 1
2 f̌) ⊆ Tρ(∆−α∆− 1

2 f̌) = Tλ′(∆αf).

�
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Lemma 2.5. Let T be a closed densely defined operator on L2(G), α-homogeneous
for some α ∈ R. Let ξ ∈ Al. Then for all t ∈ R we have |T |itξ ∈ Al and

‖λ(|T |itξ)‖ ≤ ‖λ(ξ)‖.
Proof. By Lemma 2.3, we have ρ(x)|T |ρ(x−1) = ∆−α(x)|T | for all x ∈ G, whence
ρ(x)|T |itρ(x−1) = ∆−iαt(x)|T |it for all x ∈ G and all t ∈ R. Then, applying the
preceding lemma to |T |it, we obtain for all η ∈ K(G) that

|T |itξ ∗ η = λ′(η)|T |itξ = |T |itλ′(∆iαtη)ξ = |T |itλ(ξ)∆iαtη

and thus
‖ |T |itξ ∗ η‖2 ≤ ‖ |T |it‖ ‖λ(ξ)‖ ‖∆iαtη‖2 ≤ ‖λ(ξ)‖ ‖η‖2.

We conclude that |T |itξ is left bounded and that

‖λ(|T |itξ)‖ ≤ ‖λ(ξ)‖.
�

Remark 2.6. In particular, ∆itξ ∈ Al with ‖λ(∆itξ)‖ ≤ ‖λ(ξ)‖ for all ξ ∈ Al and
t ∈ R

Our next lemma shows that α-homogeneity as defined here is equivalent to
homogeneity of degree α with respect to ψ0 as defined in [2, Definition 17].

Lemma 2.7. Let α ∈ R, and let T be a closed densely defined operator on L2(G)
with polar decomposition T = U |T |. Then the following conditions are equivalent:

(i) T is α-homogeneous,

(ii) U ∈M and ∀y ∈M ′ ∀t ∈ R : σψ0
αt (y)|T |it = |T |ity.

Proof. By Lemma 2.3, we may assume that T is positive self-adjoint.
Denote by P the projection onto N(T )⊥. If either (i) or (ii) holds, then P is

in M , and thus the subspace PL2(G) is invariant under all operators considered.
Therefore, we may suppose that P ∈M , and the lemma is proved when we have
shown the equivalence of

∀x ∈ G : ρ(x)Tρ(x−1)P = ∆−α(x)TP (2.1)

and
∀t ∈ R ∀y ∈M ′ : σψ0

αt (y)P = T ityT−itP. (2.2)

Now for all x ∈ G we have

σψ0
αt (ρ(x)) = ∆−iαtρ(x)∆iαt = ∆iαt(x)ρ(x)

since

(∆−iαtρ(x)∆iαtf)(z) = ∆−it(z)∆
1
2 (x)∆it(zx)f(zx) = ∆−it(x)(ρ(x)f)(z)

for all f ∈ L2(G) and all x, z ∈ G. Then, since M ′ is generated by the ρ(x), the
condition (2.2) is equivalent to

∀x ∈ G ∀t ∈ R : ∆iαt(x)ρ(x)P = T itρ(x)T−itP

or (changing t into −t)
∀x ∈ G ∀t ∈ R : ρ(x)T itρ(x)P = ∆−iαt(x)T itP,

which in turn is equivalent to (2.1). �
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Now, by [2, Theorem 13] a positive self-adjoint operator on L2(G) is (−1)-
homogeneous if and only if it has the form dϕ

dψ0
for a (necessarily unique) normal

semi-finite weight ϕ on M .
We define the “integral with respect to ψ0” of a positive self-adjoint (−1)-

homogeneous operator T as∫
Tdψ0 = ϕ(1) ∈ [0,∞],

where T = dϕ
dψ0

. If
∫
Tdψ0 < ∞, i.e. if ϕ is a functional, we shall say that T

is integrable. (These definitions agree with those given in [2, remarks following
Corollary 18].)

For each p ∈ [1,∞), we denote by Lp(ψ0) the set of closed densely defined
(−1

p
)-homogeneous operators T on L2(G) satisfying∫

|T |pdψ0 <∞.

(Note that |T |p is (−1)-homogeneous, so that
∫
|T |pdψ0 is defined.) We put

L∞(ψ0) = M .
The spaces Lp(ψ0) introduced here are special cases of the spatial Lp-spaces of

M. Hilsum [12]. We recall their main properties (note, however, that our notation
differs from that of [12] in that we maintain throughout the distinction between
operators and their closures):

If T, S ∈ Lp(ψ0), then T + S is densely defined and preclosed, and the closure
[T + S] belongs to Lp(ψ0). With the obvious scalar multiplication and the sum
(T, S) 7→ [T+S], Lp(ψ0) is a linear space, and even a Banach space with the norm
‖.‖p defined by ‖T‖p = (

∫
|T |pdψ0)

1/p if p ∈ [1,∞) and ‖T‖p = ‖T‖ (operator
norm) if p = ∞. The operation T 7→ T ∗ is an isometry of Lp(ψ0) onto Lp(ψ0).
We denote Lp(ψ0)+ the set of positive self-adjoint operators belonging to Lp(ψ0)

By linearity, T 7→
∫
Tdψ0 defined on L1(ψ0)+ extends to a linear form on

the whole of L1(ψ0) satisfying
∫
T ∗dψ0 =

∫
Tdψ0 and |

∫
Tdψ0| ≤ ‖T‖1 for all

T ∈ L1(ψ0).
Let p1, p2, p ∈ [1,∞] such that 1

p1
+ 1

p2
= 1

p
. If T ∈ Lp1(ψ0) and S ∈ Lp2(ψ0),

then the operator TS is densely defined and preclosed, its closure [TS] belongs
to Lp(ψ0), and

‖[TS]‖p ≤ ‖T‖p1‖S‖p2 .
In particular, if T ∈ Lp(ψ0) and S ∈ Lq(ψ0), where 1

p
+ 1

q
= 1, then [TS] ∈

L1(ψ0) and ‖[TS]‖1 ≤ ‖T‖p‖S‖q (Hölder’s inequality); furthermore,
∫

[TS]dψ0 =∫
[ST ]dψ0.
If p ∈ [1,∞) and 1

p
+ 1

q
= 1, then we identify Lq(ψ0) with the dual space of

Lp(ψ0) by means of the form (T, S) 7→
∫

[TS]dψ0, T ∈ Lp(ψ0). S ∈ Lq(ψ0). In
particular, L1(ψ0) is the predual of M = L∞(ψ0). The space L2(ψ0) is a Hilbert
space with the inner product (T |S)L2(ψ0) =

∫
[S ∗ T ]dψ0.

Remark 2.8. Suppose thatG is unimodular. Then the α−homogeneous operators
for any α are simply the operators affiliated with M and the canonical weight
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ϕ0 on M is a trace. We claim that
∫
Tdψ0 = ϕ0(T ) for all positive self-adjoint

operators T affiliated with M , where we have written ϕ0(T ) for the value of
ϕ = ϕ0(T.) at 1 (with ϕ0(T.) defined as in [17, §4]). To see this, recall that
dϕ0

dψ0
= ∆ = 1, so that using [2, Theorem 9, (2)], we have

T it = (Dϕ : Dϕ0)t =

(
dϕ

dψ0

)it (
dϕ0

dψ0

)−it

=

(
dϕ

dψ0

)it

for all t ∈ R. Thus T = dϕ
dψ0

, and
∫
Tdψ0 = ϕ(1) = ϕ0(T ). (When proving

T = dϕ
dψ0

, we implicitly assumed that T is injective so that ϕ = ϕ0(T.) is faithful.

In the general case, denote by Q ∈M the projection onto N(T ), note that T +Q
is positive self-adjoint, affiliated with M , and injective, and verify that

T +Q =
dϕ0((T +Q).)

dψ0

=
dϕ0(T.)

dψ0

+
dϕ0(Q.)

dψ0

.

Since the supports of dϕ0(T.)
dψ0

anddϕ0(Q.)
dψ0

are 1−Q and Q, respectively, we conclude

that T = dϕ0(T.)
dψ0

as desired.) It follows that in this case the spaces Lp(ψ0) reduce

the ordinary Lp(M,ϕ0) (discussed in the introduction).

Returning to the general case, we now proceed to a more detailed study of the
spaces Lp(ψ0). For this, we shall need the following slightly generalized version
of [12, II, Proposition 2].

Lemma 2.9. Suppose that T is a positive self-adjoint operator on L2(G) and
α−homogeneous for some α ∈ R. Let ξ ∈ Al. Then for each n ∈ N there exists
ξn ∈ Al ∩

(
∩β∈R+D(T β)

)
such that

(i) ∀n ∈ N : ‖λ(ξn)‖ ≤ ‖λ(ξ)‖,
(ii) ξn → ξ as n→∞,
(iii) T βξn → T βξ as n→∞ whenever ξ and β ∈ R+ satisfy ξ ∈ D(T β).

Proof. For each n ∈ N , define fn : [0,∞) → C by

fn(x) =

{
1√
π

∫∞
−∞ e

−t2x
it√
ndt if x > 0

1 if x = 0.

Since for all x ∈ [0,∞) we have |fn(x)| ≤ 1√
π

∫∞
−∞ e

−t2dt = 1, the operators fn(T )

are bounded. For each η ∈ N, put ξn = fn(T )ξ.
To prove that the ξn belong to Al and satisfy (i), denote by P the projection

onto N(T )⊥ and observe that for all η ∈ K(G) we have

fn(T )Pξ ∗ η = λ′(η)fn(T )Pξ

=
1√
π

∫ ∞

−∞
e−t

2

λ′(η)T
it√
n ξdt

=
1√
π

∫ ∞

−∞
e−t

2

T
it√
nλ′(∆

iαt√
nη)ξdt

=
1√
π

∫ ∞

−∞
e−t

2

T
it√
n (ξ ∗∆

iαt√
nη)dt,
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where we have used Lemma 2.4. It follows that

‖fn(T )Pξ ∗ η‖2 ≤
1√
π

∫
e−t

2‖λ(ξ)‖ ‖∆
iαt√

nη‖2dt ≤ ‖λ(ξ)‖ ‖η‖2.

