
Adv. Oper. Theory 3 (2018), no. 1, 178–192
http://doi.org/10.22034/aot.1702-1126
ISSN: 2538-225X (electronic)
http://aot-math.org

NON-COMMUTATIVE RATIONAL FUNCTIONS IN STRONGLY
CONVERGENT RANDOM VARIABLES

SHENG YIN

This paper is dedicated to Professor Haagerup

Communicated by U. Franz

Abstract. Random matrices like GUE, GOE and GSE have been shown that
they possess a lot of nice properties. In 2005, a new property of independent
GUE random matrices is discovered by Haagerup and Thorbørnsen. It is called
strong convergence property and then more random matrices with this property
are followed. In general, the definition can be stated for a sequence of tuples
over some C∗-algebras. In this paper, we want to show that, for a sequence
of strongly convergent random variables, non-commutative polynomials can be
extended to non-commutative rational functions under certain assumptions.
As a direct corollary, we can conclude that for a tuple (X(n)

1 , · · · , X
(n)
m ) of

independent GUE random matrices, r(X(n)
1 , · · · , X

(n)
m ) converges in trace and

in norm to r(s1, · · · , sm) almost surely, where r is a rational function and
(s1, · · · , sm) is a tuple of freely independent semi-circular elements which lies
in the domain of r.

1. Introduction

In 1990’s, a deep relation between random matrices and free probability was
revealed in the paper [21] by Voiculescu. In this paper, Voiculescu proved that if

(X
(n)
1 , · · · , X

(n)
m ) is a tuple of independent n× n normalized Hermitian Gaussian
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random matrices for each n ∈ N, then all the moments converge, i.e.,

lim
n→∞

E
{

trn(p(X
(n)
1 , · · · , X(n)

m ))
}

exists for any non-commutative polynomial p, where we denote the normalized
trace by trn. Furthermore, we can realize the limits as a tuple of freely inde-
pendent semi-circular elements (s1, · · · , sm) in some C∗-probability space (A, τ),
namely, a unital C∗-algebra with a state τ . So we can write

lim
n→∞

E
{

trn(p(X
(n)
1 , · · · , X(n)

m ))
}

= τ
(
p(s1, · · · , sm)

)
for any polynomial p. This result has been extended to some other random
matrix models, for example, a tuple of Wigner matrices with some assumptions on
moments of entries [8]. On the other hand, it is also known that this convergence
for random matrices can be improved to the almost sure convergence, see Hiai,
Petz [13] and Thorbørnsen [20].

Later, Haagerup and Thorbørnsen showed that the convergence of random
matrices can happen in a stronger sense, that is, convergence in the norm. To be
precise, in [11], they showed that for any polynomial p,

lim
n→∞

∥∥∥p(X
(n)
1 (ω) , · · · , X(n)

m (ω))
∥∥∥ =

∥∥p(s1, · · · , sm)
∥∥ (1.1)

for almost every ω in the underlying probability space. Then we say that (X
(n)
1 , · · · ,

X
(n)
m ) strongly converges and (s1, · · · , sm) is its strong limit. Following their work,

Schultz [18] shows that GOE and GSE also admit semi-circular elements as strong
limit. Then Capitaine and Donati-Martin [4] and Anderson [1] generalize the re-
sult to certain Wigner matrices. Capitaine and Donati-Martin [4] also extend the
result to Wishart matrices with free Poisson elements as strong limit.

Moreover, in the paper [16] by Male, he finds that a tuple of random matrices
from GUE can be enlarged with another tuple of independent random matrices
who has a strong limit. Later, in the paper [7] by Collins and Male, they show
that this property also holds for Haar unitary matrices. And then in the paper [2]
by Belinschi and Capitaine, they proved that this property also holds for certain
Wigner matrices.

Meanwhile, in recent papers by Skoufranis [19] and Pisier [17], it is shown that
the strong convergence property is preserved when adjoining two tuples of non-
commutative random variables which admit strong limits and are free from each
other. In other words, they proved that the reduced free product is stable with
respect to strong convergence.

Therefore, these results show that the strong convergence property is stable
under some algebraic operations, so it is natural to ask if the strong convergence is
stable under another basic algebraic operation, namely, taking inverses. And then
we can hope that the polynomials in (1.1) can be replaced by rational functions
under some assumptions.