On the other hand,

‖(1− P )ξ ∗ η‖2 ≤ ‖λ((1− P )ξ)‖ ‖η‖2 ≤ ‖λ(ξ)‖ ‖η‖2,

since P ∈M .
In all, fn(T )ξ = fn(T )Pξ + (1− P )ξ belongs to Al and ‖λ(fn(T )ξ)‖ ≤ ‖λ(ξ)‖.
Now, to see that ξn ∈ D(T β) for all β ∈ R+, note that

fn(x) =
1√
π

∫ ∞

−∞
e−t

2

e
it√
n

log x
dt

= e−
1
4n

(log x)2 1√
π

∫ ∞

−∞
e
−(t− i

2
√

n
log x)2

dt

= e−
1
4n

(log x)2

for all x > 0. Then x 7→ xβfn(x) = e(β log x− 1
4n

(log x)2) is bounded, so that T βfn(T )
is a bounded operator, and thus fn(T )ξ ∈ D(T β).

Since fn is bounded and fn(x) → 1 as n→∞ for all x ∈ [0,∞), we have

fn(T )ζ → ζ as n→∞
for all ζ. From this, we immediately get (ii) and (iii). Indeed, ξn = fn(T )ξ → ξ,
and if ξ ∈ D(T β), then

T βξn = T βfn(T )ξ = fn(T )T βξ → T βξ.

�

Proposition 2.10. Let T be a closed densely defined (−1)−homogeneous operator
on L2(G). Then the following conditions are equivalent:
(i) T ∈ L1(ψ0),
(ii) there exists a constant C ≥ 0 such that

∀ξ ∈ Al ∩D(T ) ∀η ∈ Al : |(Tξ|η)| ≤ C‖λ(ξ)‖ ‖λ(η)‖,
(iii) there exists a constant C ≥ 0 such that

∀ξ ∈ Al ∩D(|T |
1
2 ) : ‖ |T |

1
2 ξ‖2 ≤ C‖λ(ξ)‖2,

(iv) there exists an approximate identity (ξi)i∈I in K(G)+ such that all ξi ∈
D(|T | 12 ) and

lim inf
i∈I

‖ |T |
1
2 ξi‖ <∞.

If T ∈ L1(ψ0), then Al ⊆ D(|T | 12 ), and for any approximate identity (ξi)i∈I in
K(G)+ we have

‖T‖1 = lim
i∈I

‖|T |
1
2 ξi‖2.

Furthermore, ‖T‖1 is the smallest C satisfying (ii) and the smallest C satisfying
(iii).
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Proof. Let T = U |T | be the polar decomposition of T .
First, suppose that T ∈ L1(ψ0). Then |T | ∈ L1(ψ0)+, and therefore |T | = dϕ

dψ0

for some positive functional ϕ on M . Recall that Al ⊆ D(|T | 12 ). Thus for all
ξ ∈ Al ∩D(T ) and η ∈ Al we have

|(Tξ|η)| =
∣∣∣(|T | 12 ξ | |T | 12U∗η)∣∣∣

= |ϕ(λ(ξ)λ(U∗η))|
≤ ‖ϕ‖ ‖λ(ξ)‖ ‖λ(U∗η)‖
≤ ‖T‖1‖λ(ξ)‖ ‖λ(η)‖,

i.e. (ii) holds.
Next, suppose that T satisfies (ii). Then for all ξ ∈ Al ∩D(|T |) we have

‖ |T |
1
2 ξ‖2 = |(Tξ|Uξ)|

≤ C‖λ(ξ)‖ ‖λ(Uξ)‖
≤ C‖λ(ξ)‖2.

Now if ξ ∈ Al ∩D(|T | 12 ), there exist (by Lemma 2.9) ξn ∈ Al ∩D(|T |) such that

|T | 12 ξn → |T | 12 ξ and ‖λ(ξn)‖ ≤ ‖λ(ξ)‖. Since

‖ |T |
1
2 ξn‖2 ≤ C‖λ(ξn)‖2 ≤ C‖λ(ξ)‖2,

we conclude that ‖ |T | 12 ξ‖2 ≤ C‖λ(ξ)‖2. Thus (iii) is proved.

Now suppose that T satisfies (iii). First we show that this implies Al ⊆ D(|T | 12 ).
Let ξ ∈ Al. Then by Lemma 2.9 there exist ξn ∈ Al ∩D(|T | 12 ) such that ξn → ξ

and ‖λ(ξn)‖ ≤ ‖λ(ξ)‖. Then for all η ∈ D(|T | 12 ) we have∣∣∣(|T | 12 ξn|η)∣∣∣ ≤ ‖ |T |
1
2 ξn‖ ‖η‖

≤ C1/2‖λ(ξn)‖ ‖η‖
≤ C1/2‖λ(ξ)‖ ‖η‖

and
(|T |

1
2 ξn|η) = (ξn| |T |

1
2η) → (ξ | |T |

1
2η).

We conclude that

∀η ∈ D(|T |
1
2 ) :

∣∣∣(ξ | |T | 12η)∣∣∣ ≤ C1/2‖λ(ξ)‖ ‖η‖.

Thus ξ ∈ D(|T | 12 ) as wanted.
Now, still assuming (iii), let us prove (iv). Let (ξi)i∈I be any approximate

identity in K(G)+. Then automatically all ξi ∈ K(G) ⊆ Al ⊆ D(|T | 12 ), and
‖λ(ξi)‖ ≤ ‖ξi‖1 = 1 so that

‖ |T |
1
2 ξi‖2 ≤ C‖λ(ξi)‖2 ≤ C,

whence lim infi∈I ‖ |T |
1
2 ξi‖ ≤ C

1
2 <∞.

Finally, suppose that T satisfies (iv) for some (ξi)i∈I . Note that since
∫

(ξi ∗
ξ∗i )(x)dx = 1, (ξi ∗ ξ∗i )i∈I is again an approximate identity in K(G)+. Therefore,
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λ(ξi)λ(ξi)
∗ = λ(ξi ∗ ξ∗i ) convergence strongly, and hence weakly, to 1 in M . Since

all ‖λ(ξi)λ(ξi)
∗‖ ≤ 1, this convergence is also σ-weak, and by the σ-weak lower

semicontinuity of ϕ, this implies

ϕ(1) ≤ lim inf
i∈I

ϕ(λ(ξi)λ(ξi)
∗)

= lim inf
i∈I

‖ |T |
1
2 ξi‖2

≤ C lim inf
i∈I

‖λ(ξi)‖2

≤ C <∞ .

Since ϕ(1) =
∫
|T |dψ0 <∞, we have T ∈ L1(ψ0), i.e. (i) holds.

Note that once ϕ(1) < ∞ is established, ϕ is known to be σ-weakly lower
continuous and thus

ϕ(1) = lim
i∈I

ϕ(λ(ξi)λ(ξi)
∗) = lim

i∈I
‖ |T |

1
2 ξi‖2

for any approximate identity (ξi)i∈I , i.e.

‖T‖1 = lim
i∈I

‖ |T |
1
2 ξi‖2.

In the course of the proof we observed that ‖T‖1 may be used as the constant
C in (ii), that every constant C satisfying (ii) also satisfies (iii), and that any C

satisfying (iii) is bigger than limi∈I ‖ |T |
1
2 ξi‖2, i.e. bigger than ‖T‖1. This proves

the remarks that end Proposition 2.10 �

As an immediate corollary, we have:

Proposition 2.11. Let T be a closed densely defined (−1
2
)-homogeneous operator

on L2(G). Then the following conditions are equivalent:

(i) T ∈ L2(ψ0),
(ii) there exists a constant C ≥ 0 such that

∀ξ ∈ Al ∩D(T ) : ‖Tξ‖ ≤ C‖λ(ξ)‖,
(iii) there exists an approximate identity (ξi)i∈I in K(G)+ such that all ξi ∈

D(T ) and
lim inf
i∈I

‖Tξi‖ <∞.

If T ∈ L2(ψ0), then Al ⊆ D(T ), and for any approximate identity (ξi)i∈I in
K(G)+ we have

‖T‖2 = lim
i∈I

‖Tξi‖;

furthermore, ‖T‖2 is the smallest constant C satisfying (ii).

We now come to the case of a general p ∈ [1,∞). Suppose that T ∈ LP (ψ0)
and S ∈ Lq(ψ0), where 1

p
+ 1

q
= 1. Then by [12, II, Proposition 5, 1], we have

(Tξ|Sη) = 〈[S ∗ T ], λ(ξ)λ(η)∗〉
for all ξ ∈ Al ∩D(T ) and η ∈ Al ∩D(S). (Here, 〈., .〉 denotes the form giving the
duality of L1(ψ0) and M.) Using Hölder’s inequality, we get

|(Tξ|Sη)| ≤ ‖[S∗T ]‖1‖λ(ξ)λ(η)∗‖ ≤ ‖T‖p‖S‖q‖λ(ξ)‖ ‖λ(η)‖
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for all such ξ and η. This kind of inequality in fact characterizes Lp(ψ0)-operators
among all (−1

p
)−homogeneous operators:

Proposition 2.12. Let p ∈ [1,∞] and define q by 1
p

+ 1
q

= 1. Let T be a

closed densely defined (−1
p
)−homogeneous operator on L2(G). Then the following

conditions are equivalent:

(i) T ∈ Lp(ψ0),
(ii) there exists a constant C ≥ 0 such that

∀S ∈ Lq(ψ0) ∀ξ ∈ Al ∩D(T ) ∀η ∈ Al ∩D(S) : |(Tξ|Sη)| ≤ C‖S‖q‖λ(ξ)‖ ‖λ(η)‖.

If T ∈ Lp(ψ0), then ‖T‖p is the smallest C satisfying (ii).

Proof. In view of the remarks preceding this proposition, we just have to show
that if T satisfies (ii) for some constant C, then T ∈ Lp(ψ0), and ‖T‖p ≤ C.

Therefore suppose that T with polar decomposition T = U |T | satisfies (ii).
Then also

|(|T |ξ|Sη)| = |(Tξ|U∗Sη)| ≤ C‖[U∗S]‖q‖λ(ξ)‖ ‖λ(η)‖ ≤ C‖S‖q‖λ(ξ)‖ ‖λ(η)‖

for all S, ξ, and η chosen as in (ii). Then we may assume that T is positive
self-adjoint.