On the other hand, we know that one of the main ingredients used by Haagerup
and Thorbørnsen is the so-called linearization trick, see [11, 10] for the idea
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and details. Inspired by the fact that such a linearization also holds for non-
commutative rational expressions or rational functions, we can expect an affir-
mative answer to our question. In this paper, we will show that this result is
indeed true but the linearization technique is not essentially necessary when we
are going from polynomials to rational functions.

In the following, we always consider the strong convergence in the faithful
tracial C∗-probability space setting.

Definition 1.1. Let (A(n), τ (n)), n ∈ N and (A, τ) be some C∗-probability spaces

with faithful traces. Then we assume that x(n) = (x
(n)
1 , · · · , x

(n)
m ) is a tuple of

elements from A(n) for each n ∈ N, and x = (x1, · · · , xm) is a tuple of elements
in (A, τ) s.t. x(n) strongly converges to x. That is, they satisfy the following:

lim
n→∞

τ (n)
(
p(x(n), (x(n))∗)

)
= τ

(
p(x, x∗)

)
,

lim
n→∞

∥∥p(x(n), (x(n))∗)
∥∥
A(n) =

∥∥p (x, x∗)
∥∥
A

for any polynomial p in 2m non-commuting indeterminates.

In the second section, we will give a concise introduction to rational functions
and rational expressions and some of their relevant properties. Then, in the last
section, we are going to prove the main theorem:

Theorem 1.2. If x(n) = (x
(n)
1 , · · · , x

(n)
m ) strongly converges to x = (x1, · · · , xm),

then for any rational expression r, r(x, x∗) is the limit of r(x(n), (x(n))∗) in trace
and in norm, provided that (x, x∗) lies in the domain of r.

The basic idea behind this is that from polynomials to rational expressions,
our only obstacle is due to taking the inverse. But we will see that the inverse
can be approximated by polynomials uniformly in all dimensions, hence we can
reduce the convergence of rational expressions to the result on polynomials and
also show that (x(n), (x(n))∗) will lie in the domain eventually.

As an example or consequence, we can apply our main result to any random
matrices which have a strong limit.

Corollary 1.3. Let X(n) = (X
(n)
1 , · · · , X

(n)
m ) be a tuple of independent n×n ran-

dom matrices for each n ∈ N, and x = (x, · · · , xm) a tuple of freely independent
random variables in some faithful tracial C∗-probability space (A, τ). Assume that
X(n) strongly converges to x almost surely. Then for any rational expression r
with (x, x∗) in its domain, we have (X(n) (ω) , (X(n) (ω))∗) lies in the domain of
r eventually and

lim
n→∞

trn

(
r
(
X(n) (ω) , (X(n) (ω))∗

))
= τ

(
r(x, x∗)

)
,

lim
n→∞

∥∥r(X(n) (ω) , (X(n) (ω))∗)
∥∥ =

∥∥r(x, x∗)
∥∥
A

for almost every ω in the underlying space.

In particular, it allows us to claim that a rational expression in independent
GUE random matrices converges almost surely in trace to the same rational ex-
pression in free independent semi-circular elements. In fact, such a result is not
surprising at all. In the recent paper [12] by Helton, Mai and Speicher, they
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extended the method used for the calculation of the distribution of polynomials
in free random variables to the rational case, based on the fact that linearization
works equally well for rational expressions. From their simulation in Section 4.7
of [12], we can expect that a rational expression in independent Gaussian ran-
dom matrices should almost surely converge in distribution to the same rational
expression in free semi-circular elements. By our theorem this is true whenever
we have random matrices which admit strong limits.

2. Rational functions and their recursive structure

In this section, we will give a short introduction to rational functions and
rational expressions with some highlights which are necessary for our result in
the next section.

It is well-known that for each integral domain, we can construct the unique
quotient field, namely, the smallest field in which this integral domain can be em-
bedded. This was generalized to certain non-commutative rings with a property
called the Ore condition. This condition can allow us to construct the field in
essentially the same way as in the commutative case. However, to extend such
embedding results to more general cases requires new ideas.

For example, the ring of polynomial in any m (m > 2) non-commuting inde-
terminates doesn’t satisfy Ore condition due to its non-commutative nature. So
it is not quite obvious that a field of fractions of non-commutative polynomials
really exists and that such a field is unique even if it exists.

From 1960’s, Cohn began to study the problem of embedding non-commutative
rings into fields and then he developed a matrix method to introduce the matrix
ideals, as the analogue of the ideals in commutative case. He showed that the
prime matrix ideals can be used to describe some “kernels” of the embeddings of
rings into skew fields, as every prime ideal in a commutative ring arises as the ker-
nel of a homomorphism into some commutative field. And this characterization
allows us to derive a criteria for the embeddability of rings into fields.