Let S ∈ Lq(ψ0) and η ∈ Al ∩D(T
1
2S). We claim that for all ξ ∈ Al ∩D(T

1
2 )

we have

|(T
1
2 ξ|(T

1
2Sη)| ≤ C‖S‖q‖λ(ξ)‖ ‖λ(η)‖. (2.3)

If ξ ∈ Al ∩D(T ), this follows directly from the hypothesis. In case of a general

ξ ∈ Al ∩D(T
1
2 ), choose (by Lemma 2.9 ) ξn ∈ Al ∩D(T ) such that T

1
2 ξn → T

1
2 ξ

and ‖λ(ξn)‖ ≤ ‖λ(ξ)‖. Then (2.3) follows by passing to the limit.
Now since T is −1

p
-homogeneous, there exist Ti ∈ Lp(ψ0)+ satisfying T pi ≤

T p and
∫
T pdψ0 = supT Pi dψ0. (To see this, recall that T p = dϕ

dψ0
for some

normal semi-finite weight ϕ on M ; put Ti = ( dϕi

dψ0
)1/p where ϕi are positive normal

functionals such that ϕi ↗ ϕ; then dϕi

dψ0
≤ dϕ

dψ0
by [2, Proposition 8], and

∫
T pdψ0 =

ϕ(1) = supϕi(1) = sup
∫
T pi dψ0.)

Since the function t→ t1/p is operator monotone on [0,∞) (by [16, Proposition

1.3.8]), we have Ti ≤ T , i.e. D(T
1
2
i ) ⊇ D(T

1
2 ) and

∀ξ ∈ D(T
1
2 ) : ‖T

1
2
i ξ‖ ≤ ‖T

1
2 ξ‖,

for each i ∈ I (cf. also the remark following this proof).

For each i, let Bi be the bounded operator characterized by BiT
1
2 ξ = T

1
2
i ξ

for all ξ ∈ D(T
1
2 ) and Biξ = 0 for all ξ ∈ R(T

1
2 )⊥. Then ‖Bi‖ ≤ 1. Since

BiT
1
2 ⊆ T

1
2
i , and since T

1
2 and T

1
2
i are (−1

p
)-homogeneous, Bi is 0-homogeneous,

i.e. Bi ∈M . Put Ai = B∗i . Then Ai ∈M, ‖Ai‖ ≤ 1, and

T
1
2
i ⊆ T

1
2Ai.
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Using this, the fact that

T p−1
i = T

p
q

i ∈ Lq(ψ0) with ‖T p−1
i ‖q = ‖Ti‖p−1

p ,

and (2.3), we find that for all ξ ∈ Al ∩
(
∩β∈R+D(T βi )

)
, we have

‖T
p
2
i ξ‖2 = (T

1
2
i ξ|T

1
2
i T

p−1
i ξ)

= (T
1
2Aiξ|T

1
2AiT

p−1
i ξ)

≤ C‖[AiT p−1
i ]‖q‖λ(Aiξ)‖ ‖λ(ξ)‖

≤ C‖Ai‖ ‖T p−1
i ‖q‖Ai‖ ‖λ(ξ)‖2

= C‖Ti‖p−1
p ‖λ(ξ)‖2.

By means of Lemma 2.9, we conclude that the estimate

‖T
p
2
i ‖2 ≤ C‖Ti‖p−1

p ‖λ(ξ)‖2

holds for all ξ ∈ Al ∩D(T
p/2
i ). Thus by Proposition 2.10,

‖Ti‖pp = ‖T pi ‖1 ≤ C‖Ti‖p−1
p ,

i.e.

‖Ti‖p ≤ C.

Since this holds for all i, we have∫
T pdψ0 = sup

∫
T pi dψ0 ≤ Cp <∞;

thus T ∈ Lp(ψ0) and ‖Ti‖p ≤ C. �

Remark 2.13. we have used the fact that if a continuous function f on [0,∞)
is operator monotone in the sense that R ≤ S implies f(R) ≤ f(S) for all
positive bounded operators R and S, then the same is true for all - possibly
unbounded - positive self-adjoint R and S. To see this, suppose that R ≤ S.
Then for all ε ∈ R+, we have R(1 + εR)−1 ≤ S(1 + εS)−1 by [17, §4], and hence

f(R(1+ εR)−1) ≤ f(S(1+ εS)−1). Now if ξ ∈ D(f(S)
1
2 ), we have by the spectral

theory

(f(R(1 + εR)−1)ξ|ξ) ≤ (f(S + (1 + εS)−1)ξ|ξ)

→ ‖f(S)
1
2 ξ‖2 as ε→ 0.

Again by the spectral theory, we conclude that ξ ∈ D(f(R)
1
2 ) and that

‖f(R)
1
2 ξ‖2 = lim

ε→0
(f(R(1 + εR)−1)ξ|ξ) ≤ ‖f(S)

1
2 ξ‖2.

In all, we have proved that f(R) ≤ f(S).

Recall from [12, §1, Théorème 4, 1)], that if T1 and T2 belong to some Lp(ψ0),
1 ≤ p <∞, and if T2 ⊆ T1, then T1 = T2. Actually, a stronger result holds:
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Lemma 2.14. Let p ∈ [1,∞]. Let T1 ∈ Lp(ψ0) and let T2 be a closed densely
defined (−1

p
)-homogeneous operator on L2(G). If T2 ⊆ T1 or T1 ⊆ T2, then

T1 = T2.

Proof. First suppose that T2 ⊆ T1. If p = ∞, the result is well-known (a closed
densely defined operator having a bounded and everywhere defined extension is
equal to that extension). If p ∈ [1,∞), we conclude by Proposition 2.12 that also
T2 ∈ Lp(ψ0), and thus by [12, §1, Théorème 4, 1)], T1 = T2. (Alternatively, this
can be proved directly, i.e. without using Proposition 2.12, by the methods of
the proof of [12, §1, Théorème 4, 1)].)

If T1 ⊆ T2, apply the first part of the proof to T ∗2 ⊆ T ∗1 . �

A specific form of this lemma will be crucial to much of the following:

Proposition 2.15. Let p ∈ [1,∞].

1) Let T and S be closed densely defined (−1
p
)-homogeneous operators on

L2(G) with K(G) ⊆ D(T ) and K(G) ⊆ D(S). Suppose that Tξ = Sξ for
all ξ ∈ K(G). If one of the operators, say T , belongs to Lp(ψ0), we may
conclude that T = S.

2) If T ∈ Lp(ψ0) and K(G) ⊆ D(T ), then T = [T |K(G)].

Proof. (of both parts). Suppose that T ∈ Lp(ψ0). Then T |K(G), being a restriction
of a (−1

p
)-homogeneous operator to a right invariant subspace, is itself (−1

p
)-

homogeneous. Therefore also [T |K(G)] is (−1
p
)-homogeneous. Since [T |K(G)] ⊆ T ,

we conclude by the above lemma that T = [T |K(G)]. This proves 2). As for 1),
note that S ⊇ S|K(G) = T |K(G), and thus S ⊇ [T |K(G)] = T . Again we conclude
S = T . �

Finally, for later reference, we summarize in a lemma some remarks of Hilsum
[12]:

Lemma 2.16. Let q ∈ [2,∞). Let T ∈ Lq(ψ0). Then Al ⊆ D(T ), and for all
ξ ∈ Al we have

‖Tξ‖ ≤ ‖T‖q‖λ(ξ)‖2/q‖ξ‖1−2/q.

Proof. Since |T | q
2 ∈ L2(ψ0), we have Al ⊆ D(|T | q

2 ). Now let ξ ∈ Al. Then by the
spectral theory ξ ∈ D(|T |) and

‖ |T |ξ‖2 ≤ (‖ |T |
q
2 ξ‖2)2/q.(‖ξ‖2)1−2/q

≤ (‖ |T |q‖1‖λ(ξ)‖2)2/q.‖ξ‖2(1−2/q)

= (‖T‖q‖λ(ξ)‖2/q‖ξ‖1−2/q)2.

�

3. The Plancherel transformation

Given any functions f ∈ L2(G) and ξ ∈ L2(G), the convolution product f ∗∆ 1
2 ξ

exists and belongs to L∞(G). Thus the following definition makes sense:
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Definition 3.1. Let f ∈ L2(G). The Plancherel transform P(f) of f is the
operator on L2(G) given by

P(f)ξ = f ∗∆
1
2 ξ, ξ ∈ D(P(f)),

where

D(P(f)) = {ξ ∈ L2(G)|f ∗∆
1
2 ξ ∈ L2(G)}.

Theorem 3.2. (Plancherel).

(1) Let f ∈ L2(G). Then P(f) belongs to L2(ψ0), and

‖P(f)‖2 = ‖f‖2.

(2) The Plancherel transformation P : L2(G) → L2(ψ0) is a unitary transfor-
mation of L2(G) onto L2(ψ0).

Proof. (1) First note that P(f) is (−1
2
)-homogeneous: for all x, y ∈ G and ξ ∈

D(P(f)), we have

ρ(x)(P(f)ξ)(y) = ∆
1
2 (x)(f ∗∆

1
2 ξ)(yx)

= ∆
1
2 (x)

∫
f(z)∆

1
2 (z−1yx)ξ(z−1yx)dz

= ∆
1
2 (x)

∫
f(z)∆

1
2 (z−1y)(ρ(x)ξ)(z−1y)dz

= ∆
1
2 (x)(f ∗∆

1
2ρ(x)ξ)(y),

i.e. ρ(x)P(f) ⊆ ∆
1
2P(f)ρ(x).

We next show that P(f) is closed. Suppose that ξn → ξ in L2(G) and P(f)ξn →
η in L2(G), where all the ξn ∈ D(P(f)). Then f ∗ ∆

1
2 ξn → f ∗ ∆

1
2 ξ uniformly

(by a simple case of Lemma 1.1). Since f ∗∆
1
2 ξn → η in L2(G), we conclude that

η = f∗∆ 1
2 ξ. Thus ξ ∈ D(P(f)) and P(f)ξ = η, so that P(f) is closed. Obviously,

K(G) ⊆ D(P(f)). In all, we have shown that P(f) is closed, densely defined, and
(−1

2
)-homogeneous, so that we are now in a position to apply Proposition 2.11.

Let (ξi)i∈I be an approximate identity in K(G)+. Then

P(f)ξi = f ∗∆
1
2 ξi → f in L2(G).

Thus ‖P(f)ξi‖ → ‖f‖2. By Proposition 2.11 we conclude that P(f) ∈ L2(ψ0)
and that

‖P(f)‖2 = ‖f‖2.

(2) the map P is linear: if f1, f2 ∈ L2(G), then [P(f1) +P(f2)] and P(f1 + f2)
obviously agree on K(G) and therefore by Proposition 2.15, we have

P(f1 + f2) = [P(f1) + P(f2)].