In the following, we always use P to denote the non-commutative polynomi-
als ring and R the field of fractions obtained from P by Cohn’s construction.
We won’t go into details of this construction but we will talk about some basic
properties to show what do these rational functions look like. In fact, the only
thing about Cohn’s construction we shall need is the following theorem:

Theorem 2.1. Let r ∈ R be a rational function, then there exists some n ∈ N,
a matrix of polynomials A ∈ Mn(P), a row of polynomials u ∈ M1,n(P) and a
column of polynomials v ∈ Mn,1(P) s.t. A is invertible in Mn(R) and r = uA−1v.

For a more general statement and the proof, see [5, Ch 7].
In fact, to represent a rational function in terms of matrices of polynomials

appears not only in the context of ring theory, but also in the system and control
theory, called “realization”. Moreover, such a realization is usually required to
be in a linear form, i.e., all the entries in the matrices in the above theorem are
at most of degree 1 as polynomials. So this technique is also called linearization.
But we won’t talk any more about this realization or linearization technique in
this paper, though it has a variety of implications in different areas.



182 S. YIN

Now we want to use this theorem to show that the field of rational functions
has a recursive structure. That is, all the rational functions can be obtained
by taking finitely many algebraic operations (addition, multiplication, inversion)
from polynomials. This exactly meets what we would expect for rational functions
intuitively but may not be obvious from the theory of Cohn.

Denote R0 = P, and by R1 we denote the subring of R generated by R0∪R−1
0 ,

where R−1
0 is the set of inverses of all nonzero polynomials. Now, suppose that

we have constructed the subring Rn ⊆ R for some n ∈ N, then we let Rn+1 be
the subring of R generated by Rn ∪R−1

n , where R−1
n is the set of inverses of all

nonzero rational functions in Rn. So we have a increasing sequence of subrings
{Rn}n>1 in R. Then we set

R∞ =
∞⋃

n=1

Rn.

We expect (and will show below) that we have R∞ = R. The following argument
is based on a similar idea for proving that R is really a “free” field, i.e., every 0
identity comes from algebraic manipulations. For a reference, see [6] and also [5].

First, for reader’s convenience, we give a short proof for a well-known lemma
about Schur complements for matrices in a unital algebra setting.

Lemma 2.2. Suppose that A is a complex and unital algebra. Let k, l ∈ N,
A ∈ Mk (A), B ∈ Mk×l (A), C ∈ Ml×k (A) and D ∈ Ml (A) s.t. D is invertible.
Then the matrix (

A B
C D

)
is invertible in Mk+l (A) iff the Schur complement A − BD−1C is invertible in
Mk (A). In this case, we will have(

A B
C D

)−1

=

(
1 0

−D−1C 1

) (
(A−BD−1C)−1 0

0 D−1

) (
1 −BD−1

0 1

)
. (2.1)

Proof. It’s easy to check that(
A B
C D

)
=

(
1 BD−1

0 1

) (
A−BD−1C 0

0 D

) (
1 0

D−1C 1

)
holds whenever D is invertible. Since the matrices(

1 BD−1

0 1

)
and

(
1 0

D−1C 1

)
are clearly invertible in Mk+l (A), the equivalence of invertibilities of

(
A B
C D

)
and A−BD−1C follows immediately. And (2.1) follows from a simple calculation(

A B
C D

)−1

=

(
1 0

D−1C 1

)−1 (
A−BD−1C 0

0 D

)−1 (
1 BD−1

0 1

)−1

=

(
1 0

−D−1C 1

) (
(A−BD−1C)−1 0

0 D−1

) (
1 −BD−1

0 1

)
.

�
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With the help of the above lemma, we can show the following lemma, which is
crucial for our statement on R∞ = R.

Lemma 2.3. If an n-by-n matrix A ∈ Mn (R∞) is invertible in Mn (R), then
A−1 ∈ Mn (R∞).