Now, to prove that P is surjective, let T ∈ L2(ψ0). We shall show that there
exists a function f ∈ L2(G) such that T = P(f). Let (εi)i∈T be an approximation
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identity in K(G)+. Then for all η, ζ ∈ K(G) we have

(η ∗∆− 1
2 ζ̃|Tξi) = (η|(Tξi) ∗∆

1
2 ζ)

= (η|T (ξi ∗ ζ))
= (T ∗ η|ξi ∗ ζ)

→ (T ∗η|ζ) = (η|Tζ)

where we have used the (−1

2
)-homogeneity of T and the fact that K(G) ⊆ D(T ∗)

since T ∗ ∈ L2(ψ0). Thus we can define a linear functional F on the dense subspace
K(G) ∗ K(G) of L2(G) by

F (ξ) = lim
i

(ξ|Tξi).

Since

|(ξ|Tξi)| ≤ ‖ξ‖2‖Tξi‖2 ≤ ‖ξ‖2‖T‖2‖λ(ξi)‖ ≤ ‖T‖2‖ξ‖2,

this functional is bounded and therefore is given by some f ∈ L2(G):

∀ ξ ∈ K(G) ∗ K(G) : F (ξ) = (ξ|f).

In particular, we have

(η|Tζ) = F (η ∗∆− 1
2 ζ̃) = (η ∗∆− 1

2 ζ̃|f)

for all η, ζ ∈ K(G). Since

(η ∗∆− 1
2 ζ̃|f) = (η|f ∗∆

1
2 ζ) = (η|P(f)ζ),

this implies

∀ ζ ∈ K(G) : Tζ = P(f)ζ,

and we conclude, by Proposition 2.15, that T = P(f). �

Proposition 3.3. 1) For all T ∈M and all f ∈ L2(G), we have

P(Tf) = [TP(f)].

2) For all f ∈ L2(G), we have

P(Jf) = P(f)∗.

Proof. 1) Let f ∈ L2(G) and T ∈ M . Then [TP(f)] and P(Tf) both belong to
L2(ψ0), and for all ξ ∈ K(G) we have

P(Tf)ξ = (Tf) ∗∆
1
2 ξ = T (f ∗∆

1
2 ξ) = [TP(f)]ξ,

since T commutes with right convolution. By Proposition 2.15 we conclude that
P(Tf) = [TP(f)].
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2) Let f ∈ L2(G). Then for all ξ, η ∈ K(G) we have

(P(Jf)ξ|η) = (Jf ∗∆
1
2 ξ|η)

= (Jf |η ∗∆− 1
2 ξ̃)

= (J(η ∗∆− 1
2 ζ̃)|f)

= (ξ ∗∆− 1
2 η̃|f)

= (ξ|f ∗∆
1
2η)

= (ξ|P(f)η),

so that P(Jf)|K(G) ⊆ (P(f)|K(G))
∗ = [P(f)|K(G)]

∗ = P(f)∗ (since P(f) =
[P(f)|K(G)]). We conclude by Proposition 2.15 that P(Jf) = P(f)∗. �

Proposition 3.4. Let f ∈ L2(G). Then P(f) ≥ 0 if and only if∫
f(x)(ξ ∗ Jξ)(x)dx ≥ 0

for all ξ ∈ K(G).

Proof. . For all ξ ∈ K(G) we have∫
f(x)(ξ ∗ Jξ)(x)dx = (f |ξ ∗∆− 1

2 ξ̌) = (f ∗ ξ|ξ) = (P(f)ξ|ξ).

Since P(f) = [P(f)|K(G)], we have P(f) ≥ 0 if and only if (P(f)η|η) ≥ 0 for all
η ∈ K(G), and the result follows. �

By [10, Theorem 1.21 (3)] (or, to be precise, its spatial analogue obtained
by the methods of [12, §1] connecting abstract [10] and spatial [12] Lp spaces),
L2(ψ0)+ is a selfdual cone in L2(ψ0). By Proposition 3.4 and the unitarity of P
we conclude that

P0 = {f ∈ L2(G) | ∀ξ ∈ K(G) :

∫
f(x)(ξ ∗ Jξ)(x) ≥ 0}

is a selfdual cone in L2(G). Denote by P the ordinary selfdual cone in L2(G)
associated with the achieved left Hilbert algebra Al∩A∗l , i.e. let P be the closure
in L2(G) of the set {λ(ξ)(Jξ)|ξ ∈ Al ∩ A∗l } (see [8, §1]). Since P is selfdual, we
have

P = {f ∈ L2(G) | ∀ξ ∈ Al ∩ A∗l : (f |λ(ξ)(Jξ)) ≥ 0}.
Thus P ⊆ P0. Since P and P0 are both selfdual, this implies that P = P0. We
have proved

Corollary 3.5. A function f ∈ L2(G) belongs to the positive selfdual cone of
L2(G) if and only if

∀ξ ∈ K(G) :

∫
f(x)(ξ ∗ Jξ)(x)dx ≥ 0.

Remark 3.6. This result is similar to the characterization of the cone P [ given in
[18, p. 392] and proved in general in [9, Corollary 8]. The methods of [9] would
also apply for our result. Our proof is based on the fact that P(f) = [P(f)|K(G)].



Lp FOURIER TRANSFORMATION 565

Note 3.7. We have proved that P : L2(G) → L2(ψ0) carries the left regular rep-
resentation on L2(G) into left multiplication on L2(ψ0), takes J into ∗, and maps
the positive selfdual cone of L2(G) onto L2(ψ0)+. That a unitary transformation
L2(G) → L2(ψ0) having these properties exists (and is unique) also follows from
[8, Theorem 2.3], since both representations of M are standard (by the spatial
analogue of [10, Theorem 1.21, (3)]). In our approach, we have given a simple
and direct definition of P .

We can give an explicit description of the inverse of P :

Proposition 3.8. Let T ∈ L2(ψ0), and let (ξi)i∈I be an approximate identity in
K(G)+. Then

P−1(T ) = lim
i∈I

Tξi.

Proof. Let f ∈ P−1(T ). Then

Tξi = P(f)ξi = f ∗∆
1
2 ξi → f

in L2(G). �

Remark 3.9. From Proposition 2.11 we already knew that for any approximate
identity (ξi)i∈I , the ‖Tξi‖ tend to a limit and that this limit is independent of
the choice of (ξi)i∈I . Now, using that L2(ψ0) = P(L2(G)), we have proved that
the same holds for the Tξi themselves.

As a corollary, we have the following characterization of the inner product in
L2(ψ0), generalizing the formula for ‖T‖2 given in Proposition 2.11:

Corollary 3.10. Let T, S ∈ L2(ψ0). Then

(T |S)L2(ψ0) = lim
i∈I

(Tξi|Sξi)

for any approximate identity (ξi)i∈I in K(G)+.

Proof. Since P is unitary, we have

(T |S)L2(ψ0) = (P−1(T )|P−1(S))L2(G) = lim
i∈I

(Tξi|Sξi)L2(G).

�

4. The Lp Fourier transformations

Let p ∈ [1, 2] and define q ∈ [2,∞] by
1

p
+

1

q
= 1.

Definition 4.1. Let f ∈ Lp(G). The Lp Fourier transform of f is the operator
Fp(f) on L2(G) given by

Fp(f)ξ = f ∗∆
1
q ξ, ξ ∈ D(Fp(f)),

where D(Fp(f)) = {ξ ∈ L2(G) | f ∗∆
1
q ξ ∈ L2(G)}.

Note that by Lemma 1.1 the convolution product f ∗∆
1
q ξ exists and belongs

to Lr(G), where r ∈ [2,∞] is given by
1

p
+

1

2
− 1

r
= 1, whenever f ∈ Lp(G) and

ξ ∈ L2(G), so that the definition of D(Fp(f)) makes sense.
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Remark 4.2. For p = 1, we write F1 = F ; we have F(f)ξ = f ∗ ξ and D(F(f)) =
L2(G), so that F(f) is simply λ(f). For p = 2, we have F2(f) = P(f).

Now again let p ∈ [1, 2]. Let f ∈ Lp(G). Then the operator Fp(f) is closed.
To see this, suppose that ξi ∈ D(Fp(f)) converges in L2(G) to some ξ ∈ L2(G)
and Fp(f)ξi converges in L2(G) to some η ∈ L2(G). Now by Lemma 1.1 we have

Fp(f)ξi = f ∗ ∆
1
q ξi → f ∗ ∆

1
q ξ in Lr(G) (where

1

p
+

1

2
− 1

r
= 1). Therefore

f ∗ ∆
1
q ξ = η, so that f ∗ ∆

1
q ξ ∈ L2(G), i.e. ξ ∈ D(Fp(f)) and Fp(f)ξ = η as

wanted.

Next we show that Fp(f) is (−1

q
)-homogeneous. For all ξ ∈ D(Fp(f)) and all

x, y ∈ G we have

ρ(x)(Fp(f)ξ)(y) = ∆
1
2 (x)(f ∗∆

1
q ξ)(yx)

= ∆
1
2 (x)

∫
f(z)∆

1
q (z−1yx)ξ(z−1yx)dz

= ∆
1
q (x)

∫
f(z)∆

1
q (z−1y)∆

1
2 (x)ξ(z−1yx)dz

= ∆
1
q (x)

∫
f(z)∆

1
q (z−1y)(ρ(x)ξ)(z−1y)dz

= ∆
1
q (x)(f ∗∆

1
q ρ(x)ξ)(y)

= ∆
1
q (x)(Fp(f)ρ(x)ξ)(y),

i.e.
ρ(x)Fp(f) ⊆ ∆

1
q (x)Fp(f)ρ(x)

for all x ∈ G as wanted.

Finally, note that if ξ ∈ L2(G)∩Ls(G) where s ∈ [1, 2] is given by
1

p
+

1

s
−1

2
= 1,

then ξ ∈ D(Fp(f)) by Lemma 1.1. In particular, K(G) ⊆ D(Fp(f)). In all,
we have proved that for all f ∈ Lp(G), Fp(f) is closed, densely defined, and

(−1

q
)-homogeneous. We shall see, using the criterion from Proposition 2.12, that

actually Fp(f) ∈ Lq(ψ0). The proof is based on interpolation from the special
cases

F : L1(G) → L∞(ψ0)

and
P : L2(G) → L2(ψ0).

First we restrict our attention to f ∈ K(G)

Lemma 4.3. Let p ∈ [1, 2]. Denote by A the closed strip {α ∈ C | 1

2
≤ Re(α) ≤

1}. Let f ∈ K(G) and ξ ∈ Al. Then:

(i) for each α ∈ A, the convolution product

ξα = sg(f)|f |pα ∗∆1−αξ

exists, and ξα ∈ L2(G);
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(ii) the function
α 7→ ξα, α ∈ A,

with values in L2(G) is bounded;
(iii) for each η ∈ L2(G), the scalar function

α 7→ (ξα|η), α ∈ A,
is continuous on A and analytic in the interior of A.