Proof. We are going to prove this by induction on the size of matrices. First, let
r ∈ M1 (R∞), then we can view it as a rational function in R∞, which implies
that there is some k ∈ N s.t. r ∈ Rk. Thus, r is invertible in M1 (R) = R means
that r 6= 0, and so we have r−1 ∈ R−1

k ⊆ Rk+1 ⊆ R∞.
Now assume that the claim is true for matrices of size n−1. Let A ∈ Mn (R∞)

be invertible in Mn (R), then, WLOG, we can write

A =

(
B u
v p

)
with p 6= 0, because we can multiply by a permutation matrix to achieve this.
Hence, we see that B−up−1v ∈ Mn−1 (R∞) is invertible in Mn−1 (R) by the pre-

vious lemma, then it follows that (B − up−1v)
−1 ∈ Mn−1 (R∞) by the induction.

Since

A−1 =

(
In−1 0
−p−1u 1

) (
(B − up−1v)−1 0

0 p−1

) (
In−1 −vp−1

0 1

)
by (2.1), we can see clearly that A−1 ∈ Mn (R∞) since each matrix in the right
hand side lies in Mn (R∞). This completes the proof. �

Theorem 2.4. We have
R = R∞.

Proof. Let r ∈ R be a rational function, then, by Theorem 2.1, there exists a
matrix of polynomials A ∈ Mn (P), a row u ∈ M1,n (P) and a column v ∈
Mn,1 (P) for some n ∈ N s.t. A is invertible in Mn (R) and r = uA−1v. By
the previous lemma, and since P ⊆ R∞, we see that A−1 ∈ Mn (R∞) and thus
r ∈ R∞. �

It is well-known that in the commutative case, every rational function can be
written in a form like pq−1, where p and q are polynomials. This means that we
will have R = R1 = Rn for all n > 1. But it is not true any more for non-
commutative rational functions due to its noncommutativity. For example, we
can’t write xy−1x ∈ R1 as the product pq−1 with two polynomials p, q. And the
rational function (x−1 + y−1 + z−1)

−1
lies in R2 but not in R1.

On the other hand, we should note that such a representation is not unique.
For a simple example,

r (x, y) = (xy)−1 = y−1x−1 ∈ R1,

we can see that we can use one polynomial xy or two polynomials x, y to represent
the same rational function r. This causes a problem when we try to evaluate a
rational function and to define its domain over some algebra. For example, let
us consider the evaluation of the above rational function r (x, y) on some unital
algebra A. From the first representation (xy)−1, it gives a domain

D1 =
{
(a, b) ∈ A2|ab is invertible in A

}
,



184 S. YIN

on which the function r is well-defined. But from the second one y−1x−1, its
domain is

D2 =
{
(a, b) ∈ A2|a, b are invertible in A

}
.

Clearly D2 ⊆ D1, but in general, we won’t have D1 ⊆ D2. For example, if
A = B (H) for some infinitely dimensional Hilbert space, and l is the one-sided
left-shift operator, then l∗ is the right-shift operator and we have the property
l · l∗ = 1 but l∗ · l 6= 1. Therefore, we see that (l, l∗) /∈ D2 since both of them are
not invertible but (l, l∗) ∈ D1.

Furthermore, if we want to evaluate a rational function r which has two different
representations r̂1 and r̂2, then we need to guarantee that for each element in the
intersection of the domains of r̂1 and r̂2, their evaluations will agree. But this is
also not true in general. To see this, we can consider the following example,

r (x, y) = 1 = y (xy)−1 x.

Let l, l∗ be the left-shift and right-shift operators again, then we see that l∗(ll∗)−1l =
l∗l 6= 1.

Thanks to the insights of Cohn, we can avoid such a problem by considering
an algebra A which is stably finite, i.e., for each n ∈ Mn (A), any A, B ∈ Mn (A),
we have that AB = 1 implies BA = 1. In fact, an algebra A is stable finite if
and only if all such representations of the zero function on the algebra give zero
evaluation. See Theorem 7.8.3 in the book [5]. It is clear that Mn (C) is stably
finite for any n ∈ N, so we can plug in our random matrices when they are in
the domain. And fortunately, any C∗-probability space with a faithful trace is
also stably finite (for a proof of this fact, see Lemma 2.2 in [12]). So in this case,
the evaluation is well-defined if the elements are in the domain of the considered
representation.

In some sense, the above representations of rational functions are the “irre-
ducible” ones. That is, for a rational function r ∈ R, we can always take more
times of algebraic operations than we really need. For example, we can write

R0 3 1 = x−1x =
(
x + yy−1

)−1 (
x + zz−1

)
= · · ·

In order to obtain the maximal domain of a rational function, it’s much safer that
we take the union of all the domains given by all possible representations that
can be “reduced” to the same rational function.