Proof. Write g = ∆−1/pf̌ . Then

∀α ∈ A : sg(f)|f |pα = ∆−α(sg(g)|g|pα)∨.
Note that g as well as all sg(g)|g|pα, α ∈ A, belong to K(G).

For each η ∈ K(G), we define

Hη(α) =

∫
ξ(x)(sg(g)|g|pα ∗∆1−αη)(x)dx, α ∈ A, (4.1)

i.e.

Hη(α) =

∫ ∫
ξ(x)(sg(g)|g|pα)(y)∆1−α(y−1x)η(y−1x)dydx (4.2)

(later we shall recognize Hη(α) as simply (ξα|η)).
Note that

∀α ∈ A :‖ |sg(g)|g|pα| ∗ |∆1−αη|‖2

≤ ‖ |g|pRe(α)‖1‖∆1−Re(α)|η|‖2 (4.3)

≤ K <∞,

where K is a constant independent of α ∈ A. In particular, this allows us to
apply Fubini’s theorem to the double integral (4.2). We find

Hη(α) =

∫ ∫
ξ(x)(sg(g)|g|pα)(y−1)∆1−α(yx)η(yx)∆−1(y)dydx

=

∫ ∫
ξ(y−1x)(sg(g)|g|pα)(y−1)∆1−α(x)η(x)∆−1(y)dxdy

=

∫ ∫
(sg(f)|f |pα)(y)∆1−α(y−1x)ξ(y−1x)η(x)dydx;

it also follows that the convolution integral

ξα(x) =

∫
(sg(f)|f |pα)(y)∆1−α(y−1x)ξ(y−1x)dy

exists, so that we can write

Hη(α) =

∫
ξα(x)η(x)dx.

Now we shall prove that there exists a constant C ≥ 0 independent of α such
that

∀η ∈ K(G) :

∣∣∣∣∫ ξα(x)η(x)dx

∣∣∣∣ ≤ C‖η‖2. (4.4)

This will imply that each ξα, α ∈ A, is in L2(G) with ‖ξα‖2 ≤ C, i.e. (i) and (ii)
will be proved.
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Let us prove (4.4). Without loss of generality, we may assume that ‖f‖p = 1.
We want to show then that

∀η ∈ K(G) : |Hη(α)| ≤ (‖λ(ξ)‖+ ‖ξ‖2)‖η‖2. (4.5)

To do this, we shall apply the Phragmen–Lindelöf principle [24, p.93].
Fix η ∈ K(G). By (4.2), Hη is continuous on A and analytic in the interior

of A (the integrand in (4.2) can be majorized by an integrable function that is
independent of α). Furthermore, Hη is bounded (use (4.3) and (4.1)). Finally,
we shall estimate Hη on the boundaries of A.

Let t ∈ R. Then ∆−itξ ∈ Al and ‖λ(∆−itξ)‖ ≤ ‖λ(ξ)‖.
Now

P(sg(f)|f |p(
1
2
+it))(∆−itξ)

= sg(f)|f |p(
1
2
+it) ∗∆1−( 1

2
+it)ξ = ξ 1

2
+it,

so that ξ 1
2
+it ∈ L2(G) with

‖ξ 1
2
+it‖2 ≤ ‖P(sg(f)|f |p(

1
2
+it))‖2‖λ(∆−itξ)‖

≤ ‖sg(f)|f |p(
1
2
+it)‖2‖λ(ξ)‖

= ‖ |f |
p
2‖2‖λ(ξ)‖

= ‖λ(ξ)‖

(where we have used Proposition 2.11, the fact that P is unitary, and the hy-
pothesis ‖f‖p = 1). Similarly,

F(sg(f)|f |p(1+it))(∆−itξ) = sg(f)|f |p(1+it) ∗∆1−(1+it)ξ = ξ1+it,

so that ξ1+it ∈ L2(G) with

‖ξ1+it‖2 ≤ ‖F(sg(f)|f |p(1+it))‖∞‖∆−itξ‖2

≤ ‖sg(f)|f |p(1+it)‖1‖ξ‖2

= ‖ |f |p‖1‖ξ‖2

= ‖ξ‖2

(where we have used that F : L1(G) → L∞(ψ0) is norm-decreasing).
It follows that

∀t ∈ R :|Hη(
1

2
+ it)| = |

∫
ξ 1

2
+it(x)η(x)dx|

≤ ‖ξ 1
2
+it‖2‖η‖2 ≤ ‖λ(ξ)‖ ‖η‖2

and

∀t ∈ R :|Hη(1 + it)| = |
∫
ξ1+it(x)η(x)dx|

≤ ‖ξ1+it‖2‖η‖2 ≤ ‖ξ‖2‖η‖2.

Then by the Phragmen–Lindelöf principle, we have established (4.5) and thus (i)
and (ii).
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Finally, (iii) is easy. Indeed, since α 7→ ξα as is bounded, each α 7→ (ξα|η),
where η ∈ L2(G), can be uniformly approximated by functions α 7→ (ξα|ζ) with
ζ ∈ K(G), so we just have to prove (iii) in the case of η ∈ K(G). This is already
done since (ξα|η) = Hη(α). �

Lemma 4.4. Let p ∈ [1, 2]. Let f ∈ K(G) and S ∈ Lp(ψ0). Then for all ξ ∈ Al

and η ∈ Al ∩D(S) we have

|(Fp(f)ξ|Sη)| ≤ ‖f‖p‖S‖p‖λ(ξ)‖ ‖λ(η)‖.
Note that ξ ∈ D(Fp(f)) by Lemma 4.3.

Proof. We may assume that ‖f‖p = 1 and ‖S‖p = 1. Furthermore, by Lemma
2.9, we need only consider η ∈ Al ∩D(|S|p).

Let ξ ∈ Al and η ∈ Al ∩ D(|S|p). For each α in the closed strip A = {α ∈
C|1

2
≤ Re(α) ≤ 1}, put ξα = sg(f)|f |pα ∗∆1−αξ as in Lemma 4.3. Note that for

all α ∈ A we have (by the spectral theory ) η ∈ D(U |S|pα) and

‖U |S|pαη‖2
2 ≤ ‖ |S|

p
2 η‖2

2 + ‖ |S|pη‖2
2,

where S = U |S| is the polar decomposition of S. For each α ∈ A, put

ηα = U |S|pαη.
Then the function α 7→ ηα with values in L2(G) is bounded on A. Furthermore,
by [22, 9, 15], it is continuous on A and analytic in the interior of A.

Now for each α ∈ A, let

H(α) = (ξα|ηα).
Then obviously H is bounded on A (by Lemma 4.3 (ii), α 7→ ξα is bounded).
Furthermore, H is continuous on A. To see this, note that

∀α, α0 ∈ A : (ξα|ηα)− (ξα0|ηα0) = (ξα|ηα − ηα0) + (ξα − ξα0|ηα0),

the continuity follows since α 7→ ξα is bounded and weakly continuous (Lemma
4.3 (iii)). Finally, we claim that H is analytic in the interior of A. First note

that for each ζ ∈ L2(G) the function α 7→ (ζ|ηα), being equal to α 7→ (ηα|ζ), is
analytic. Next, recall that α 7→ ξα is actually analytic as a function with values
is L2(G) (by Lemma 4.3 (iii) and [19, Theorem 3.31]). Then, writing

(ξα|ηα)− (ξα0 |ηα0)

α− α0

= (
1

α− α0

(ξα − ξα0)|ηα) +
(ξα0 |ηα)− (ξα0|ηα0)

α− α0

,

we find that H has a derivative at each point α0 in the interior of A.
Now suppose that

∀t ∈ R : |H(
1

2
+ it)| ≤ ‖λ(ξ)‖ ‖λ(η)‖ (4.6)

and

∀t ∈ R : |H(1 + it)| ≤ ‖λ(ξ)‖ ‖λ(η)‖. (4.7)

Then by the Phragmen–Lindelöf principle [24, p. 93] we infer that

∀α ∈ A : |H(α)| ≤ ‖λ(ξ)‖ ‖λ(η)‖,
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in particular,
|(Fp(f)ξ|Sη)| ≤ ‖λ(ξ)‖ ‖λ(η)‖

as desired, since

H(
1

p
) = (f ∗∆1− 1

p ξ|U |S|η) = (Fp(f)|Sη).

So we just have to prove (4.6) and (4.7).
Since S ∈ Lp(ψ0) with ‖S‖p = 1 we have

U |S|
p
2 ∈ L2(ψ0) with ‖U |S|

p
2‖2 = 1 (4.8)

and
U |S|p ∈ L1(ψ0) with ‖U |S|p‖1 = 1. (4.9)

Now let t ∈ R. Then by Lemma 2.5, we have

|S|−pitη ∈ Al with ‖λ(|S|−pitη)‖ ≤ ‖λ(η)‖. (4.10)

Using this, Proposition 2.11, the estimate ‖ξ 1
2
+it‖2 ≤ ‖λ(ξ)‖ given in the proof

of Lemma 4.3, and (4.8), we get

|H(1
2

+ it)| = |(ξ1
2
+it
|U |S|

p
2 |S|−pitη)|

≤ ‖ξ1
2
+it
‖2‖U |S|

p
2 |S|−pitη‖2

≤ ‖λ(ξ)‖ ‖U |S|
p
2‖2‖λ(|S|−pitη)‖2

≤ ‖λ(ξ)‖ ‖λ(η)‖,
i.e. (4.6) is proved. To prove (4.7), note that

ξ1+it = sg(f)|f |p(1+it) ∗∆1−(1+it)ξ

= λ(sg(f)|f |p(1+it))∆−itξ ∈ Al

and

‖λ(ξ1+it)‖ ≤ ‖λ(sg(f)|f |p(1+it))‖ ‖λ(∆−itξ)‖
≤ ‖sg(f)|f |p(1+it)‖1‖λ(ξ)‖
≤ ‖λ(ξ)‖,

since ‖sg(f)|f |p(1+it)‖1 = ‖ |f |p‖1 = 1. Using this together with (4.10), Proposi-
tion 2.10, and (4.9), we find

|H(1 + it)| = |(ξ1+it|U |S|p|S|−pitη)|
≤ ‖λ(ξ1+it)‖ ‖U |S|p‖1‖λ(|S|−pitη)‖
≤ ‖λ(ξ)‖ ‖λ(η)‖,

so that (4.7) is proved. �

In the formulation of the following theorem we include the case p = 2. Note
however that the proof is based on the results for this special case (they were
used for the preceding lemmas).
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Theorem 4.5 (Hausdorff–Young). Let p ∈]1, 2] and 1
p

+ 1
q

= 1.

1) Let f ∈ Lp(G). Then Fp(f) ∈ Lq(ψ0) and

‖Fp(f)‖q ≤ ‖f‖p.
2) The mapping

Fp : Lp(G) → Lq(ψ0)

is linear, norm-decreasing, injective, and has dense range.
3) For all h ∈ L1(G) and f ∈ Lp(G), we have

Fp(h ∗ f) = [λ(h)Fp(f)].

4) For all f ∈ Lp(G), we have

Fp(Jpf) = Fp(f)∗.

Proof. 1) First suppose that f ∈ K(G). Then, using Proposition 2.12, we conclude
from Lemma 4.4 that Fp(f) ∈ Lq(ψ0) with ‖Fp(f)‖q ≤ ‖f‖p. Thus we have
defined a norm-decreasing mapping

Fp|K(G) : Lp(G) → Lq(ψ0).

Furthermore Fp|K(G) is linear: for all f1, f2 ∈ K(G) and all ξ ∈ K(G) we have

(f1 + f2) ∗∆
1
q ξ = f1 ∗∆

1
q ξ + f2 ∗∆

1
q ξ

so that Fp(f1 +f2) = [Fp(f1)+Fp(f2)] by Proposition 2.15. Now Fp|K(G) extends
by continuity to a norm-decreasing linear mapping

F ′
p : Lp(G) → Lq(ψ0).

We claim that for all f ∈ Lp(G), we have

F ′
p(f) = Fp(f).

this will prove 1).
Let f ∈ Lp(G). Then F ′

p(f) ∈ Lq(ψ0) and K(G) ⊆ D(F ′
p(f)) by Lemma 2.16.

On the other hand, by the remarks at the beginning of this section, Fp(f) is
closed, densely defined, and (−1

q
)-homogeneous, an K(G) ⊆ D(Fp(f)). Thus ny

Lemma 2.7, to conclude that F ′
p(f) = Fp(f) we just have to show that

∀ξ ∈ K(G) : F ′
p(f)ξ = Fp(f)ξ.

Now, take fn ∈ K(G) such that fn → f in Lp(G). Then for all ξ ∈ K(G), we
have

Fp(fn)ξ = fn ∗∆
1
q ξ

→ f ∗∆
1
q ξ = Fp(f)ξ in Lp(G).

On the other hand, since F ′
p is continuous,

Fp(fn)ξ = F ′
p(fn)ξ → F ′

p(f)ξ in L2(G)

by Lemma 2.16. We conclude that Fp(f)ξ = F ′
p(f)ξ as desired. Thus 1) is

proved.
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2) By the proof of 1), we just have to show that Fp is injective and has dense

range. The injectivity is evident: if Fp(f) = 0 for some f ∈ Lp(G), then f ∗∆
1
q ξ =

0 for all ξ ∈ K(G), and thus f = 0. That Fp(Lp(G)) is dense will be proved later.
3) For all h ∈ L1(G), f ∈ Lp(G), and ξ ∈ K(G) we have

h ∗ (f ∗∆
1
q ξ) = (h ∗ f) ∗∆

1
q ξ

(in Lp(G)). Thus by Proposition 2.15,

λ(h)Fp(f)] = Fp(h ∗ f).

4)Let f ∈ K(G). Then for ξ, η ∈ K(G) we have

(Fp(Jpf)ξ|η) = (Jpf ∗∆
1
q ξ|η)

= (∆
1
q ξ|∆−1(Jpf )̃ ∗ η)

= (ξ|∆
1
q (∆−1∆

1
pf ∗ η))

= (ξ|f ∗∆
1
q η)

= (ξ|Fp(f)η),

so that Fp(Jpf)|K(G) ⊆ (Fp(f)|K(G))
∗. By Proposition 2.15, we conclude that

Fp(Jpf) = Fp(f)∗.

By the continuity of Jp, Fp, and ∗, this holds for all f ∈ Lp(G).
Finally, let us show that Fp(Lp(G)) is dense in Lq(ψ0). By the duality between

Lq(ψ0) and Lp(ψ0), this is equivalent to proving that if T ∈ Lp(ψ0) satisfies∫
[Fp(f)T ]dψ0 = 0 for all f ∈ Lp(G) for all f ∈ Lp(G), then T = 0.
Suppose that T ∈ Lp(ψ0) is such that

∀f ∈ Lp(G) :

∫
[Fp(f)T ]dψ0 = 0.

Let f ∈ Lp(G). Then for all h ∈ L1(G) we have∫
[Fp(h ∗ f)T ]dψ0 = 0.

Alternatively stated, since [Fp(h ∗ f)T ] = [[λ(h)Fp(f)]T ] = [λ(h)[Fp(f)T ]], we
have

∀h ∈ L1(G) :

∫
[λ(h)[Fp(f)T ]]dψ0 = 0.

We conclude that the normal functional on M defined by [Fp(f)T ] ∈ L1(ψ0) is 0,
so that

[Fp(f)T ] = 0.

Changing f into Jpf and using 4) this gives

∀f ∈ Lp(G) : [Fp(f) ∗ T ] = 0.
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Now let ξ ∈ D(T ). Then using [12, II, Proposition 5],[1] we find that

∀f, η ∈ K(G) : (Tξ|f ∗∆
1
q η)

= (Tξ|Fp(f)η)

= 〈[Fp(f) ∗ T ], λ(ξ)λ(η)∗〉 = 0.

Thus Tξ = 0. This proves that T = 0 as wanted. �

Proposition 4.6. Let p ∈ [1, 2]. Let f ∈ Lp(G) and Fp(f) ≥ 0 if and only if

∀ξ ∈ K(G) :

∫
f(x)(ξ ∗ Jpξ)(x)dx ≥ 0.

Proof. We have

(Fp(f)ξ|ξ) =

∫
(f ∗∆

1
p ξ)(x)ξ(x)dx =

∫
f(x)(ξ ∗∆− 1

p ξ̌)(x)dx

for all ξ ∈ K(G). The result follows by changing ξ into ξ and recalling that
Fp(f) = [Fp(f)|K(G)]. �

The Lp Fourier transformations are well-behaved with respect to convolution
as the following proposition shows. The result generalizes 3) of theorem.

Proposition 4.7. Let p1, p2, p ∈ [1, 2] such that 1
p1

+ 1
p2
− 1
p

= 1. Define q1 ∈ [2,∞]

by 1
p1

+ 1
q1

= 1. Let f1 ∈ Lp1(G) and f2 ∈ Lp2(G). Then

Fp(f1 ∗∆
1
q1 f2) = [Fp1(f1)Fp2(f2)].

Proof. By Lemma 1.1, we have f1 ∗ ∆
1
q1 f2 ∈ Lp(G), and (f1, f2) 7→ Fp(f1 ∗

∆
1
q1 f2) maps Lp1(G)× Lp2(G) continuously into Lq(ψ0) (where 1

p
+ 1

q
= 1). Also

[Fp1(f1)Fp2(f2)] is continuous as a function of (f1, f2) ∈ Lp1(G) × Lp2(G) with
values in Lq(ψ0). Thus we need only prove the statement for f1, f2 ∈ K(G). Since

(f1 ∗∆
1
q1 f2) ∗∆

1
q1 ξ = f1 ∗∆

1
q1 (f2 ∗∆

1
q2 ξ)

(where 1
p2

+ 1
q2

= 1) for all f1, f2, ξ ∈ K(G), the result follows by Proposition 2.15

as usual. �

We conclude this section by the following characterization of the image of Lp(G)
under Fp:
Proposition 4.8. Let p ∈]1, 2] and 1

p
+ 1

q
= 1. Let T ∈ Lq(ψ0).

1) If T = Fp(f) for some f ∈ Lp(G), then for any approximate identity
(ξi)i∈I in K(G)+ we have

Tξi → f in Lp(G).

In particular, limi∈I ‖Tξi‖p = ‖f‖p <∞.
2) Conversely, suppose that for some approximate identity (ξi)i∈I in K(G)+

we have Tξi ∈ Lp(G) for all i ∈ I and

lim inf
i∈I

‖Tξi‖p <∞.

Then T ∈ Fp(Lp(G)).
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Proof. The first part is obvious since Tξi = f ∗∆
1
q ξi → f in Lp(G) and therefore

‖Tξi‖p → ‖f‖p. Now suppose that the hypothesis of 2) holds for some (ξi)i∈I .
We the proceed as in the proof of the surjectivity of P (Theorem 3.2). for all
η, ζ ∈ K(G) we have

(η ∗∆− 1
q ζ̃|Tξi) =(η|(Tξi) ∗∆

1
q ζ)

=(η|T (ξi ∗ ζ))
=(T ∗ η|ξi ∗ ζ)
→ (T ∗ η|ζ) = (η|Tζ).

Thus we can define a linear functional F on K(G) ∗ K(G) by

F (ξ) = lim
i∈I

∫
ξ(x)(Tξi)(x)dx.

Since ∣∣∣∣∫ ξ(x)(Tξi)(x)dx

∣∣∣∣ ≤ ‖ξ‖q‖Tξi‖p

we have

|F (ξ)| ≤ (lim inf
i∈I

‖Tξi‖p) · ‖ξ‖q.

Now since K(G) ∗K(G) is dense in Lq(G), F extends to a bounded functional on
Lq(G) and therefore is given by some f ∈ Lp(G):

F (ξ) =

∫
ξ(x)f(x)dx.

In particular,

(η|Tζ) = F (η ∗∆− 1
q ζ̃) =

∫
(η ∗∆− 1

q ζ̃)(x)f(x)dx

for all η, ζ ∈ K(G). Since∫
(η ∗∆− 1

q ζ̃)(x)f(x)dx =

∫
η(x)(f ∗∆

1
q ζ)(x)dx = (η|Fp(f)ζ),

this implies that

∀ζ ∈ K(G) : Tζ = Fp(f)ζ,

and we conclude by Proposition 2.15 that T = Fp(f). �

Remark 4.9. For p = 1, part 2) of the above proposition fails. (for counter-
example, take T = λ(x), x ∈ G.)

5. The Lp Fourier contransformation

Definition 5.1. Let p ∈ [1, 2] and 1
p

+ 1
q

= 1. For each T ∈ Lp(ψ0), denote by

Fp(T ) the unique function in Lq(G) such that∫
h(x)Fp(T )(x)dx =

∫
[Fp(h)T ]dψ0
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for all h ∈ Lp(G) (or just h ∈ K(G), or h ∈ K(G), or h ∈ K(G) ∗ K(G)). The
mapping

Fp : Lp(ψ0) → Lq(G)

thus define will be called the Lp fourier transformation. For p = 1, we write
F = F1.