Now we want to give a formal definition of such representations or expressions,
and show that they have a similar recursive structure as rational functions R.
Then we can define the domains of these rational expressions and hence the
domains of rational functions.

Denoting R0 = P, we define R1 to be the free complex algebra with generating
set R0∪R−1

0 , i.e., we view the polynomials and their inverses as letters instead of
rational functions in R. In particular, 0−1 is also a valid non-empty word though
it is meaningless when we try to consider it as rational functions. Then we build
the free algebra with all words over this alphabet R0 ∪ R−1

0 . As a remark, we
should note that for a polynomial, says x, the words x−1 · x, x · x−1 and 1 are
different words in R1, and 0 is a non-empty word in R1.
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Therefore, we can construct a sequence of free algebra Rn, n ∈ N recursively,
that is, each Rn is just the free algebra generated by the alphabet Rn−1 ∪R−1

n−1,
n > 1. It is clear that we have a natural inclusion map in : Rn → Rn+1, n ∈ N
and hence we have their direct limit, denoted by R∞.

Now we define φ0 : R0 → R0 as the identity map on polynomials. Then we
can define a homomorphism φ1 : R1 → R1 through extending the map

φ1 (α) =


φ0 (α) α is a letter in the set R0,

(φ0 (β))−1 α = β−1 is a letter in the set R−1
0 , β 6= 0,

0 α = 0−1.

Therefore, we can define a sequence of homomorphisms {φn}n∈N recursively, that
is, by extending the map

φn (α) =


φn−1 (α) α is a letter in Rn−1,

(φn−1 (β))−1 α = β−1 is a letter in R−1
n−1, β 6∈ ker φn−1,

0 α = β−1 is a letter in R−1
n−1, β ∈ ker φn−1.

Thus, we see that there is a homomorphism Φ : R∞ → R∞ = R. In other words,
we have commutative diagrams as following: for every n ∈ N,

It is clear that Φ is surjective, so for a rational function r in R, each element in
its preimage Φ−1 (r) is a representation of r, and we call it a rational expression of
r. As a word over some alphabet, the evaluation of a rational expression at a tuple
of elements in an algebra is clear, and thus the domain of a rational expression is
the set of any tuple that makes the evaluation possible. As mentioned previously,
if an algebraA is stably finite, then the evaluation of a rational expression depends
only on the corresponding rational function. We define the domain of a rational
function r as the union of the domains of all possible rational expressions in
Φ−1 (r).

As a remark, we can see that the elements in ker Φ arise as the representations
which can be “reduced” to 0, such as

y−1
(
x−1 + y−1

)−1
x−1 − (x + y)−1 ,

or which can be “reduced” to 0−1, like[
1− y (xy)−1 x

]−1
,

which make no sense when we evaluate them on algebras, and thus always have
the empty domain.

Now all the ingredients for rational functions are ready. But before we move
on to the convergence problem, we make just two more remarks about rational
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expressions and functions, which may be helpful for better understanding on this
subject.

First, the rational expressions also give us another way to rediscover the rational

functions. Let A =
∞⊔

n=1

[(Mn (C))r] be the algebra consisting of all r-tuples of

matrices of all sizes. Then we can define that two rational expressions r̂1 and r̂2

are “equivalent” if r̂1 (a) = r̂2 (a) for each a ∈ dom (r̂1) ∩ dom (r̂2) ⊆ A. Then it
can be shown that these equivalence classes of rational expressions coincide with
the rational functions (for details, see [15]).

At last, we want to emphasize again that these rational functions or expressions
are not just abstract objects from non-commutative ring theory, but also appear
in system and control theory, from the theory of finite automata and formal
languages to robust control and linear matrix inequalities. In fact, they already
use rational expressions to consider related problems for about 50 years there.
For example, in the “regular” case, i.e., the rational expression with non zero
value at point 0, the language of power series is applied and first appeared in
the theory of formal languages and finite automata quite long ago. For a good
exposition on this, see the monograph by Berstel and Reutenauer [3].

3. Convergence of the norm and trace for rational expressions

Now we know enough to move on to our strong convergence problem of rational
functions. Equivalently, we will just consider rational expressions due to our
discussion in the last section. First of all, for a given rational expression r and
a given tuple x = (x1, · · · , xm) in some C∗-probability space (A, τ) with faithful
trace τ , an assumption that (x, x∗) lies in the domain of r is reasonable. However,

if there is a sequence of tuples x(n) = (x
(n)
1 , · · · , x

(n)
m ) from faithful tracial C∗-

probability spaces (A(n), τ (n)) s.t. x(n) strongly converges to x, then it’s not
necessary to assume that (x(n), (x(n))∗) also lies the domain of r. It turns out
that we can deduce this well-definedness of r(x(n), (x(n))∗) for sufficiently large n.

Theorem 3.1. Suppose that x(n) strongly converges to x and the tuple (x, x∗) lies
in the domain of a rational function r ∈ R. Then we have

(1) (x(n), (x(n))∗) lies in the domain of r eventually;
(2) the convergence of norms, i.e.,

lim
n→∞

∥∥r(x(n), (x(n))∗)
∥∥
A(n)

=
∥∥r(x, x∗)

∥∥
A
.

Proof. We will prove our main theorem in a recursive way based on the description
of rational expressions in the last section. That is, we want to prove the above
statement by induction on Rk, k = 0, 1, 2, · · · . For k = 0, it is the convergence
for polynomials, which is just our assumption. Thus, we suppose that the above
two statements hold for any rational expression r ∈ Rk and we are going to prove
them for Rk+1.

First, we need to check the domain problem. Since each rational expression in
Rk+1 can be represented as a finite sum of products of some rational expressions
in Rk and their inverses, we only need to prove that, for any r̂ ∈ Rk with (x, x∗)



RATIONAL FUNCTIONS IN STRONGLY CONVERGENT VARIABLES 187

in the domain of r̂−1 ∈ Rk+1, (x(n), (x(n))∗) lies in the domain of r̂−1 eventually.
Or in other words, if r̂ (x, x∗) is invertible as an operator in A, then r̂(x(n), (x(n))∗)
is invertible in A(n) for sufficiently large n.

For a rational expression, say r̂, we always denote r̂(∞) = r̂ (x, x∗), r̂(n) =
r̂(x(n), (x(n))∗). Because r̂(∞)(r̂(∞))∗ is positive and invertible, we have∥∥R(∞) − r̂(∞)(r̂(∞))∗

∥∥ < R(∞)

where R(∞) =‖ r̂(∞)(r̂(∞))∗ ‖> 0. By the assumption, we know∥∥R(∞) − r̂(∞)(r̂(∞))∗
∥∥ =

∥∥R(∞) − (r̂(r̂)∗)(∞)
∥∥

= lim
n→∞

∥∥R(∞) − (r̂(r̂)∗)(n)
∥∥ (3.1)

because R(∞) − r̂(r̂)∗ is a rational expression in Rk. Then, denoting R(n) =∥∥r̂(n)(r̂(n))∗
∥∥, from the inverse triangle inequality∣∣∣ ∥∥R(n) − r̂(n)(r̂(n))∗

∥∥− ∥∥R(∞) − r̂(n)(r̂(n))∗
∥∥ ∣∣∣ 6

∣∣R(n) −R(∞)
∣∣

and

R(∞) = lim
n→∞

R(n),

it follows that

lim
n→∞

∥∥R(n) − r̂(n)(r̂(n))∗
∥∥ = lim

n→∞

∥∥R(∞) − r̂(n)(r̂(n))∗
∥∥ .

Hence, combining with (3.1), we have

lim
n→∞

(
R(n) −

∥∥R(n) − r̂(n)(r̂(n))∗
∥∥)

= R(∞) − lim
n→∞

∥∥R(n) − r̂(n)(r̂(n))∗
∥∥

= R(∞) − lim
n→∞

∥∥R(∞) − r̂(n)(r̂(n))∗
∥∥

= R(∞) −
∥∥R(∞) − r̂(∞)(r̂(∞))∗

∥∥
> 0.

This implies that ∥∥R(n) − r̂(n)(r̂(n))∗
∥∥ < R(n)

for n large enough, which is equivalent to say r̂(n)(r̂(n))∗ is invertible eventu-
ally. Recall that

(
A(n), τ (n)

)
is stable finite, so we can easily deduce that r̂(n) is

also invertible because it has a right inverse (r̂(n))∗(r̂(n)(r̂(n))∗)−1 when n is large
enough.
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Moreover, denoting by σ (a) the spectrum of an operator a, we can see that∥∥(r̂(∞))−1
∥∥ =

√∥∥(
r̂(∞)(r̂(∞)

)∗
)−1

∥∥
=

√(
min σ(r̂(∞)(r̂(∞))∗)