Note that if 1 < p ≤ 2, then Fp is simply the transpose of Fp : Lp(G) → Lq(ψ0)
when we identify the dual spaces of Lp(G) and Lq(ψ0) with Lq(G) and Lp(ψ0),
respectively.

The mapping F takes an element T ∈ L1(ψ0) into the unique function ϕ ∈
A(G) that defines the same element of M∗ as T does; in particular,

F
(
dϕ

dψ0

)
= ϕ

for all ϕ ∈ (M∗)
+ ' A(G)+.

In view of these remarks, we obviously have

Theorem 5.2. 1) Let p ∈]1, 2] and 1
p

+ 1
q

= 1. Then

Fp : Lp(ψ0) → Lq(G)

is linear, norm-decreasing, injective, and has dense range.
2) The mapping

F : L1(ψ0) → A(G)

is an isometry of L1(ψ0) onto A(G).

Remark 5.3. With our definition of the contransformations, F2 is not exactly the
inverse of P ; they are related by the formula

∀T ∈ L2(ψ0) : F2(T ) = P−1(T ∗)

(since for all h ∈ L2(G) we have∫
h(x)F2(T )(x)dx =

∫
[F2(h)T ]dψ0 = (F2(h)|T ∗)L2(ψ0)

=
(
h|P−1(T ∗)

)
L2(G)

=

∫
h(x)P−1(T ∗)(x)dx.

It follows that F2 : L2(ψ0) → L2(G) is unitary.

The classical Hausdorff–Young theorem [24, p.101] has a second part, stating
that with each c ∈ lp(Z), 1 ≤ p ≤ 2, we can associate a function f ∈ Lq(T) with
‖f‖q ≤ ‖c‖p, such that c is the sequence of Fourier coefficients of f . Theorem 5.2

is a generalization of this result. Indeed, let T ∈ Lp(ψ0) and put g = ∆− 1
qFp(T )̌.

Then g ∈ Lq(G) and ‖g‖q = ‖Fp(T )‖q ≤ ‖T‖p, and we shall see that T is close to

being the “Lq Fourier transform” of g in the sense that Tξ = g ∗∆
1
p ξ for certain

ξ (note that we do not in general define Lq Fourier transforms for q ≥ 2).

Proposition 5.4. Let p ∈ [1, 2] and 1
p
+ 1

q
= 1. Then for all T ∈ Lp(ψ0), we have

Fp(T
∗) = Jq(Fp(T )).
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Proof. For all h ∈ Lp(G) we have∫
h(x)Fp(T

∗)(x)dx =

∫
[Fp(h)T ∗]dψ0

=

∫
[TFp(h)∗]dψ0 =

∫
[TFp(Jph)]dψ0

=

∫
Fp(T )(x)∆− 1

q (x)h(x−1)dx

=

∫
∆− 1

q (x)Fp(T )(x−1)h(x)dx.

�

Lemma 5.5. Let h, k ∈ K(G) and put ϕ = h ∗ k̃. Then [λ(ϕ)∆] ∈ L1(ψ0) and∫
[λ(ϕ)∆]ψ0 = ϕ(e).

Proof. Since

λ(ϕ)∆ = λ(h)λ(k̃)∆
1
2 ∆

1
2

⊆ λ(h)∆
1
2λ(∆− 1

2 k̃)∆
1
2 ⊆ P(h)P(k)∗,

the closure [λ(ϕ)∆] exists and [λ(ϕ)∆] ⊆ [P(h)P(k)∗]. One easily checks that
for all x ∈ G we have ρ(x)λ(ϕ)∆ ⊆ ∆(x)λ(ϕ)∆ρ(x), i.e. that λ(ϕ∆) is (-
1)-homogeneous. Then also [λ(ϕ)∆] is (-1)-homogeneous, and we conclude by
Proposition 2.15 that [λ(ϕ)∆] = [P(h)P(k)∗], so that [λ(ϕ)∆] ∈ L1(ψ0) and∫

[λ(ϕ)∆]dψ0 = (P(h)|P(k))L2(ψ0)

=

∫
h(x)k(x)dx = (h ∗ k̃)(e) = ϕ(e).

�

Suppose that f1 ∈ Lp1(G) and f2 ∈ Lp2(G), where p1, p2 ∈ [1, 2]. In Proposition

4.7, a formula relating f1∗∆
1
q1 f2 and [Fp1(f1)Fp2(f2)] was given in the case where

1
p1

+ 1
p2
≥ 3

2
(under this assumption, p ∈ [1, 2] satisfying 1

p1
+ 1

p2
− 1

p
= 1 exists).

The following proposition takes care of the case where 1
p1

+ 1
p2
≤ 3

2
.

Proposition 5.6. Let p1, p2 ∈ [1, 2] and q ∈ [2,∞] such that 1
p1

+ 1
p2
− 1

q
= 1.

Let f1 ∈ Lp1(G) and f2 ∈ Lp2(G). Then

Fp([Fp1(f1)Fp2(f2)]) = ∆− 1
q (f1 ∗∆

1
q1 f2)̌,

where 1
p

+ 1
q

and 1
p1

+ 1
q1

= 1.

Proof. Both expressions exist, belong to Lq(G), and are continuous as functions
of (f1, f2) ∈ Lp1(G) × Lp2(G). Thus we need only prove the formula for f1, f2 ∈
K(G). In this case, for all h ∈ K(G) and ξ ∈ K(G) we have

h ∗∆
1
q (f1 ∗∆

1
q1 (f2 ∗∆

1
q2 ξ)) = h ∗∆

1
q (f1 ∗∆

1
q1 f2) ∗∆ξ,
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where 1
p2

+ 1
q2

= 1. We conclude by Proposition 2.15 that

∀h ∈ K(G) : [Fp(h)[Fp1(f1)Fp2(f2)]] = [λ(h ∗∆
1
q f)∆],

where we have written f = f1 ∗∆
1
q1 f2. Using this and Lemma 5.5, we find

∀h ∈ K(G) :

∫
[Fp(h)[Fp1(f1)Fp2(f2)]]dψ0

=

∫
[λ(h ∗∆

1
q f)∆]dψ0

= (h ∗∆
1
q f)(e)

=

∫
h(x)∆

1
q (x−1)f(x−1)dx.

We conclude that

Fp([Fp1(f1)Fp2(f2)]) = ∆− 1
q f̌

as desired. �

Corollary 5.7. Let f, g ∈ L2(G). Then

f ∗ g̃ = F([P(gP(f)∗]).

Proof. Letting p1 = p2 = 2 and q = ∞ in Proposition 5.6, we obtain

F([P(g)P(f)∗]) = F([F2(g)F2(Jf)]) = (g ∗∆
1
2Jf )̌ = f ∗ g̃.

�

Remark 5.8. Since A(G) = F(L1(ψ0)) and since every T ∈ L1(ψ0) can be written

T = [RS∗] where R,S ∈ L2(ψ0) = P(L2(G)) (just put R = U |T | 12 and S∗ = |T | 12 ,
where T = U |T | is the polar decomposition of T ), we have reproved the fact
[6] that A(G) = {f ∗ g̃|f, g ∈ L2(G)}. It also follows that ‖ϕ‖A(G) ≤ ‖f‖2‖g‖2

whenever ϕ = f ∗ g̃, f, g ∈ L2(G) (since ‖[P(g)P(f)∗]‖1 ≤ ‖P(g)‖2‖P(f)‖2),
and that, given ϕ ∈ A(G), there exist f, g ∈ L2(G) with ϕ = f ∗ g̃ such that

‖ϕ‖A(G) = ‖f‖2‖g‖2 (use that ‖T‖1 = ‖U |T | 12‖2‖|T |
1
2‖2 for T ∈ L1(ψ0)).

Proposition 5.9. Let p ∈ [1, 2] and q1, q2 ∈ [2,∞] such that 1
q1

+ 1
q2

= 1
p
. Let

T ∈ Lq1(ψ0) and S ∈ Lq2(ψ0). Then

〈Tξ|Sη〉 =

∫
Fp([S ∗ T ])(x)(ξ ∗ Jpη)(x)dx

for all ξ, η ∈ K(G).

Proof. By Lemma 2.16, the left hand side of the equation to be proved is a
continuous function of T and S. The same is true of the right hand side. Therefore
it is enough to prove the statement for T and S belonging to the (dense) sets
Fp1(K(G)) and Fp2(K(G)) (where, as usual, 1

p1
+ 1

q1
= 1, 1

p2
+ 1

q2
= 1).
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Now suppose that T = Fp1(h) and S = Fp2(k) where h, k ∈ K(G). Then

(Tξ|Sη) = (h ∗∆
1
q1 ξ|k ∗∆

1
q2 η)

= (∆
1
q1 ξ ∗∆

− 1
q2 η̃|∆−1h̃ ∗ k)

= (ξ ∗∆
− 1

q1
− 1

q2 η̃|∆− 1
p1 h̃ ∗∆

− 1
q1 k)

=

∫
(ξ ∗ Jpη)(x)(∆− 1

p1 ȟ ∗∆
− 1

q1 k)(x)dx.

Since

Fp([S ∗ T ]) = Fp([Fp2(Jp2k)Fp1(h)])

= ∆− 1
q (Jp2k ∗∆

1
q2 h)̌

= ∆−1+ 1
p ∆

− 1
q2 ȟ ∗∆−1+ 1

p ∆
1

p2 k

= ∆
− 1

p1 ȟ ∗∆
− 1

q1 k

we have proved the formula. �

Proposition 5.10. Let p ∈ [1, 2] and 1
p

+ 1
q

= 1. Let T ∈ Lp(ψ0) with polar

decomposition T = U |T |. Put g = ∆− 1
qFp(T )̌.

Then

(|T |
1
2 ξ | |T |

1
2U∗η) =

∫
(g ∗∆

1
p ξ)(x)η(x)dx

for all ξ, η ∈ K(G).

Proof. Put q1 = q2 = 2p. then |T | 12 ∈ Lq1(ψ0) and |T | 12U∗ ∈ Lq2(ψ0), and by
Proposition 5.9 we get

(|T |
1
2 ξ| |T |

1
2U∗η) =

∫
Fp(T )(x)(ξ ∗ Jpη)(x)dx

=

∫
F(T )(x−1(∆

1
pη ∗ ξ̌)(x−1)∆−1(x)dx

=

∫
g(x)(η ∗∆− 1

p ξ̌)(x)dx

=

∫
(g ∗∆

1
p ξ)(x)η(x)dx.