)−1

=

√(
R(∞) − ‖R(∞) − r̂(∞)(r̂(∞))∗‖

)−1

= lim
n→∞

√(
R(n) − ‖R(n) − r̂(n)(r̂(n))∗‖

)−1

= lim
n→∞

√(
min σ(r̂(n)(r̂(n))∗)

)−1

= lim
n→∞

√∥∥ (r̂(n)(r̂(n))∗)
−1 ∥∥

= lim
n→∞

∥∥(r̂(n))−1
∥∥ . (3.2)

Now, considering a rational expression r̂ ∈ Rk+1 s.t. its domain contains
(x, x∗), then, by the above argument, we can see that (x(n), (x(n))∗) lies in the
domain of r̂ eventually. That is, there is N ∈ N s.t. (x(n), (x(n))∗) is in the domain
of r̂ for all n > N . Setting

M =

{(
a, a(N+1), a(N+2), · · ·

)
∈ A×

∏
n>N

A(n)
∣∣∣ max

{
‖a‖ , sup

n>N

∥∥a(n)
∥∥}

< ∞

}
,

then M is C∗-algebra with the norm∥∥(
a, a(N+1), · · ·

)∥∥ = sup

{
‖a‖ , sup

n>N

∥∥a(n)
∥∥}

.

We put

Xi =
(
xi, x

(N+1)
i , · · ·

)
,

for 1 6 i 6 m, then Xi ∈ M. Moreover, denoting X = (X1, · · · , Xm), we have
(X, X∗) lies in the domain of r̂ over M2m, namely,

r̂ (X,X∗) =
(
r̂(∞), r̂(N+1), · · ·

)
is well defined. Furthermore, we can see r̂ (X, X∗) is also in M. In fact, recall
that r̂ can be written as a finite sum of products consisting of rational expressions
in Rk and of their inverses, which are all bounded because of (3.2)), i.e., for each
ŝ ∈ Rk,

∥∥(ŝ(∞))−1
∥∥ = lim

n→∞

∥∥(ŝ(n))−1
∥∥ < ∞. It follows that

max

{∥∥r̂(∞)
∥∥ , sup

n>N

∥∥r̂(n)
∥∥}

< ∞,

which means that r̂ (X, X∗) ∈M.
Therefore, r̂ (X, X∗) lies in the sub C∗-algebra of M generated by (X, X∗)

because an invertible element is still invertible in any sub C∗-algebra containing
it (see Proposition 4.1.5 in [14]). Thus, for any ε > 0, we can find a polynomial
p s.t. ∥∥p (X, X∗)− r̂ (X, X∗)

∥∥ < ε. (3.3)
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In particular, we have ∥∥p(∞) − r̂(∞)
∥∥ < ε

and ∥∥p(n) − r̂(n)
∥∥ < ε

for all n > N . Hence,∣∣∣ ∥∥r̂(n)
∥∥− ∥∥r̂(∞)

∥∥ ∣∣∣ 6
∣∣∣ ∥∥r̂(n)

∥∥− ∥∥p(n)
∥∥ ∣∣∣ +

∣∣∣ ∥∥p(n)
∥∥− ∥∥p(∞)

∥∥ ∣∣∣ +
∣∣∣ ∥∥p(∞)

∥∥− ∥∥r̂(∞)
∥∥ ∣∣∣

6
∥∥r̂(n) − p(n)

∥∥ +
∣∣∣ ∥∥p(n)

∥∥− ∥∥p(∞)
∥∥ ∣∣∣ +

∥∥p(∞) − r̂(∞)
∥∥

6 2ε +
∣∣∣ ∥∥p(n)

∥∥− ∥∥p(∞)
∥∥ ∣∣∣

for any n > N . Combining this with the fact that

lim
n→∞

∥∥p(n)
∥∥ =

∥∥p(∞)
∥∥ ,

we have
lim sup

n→∞

∣∣∣ ∥∥r̂(n)
∥∥− ∥∥r̂(∞)

∥∥ ∣∣∣ < 2ε.

Since ε is arbitrary, we obtain the result of convergence of norm. �

An immediate consequence of the theorem is that we also have the convergence
in trace for rational functions.

Corollary 3.2. Suppose that x(n) strongly converges to x and the tuple (x, x∗)
lies in the domain of a rational function r ∈ R, then we have

lim
n→∞

τ (n)
(
r(x(n), (x(n))∗)

)
= τ (r(x, x∗)) .

Proof. We can see that a similar argument as in the proof of previous theorem
also works for the convergence in trace. Assume that r̂ is a rational expression,
(X, X∗) and polynomial p are as above s.t. (3.3) holds. Then∣∣τ (n)(r̂(n))− τ(r̂(∞))

∣∣
6

∣∣τ (n)(r̂(n) − p(n))
∣∣ +

∣∣τ (n)(p(n))− τ(p(∞))
∣∣ +

∣∣τ(p(∞) − r̂(∞))
∣∣

6
∥∥r̂(n) − p(n)

∥∥ +
∣∣τ (n)(p(n))− τ(p(∞))

∣∣ +
∥∥r̂(∞) − p(∞)

∥∥
6 2ε +

∣∣τ (n)(p(n))− τ(p(∞))
∣∣

for n large enough. From the fact that lim
n→∞

τ (n)(p(n)) = τ(p(∞)), it follows, by

letting ε tend to 0, that

lim
n→∞

τ (n)(r̂(n)) = τ(r̂(∞)).

�

Finally, we give two remarks on possible further investigations.
First, as mentioned in the Introduction, the strong convergence is stable under

taking reduced free products ([19] and [17]), that is, if x(n) and y(n) are ∗-free
for each n ∈ N and have strong limits x and y respectively, then (x, y) is the
strong limit of (x(n), y(n)). The analogue for weak convergence is also true, that
is, the convergence in distribution is also stable under the reduced free product,



190 S. YIN

namely, if x(n) and y(n) are ∗-free and have x and y as their limits in distribution
respectively, then (x, y) is the limit of

(
x(n), y(n)

)
in distribution. Some similar

results for strongly convergent random matrices are mentioned in the Introduction
([16], [7] and [2]), where we can adjoin two asymptotic free tuples of random
matrices. And the analogue for convergence in distribution, also holds under
certain conditions for random matrices ([13]).

Therefore, as we have seen that strong convergence is stable under taking
inverses, it is natural to ask if convergence in distribution is also stable under

taking inverses. So assume that x(n) = (x
(n)
1 , · · · , x

(n)
m ) converges in distribution

to x = (x1, · · · , xm), i.e.,

lim
n→∞

τ (n)
(
p(x(n), (x(n))∗)

)
= τ (p (x, x∗))

for any polynomial p, the question is whether we can from this conclude that

lim
n→∞

τ (n)
(
r(x(n), (x(n))∗)

)
= τ

(
r (x, x∗)

)
for a rational function r, under certain assumptions but without assuming strong
convergence. To consider this convergence for random matrices does make sense
because it is well known that some random matrices converge in distribution
but not strongly. For example, a Wigner matrix A = (aij)

n
i,j=1 whose entries

are uniformly bounded i.i.d. random variable s.t. E(a11) = µ > 0, has its
largest eigenvalue asymptotically outside the support of the semi-circular law
(for a reference, see [9]).

Unfortunately, it seems that outliers make the convergence in distribution un-
stable with respect to inverses. Here is a simple example: let X(n) ∈ Mn (C) be
a sequence of matrices that strongly converges to x, which lies in some faithful
tracial C∗-probability space (A, τ). We assume that x is invertible, then by our
main theorem, we have X(n) is invertible eventually, and

lim
n→∞

trn

(
(X(n))−1

)
= τ

(
x−1

)
.

Now put

Y (n+1) =

(
1

n+1
0

0 X(n)

)
∈ Mn+1 (C) ,

then it is clear that Y (n) also converges in distribution to x and Y (n) is invertible
as X(n) is invertible eventually. However, we can see that

lim
n→∞

trn

(
(Y (n))−1

)
= 1 + τ

(
x−1

)
.

Secondly, if we consider in the one-variable case, a sequence of self-adjoint
random variables {x(n)}n>1 which strongly converges to a self-adjoint random
variable x, then for any continuous function f defined on a neighborhood of the
interval [−‖x‖ , ‖x‖], we can see that f(x(n)) will be eventually well-defined since
the support of x(n) is approaching to [−‖x‖ , ‖x‖]. On the other hand, since
we can find some polynomials {pk} uniformly converging to f on this neighbor-
hood, we can use the same argument as above to show that f(x(n)) converges to
f (x) in trace and in norm. However, for the general multivariable case, it is not
clear whether one can go beyond the case of rational functions. Nevertheless, it
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is tempting to hope to be able to extend our investigation to the case of non-
commutative analytic functions.
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