�

Proposition 5.11. Let p ∈ [1, 2] and T ∈ Lp(ψ0). Put g = ∆− 1
qFp(T )̌. Let

ξ ∈ K(G). Then ξ ∈ D(T ) if and only if g ∗∆
1
p ξ ∈ L2(G), and if this is the case,

we have
Tξ = g ∗∆

1
p ξ.

Proof. First suppose that ξ ∈ D(T ). Then for all η ∈ K(G) we have∫
(Tξ)(x)η(x)dx = (Tξ|η) = (|T |

1
2 ξ | |T |

1
2U∗η) =

∫
(g ∗∆

1
p ξ)(x)η(x)dx.
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Hence g ∗∆
1
p ξ = Tξ and thus g ∗∆

1
p ξ ∈ L2(G).

Conversely, if g ∗∆
1
p ξ ∈ L2(G), then

(|T |
1
2 ξ | |T |

1
2U∗η|) =

∣∣∣∣∫ (g ∗∆
1
p ξ)(x)η(x)dx

∣∣∣∣
≤ ‖g ∗∆

1
p ξ‖2‖η‖2

for all η ∈ K(G).

We conclude that |T | 12 ξ ∈ D([|T | 12U∗|K(G)]
∗). Now [|T | 12U∗|K(G)]

∗ = [|T | 12U∗]∗ =

U |T | 12 , so that |T | 12 ξ ∈ D(U |T | 12 ), whence ξ ∈ D(T ). �

Theorem 5.12. Let p ∈ [1, 2] and T ∈ Lp(ψ0). Put g = ∆− 1
qFp(T )̌. Suppose

that g ∈ L2(G). Then T is the closure of the operator

ξ 7→ g ∗∆
1
p ξ, ξ ∈ K(G).

Proof. When g ∈ L2(G), we have g ∗ ∆
1
p ∈ L2(G) for all ξ ∈ K(G). Thus, by

Proposition 5.11, K(G) ⊆ D(T ), and Tξ = g ∗ ∆
1
p ξ for all ξ ∈ K(G). Since

T = [T |K(G)] by Proposition 2.15, the theorem is proved. �

As a corollary, we have

Theorem 5.13 (Fourier inversion). Let p ∈ [1, 2] and 1
p

+ 1
q

= 1.

1) Let T ∈ Lp(ψ0). Put g = ∆− 1
qFp(T )̌. If g ∈ Lr(G) for some r ∈ [1, 2],

then Fr(q)∆
1
r
− 1

q is closable, and

T =
[
Fr(q)∆

1
r
− 1

q

]
.

2) Let f ∈ Lp(G). If for some r ∈ [1, 2], the closure S =
[
Fp(f)∆

1
r
− 1

q

]
exists

and belongs to Lr(ψ0), then

f = ∆− 1
sF r(S )̌,

where 1
r

+ 1
s

= 1.

Proof. 1) Since g ∈ Lr(G) ∩ Lq(G), we also have g ∈ L2(G). Then by Theorem
5.12 we have

Tξ = g ∗∆
1
p ξ = g ∗∆

1
s ∆−1 =

1

r
+

1

p
ξ = Fr(g)∆

1
r
− 1

q ξ

for all ξ ∈ K(G). Thus T |K(G) ⊆ Fr(g)∆
1
r
− 1

q . As is easily seen Fr(g)∆
1
r
− 1

q is
(−1

p
)-homogeneous. It is also closable, since its adjoint is densely defined (indeed,

(Fr(g)∆
1
r
− 1

q )∗ ⊆ (T |K(G))
∗ = T ∗ so that (Fr(g)∆

1
r
− 1

q )∗ = T ∗). We conclude that

T = [Fr(g)∆
1
r
− 1

q ] (since T ⊆ [Fr(g)∆
1
r
− 1

q ]).
2) For all ξ ∈ K(G), we have ξ ∈ D(S) and by Proposition 5.11,

f ∗∆
1
r ξ = Fp(f)∆

1
r
− 1

q ξ = Sξ = ∆− 1
sF r(S )̌ ∗ ξ.

The result follows. �
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Putting p = r = 1 in the first part of Theorem 5.12 and recalling that

F
(
dϕ
dψ0

)
= ϕ for ϕ ∈ A(G)+ we obtain

Corollary 5.14. Let ϕ ∈ A(G)+. If ϕ̌ ∈ L1(G), then

dϕ

dψ0

= [λ(ϕ̌)∆].

Finally we shall give some results on positive operators T ∈ Lp(ψ0) valid with-
out any restriction on Fp(T ).

Note that for all f ∈ Lq(G) and ξ, η ∈ K(G) we have∫
f(x)(ξ ∗ Jpη)(x)dx =

∫ ∫
f(x)ξ(y)∆− 1

p (y−1x)η̃(y−1x)dydx

=

∫ ∫
f(yx)ξ(y)∆− 1

p (x)η̃(x)dxdy

=

∫ ∫
f(yx−1)ξ(y)∆

1
q (x)η(x)dxdy.

Proposition 5.15. Let p ∈ [1, 2] and 1
p

+ 1
q

= 1. Let T ∈ Lp(ψ0)+. Put f =

Fp(T ). Let

q(ξ) =

∫
f(x)(ξ ∗ Jpξ)(x)dx =

∫ ∫
f(yx−1)∆

1
q (x)ξ(y)ξ(x)dydx

for all ξ ∈ K(G). Then q is a closable positive quadratic form, and the positive
self-adjoint operator associated with its closure is T .

Proof. By (the proof of) Proposition 5.10, we have

(T
1
2 ξ|T

1
2 ξ) =

∫
f(x)(ξ ∗ Jpξ)(x)dx = q(ξ)

for all ξ ∈ K(G), and T
1
2 = [T

1
2 |K(G)]. Thus q is a closable positive quadratic

form with closure corresponding to T . �

Corollary 5.16. Let ϕ ∈ A(G)+. Then dϕ
dψ0

is the positive self-adjoint operator

associated with the closure of the positive quadratic form q given by

q(ξ) =

∫
ϕ(x)(ξ ∗ ξ∗)(x)dx =

∫ ∫
ϕ(yx−1)ξ(y)ξ(x)dydx

for all ξ ∈ K(G).

Remark 5.17. This result also follows directly from the definition of dϕ
dψ0

. Indeed,∥∥∥∥∥
(
dϕ

dψ0

) 1
2

ξ

∥∥∥∥∥
2

= ϕ(λ(ξ)λ(ξ)∗) =

∫
ϕ(x)(ξ ∗ ξ∗)(x)dx
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for all ξ ∈ K(G), and we have
(
dϕ
dψ0

) 1
2

=

[(
dϕ
dψ0

) 1
2

∣∣∣∣
K(G)

]
by Proposition 2.15

(or, alternatively, by an application of [9, Theorem] together with the fact that(
dϕ
dψ0

) 1
2

=

[(
dϕ
dψ0

) 1
2

∣∣∣∣
Al

]
).

Actually, the property of defining closable quadratic forms on K(G) charac-
terizes A(G)+-functions among all positive definite continuous functions. The
precise statement is as follows:

Theorem 5.18. Let ϕ be a positive definite continuous function. define q on
K(G) by

q(ξ) =

∫
ϕ(x)(ξ ∗ ξ∗)(x)dx =

∫ ∫
ϕ(yx−1)ξ(y)ξ(x)dydx, ξ ∈ K(G).

Then q is a positive quadratic form on K(G), and q is closable if and only if
ϕ ∈ A(G).

Proof. That q is a quadratic form is obvious, and since ϕ is positive definite, q is
positive.

Now suppose that q is closable. Denote by T the positive self-adjoint operator
associated with its closure; Then T is characterized by the properties K(G) ⊆
D(T

1
2 ), T

1
2 = [T

1
2 |K(G)], and

∀ξ ∈ K(G) : ‖T
1
2 ξ‖2 = q(ξ).

Let us show that T is (−1)-homogeneous. Suppose that x ∈ G. Then Tx =

∆−1(x)ρ(x)Tρ(x−1) is positive self-adjoint and T
1
2
x = ∆− 1

2 (x)ρ(x)T
1
2ρ(x−1). There-

fore K(G) ⊆ D(T
1
2
x ) and T

1
2
x = [T

1
2
x |K(G)]. Furthermore, for all ξ ∈ K(G) we have

‖T
1
2
x ξ‖2 = ‖∆− 1

2 (x)ρ(x)T
1
2ρ(x−1)ξ‖

= ∆−1(x)‖T
1
2ρ(x−1)ξ‖2

= ∆−1(x)q(ρ(x−1)ξ)

= ∆−1(x)

∫ ∫
ϕ(yz−1)(ρ(x−1)ξ)(y)(ρ(x−1)ξ)(z)dydz

=

∫ ∫
∆−1(x)ϕ(yz−1)∆

1
2 (x−1)ξ(yx−1)∆

1
2 (x−1)ξ(zx−1)dydz

= ∆−1(x)

∫ ∫
ϕ(yxz−1)ξ(y)ξ(zx−1)dydz

=

∫ ∫
ϕ(yz−1)ξ(y)ξ(z)dzdy

= q(ξ).

We conclude from the characterization of T that Tx = T , so that

∀x ∈ G : ∆−1(x)ρ(x)Tρ(x−1) = T,
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i.e. T is (−1)-homogeneous.
Now let (ξi)i∈I be an approximate identity in K(G)+. Then

‖T
1
2 ξi‖2 = q(ξi)

=

∫
ϕ(x)(ξi ∗ ξ∗i )(x)dx

≤ sup {|ϕ(x)| |x ∈ supp(ξi ∗ ξ∗i )} · ‖ξi ∗ ξ∗i ‖1

≤ sup {|ϕ(x)| |x ∈ supp(ξi ∗ ξ∗i )} .

Since ϕ is continuous and the support of the ξi ∗ ξ∗i tend to {e}, we get

lim inf
i∈I

‖T
1
2 ξi‖2 ≤ ϕ(e).

By Proposition 2.10, this shows that T ∈ L1(ψ0).
Put ϕ1 = F(T ) ∈ A(G). Then∫

ϕ1(x)(ξ ∗ ξ∗)(x)dx = ‖T
1
2 ξ‖2 = q(ξ) =

∫
ϕ(x)(ξ ∗ ξ∗)(x)dx

for all ξ ∈ K(G). We conclude that ϕ = ϕ1 and thus ϕ ∈ A(G). �
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du CNRS, No- 274, Marseille 20-24 juin 1977), 175-184. Editions du CNRS, Paris 1979.

11. E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer, Berlin-Göttingen Hei-
delberg 1963.
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