Adv. Oper. Theory 3 (2018), no. 1, 53-60
http://doi.org/10.22034/a0t.1702-1129
ISSN: 2538-225X (electronic)
http://aot-math.org

POSITIVE MAP AS DIFFERENCE OF TWO COMPLETELY
POSITIVE OR SUPER-POSITIVE MAPS

TSUYOSHI ANDO

This paper is dedicated to the memory of the late Professor Uffe Haagerup

Communicated by M. Tomforde

ABSTRACT. For a linear map from M, to M,,, besides the usual positivity,
there are two stronger notions, complete positivity and super-positivity. Given
a positive linear map ¢ we study a decomposition ¢ = 1) — () with com-
pletely positive linear maps ¢ (5 = 1,2). Here M + ¢? is of simple
form with norm small as possible. The same problem is discussed with super-
positivity in place of complete positivity.

1. INTRODUCTION AND PROBLEMS

Let My denote the space of k x k (complex) matrices. Each matrix in My, is
considered as a linear map from C* to itself. An element z of C* is treated as
a column k-vector, correspondingly x* is a row k-vector. Then given a,b € C*,
according to the rule of matrix multiplication, a*b is the inner product of a and
b, that is, a*b = (a|b) while ba* is a matrix of rank-one in Mj. Be careful about
that the inner product is linear in b and anti-linear in a.

For selfadjoint X,Y € My, the order relation X > Y or equivalently ¥ < X
is defined as X — Y is positive semi-definite. Therefore X > 0 or 0 < X simply
means that X is positive semi-definite. The norm || X|| denotes the operator norm

| Xl := sup || Xal.
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Throughout this paper, we assume 2 < m < n. There are canonical identifica-
tions:
M, ® M, ~ M,,,(M,,) ~ M,
Here M,,,(M,,) denotes the space of m x m block-matrices with entries in M, and
the first identification is in the following way:

XY ~ Y] for X = [Eiljn € M, Y € M,

Here, for simplicity of notations, an m x m (numerical) matrix with (7, k)-entry
&k 1s written as [;x]; % In analogy, an m xm block-matrix with (j, k)-block-entry
S;x is denoted by [Sji]; k-

Therefore a block matrix S = [Sji];x € M,,,(M,,) is uniquely assigned as

[Siklie ~ ZEjk@)Sjkv
ik

where Eji(j,k = 1,2,...,m) are matriz-units in M,,, that is, E;;, = e;je; where
e; (j=1,...,m) is the canonical orthonormal basis of C™.

In the following, M,y denotes the real subspace of M,,(M,,), consisting of
selfadjoint elements, that is, the subspace of S = [Sj];x with Sy, = S, (4, k =
1,...,m).

The cone of positive semi-definite (block) matrices in M, ,,) will be denoted
by Bo. The order relation based on this cone is denoted by > as usual. Therefore
S > 0 means that S is positive semi-definite.

In the tensor product theory a fact of key importance is the following (see [3,
Chapter 1-4]):

0<XEM, 0<YeM, =— 0<X®Y

The cone generated by X ® Y with 0 < X € M, and 0 < Y € M,, will be
denoted by B.. Because of finite dimensionality of M, it is known (see [2,
p.8]) that P is a (topologically) closed cone, contained in Py. A (block) matrix
in P, is said to be separable.

The space M, ,) becomes a real Hilbert space with inner product

(T|S) := Tr(TS),
and we can consider the dual cone _ of the cone P, defined by
SeP. «— (SIT)>0 VTeP,. (1.1)

The cone B_ is (topologically) closed by definition. In view of the closedness
of P, according to a general theory of convexity, B, is the dual cone of L _.
It is well-known that the cone B is selfdual, that is,

SePy <= (SIT)>0 VTePB,
As a consequence we have the inclusion relations:

P CPoCP-.

Notice the algebraic relations:

Po—Po=P+ — P+ = M) (1.2)



POSITIVE MAP AS DIFFERENCE OF TWO MAPS 55

Given a linear map ¢ : M, — M,,, its Choi matrix C,, [7, p.49] is defined by
C, = [p(Eji)]jn € My (Mhy).
On the basis of the relation
P(X) = &ro(Ej) VX = [Ealjn € My,
.k

the original map ¢ is uniquely recaptured from its Choi matrix.

Further ¢ «+— C, is a linear bijection between the space of selfadjoint linear
maps (, that is,

p(X7) = p(X)" VX €My,

and the space M, ,). This bijection is usually called the Jamiolkowski isomor-
phism (see [7, p.49]).

A linear map ¢ : M,,, — M, is said to be positive if p(X) > 0 whenever X > 0.
Our starting point is the following relation, deduced from (1.1) and the definition
of P (see [2, Theorem 2.1]):

@ positive <+ C, e P_ (1.3)

= [(x\S]kx)} >0 inM, VazeC"
jk
There is a welll-known notion, stronger than positivity. A linear map ¢ : M,
M, is said to be completely positive if the linear map idy ® ¢ : My ® M,
My (M,,,) — My (M,,) defined by

(idy @ ) ([Tirljn) = [e(Tip)ljx ¥ Tjr € My

is positive for all N =1,2,....
Usefulness of use of the Choi matrix is seen in the following theorem of Choi
[4] (see [2, Theorem 2.2])

n

¢ completely positive <= C, € PBy. (1.4)

In accordance with (1.3) and (1.4), a positive linear map ¢ : M,,, — M,, will
be said to be super-positive [2, p.11] when

C, € By (1.5)

Therefore a positive linear map ¢ is completely positive if and only if all eigen-
values of its Choi matrix are non-negative. On the contrary, there is no simple
test to check super-positivity of ¢. An obvious condition, which guarantees its
super-positivity, is block-diagonality of the Choi matrix C,, = [Si];x, that is,

Sir =0 for j #k.
In this case Sj; > 0 (j = 1,...,m) is guaranteed by the positivity of ¢.

Though not used in the subsequent discussion, we notice that the following
intrinsic characterization of super-positivity of ¢ was established by Horodecki’s
[5, Theorem 2]

@ super — positive <=
Yo completely positive V positive ¢ : M,, — M.
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As usual, the (mapping) norm of a linear map ¢ : M,,, — M, is defined by
lell = sup{lle(X)[l; 1 X] <1, X € My}

Here advantage of positivity of ¢ is seen in the following fact, a consequence of a
theorem of Russo-Dye [6] (see [7, Theorem 1.3.3]):

p positive = lof| = [lo(Lm)]- (1.6)

In view of (1.2), it is seen from (1.4) and (1.5) that every selfadjoint linear
map ¢ : M,,, — M,, is written as difference of two completely positive (or even
super-positive) linear maps o) (j = 1,2);

M _ o), (1.7)

Of course, such decomposition is never unique.

In this paper, which is a continuation of [2], we study the problem how to
construct a decomposition (1.7) of positive o, for which the Choi matrix of ™) +
©?) is block-diagonal and its norm is small as possible.

=

2. CASE OF COMPLETE POSITIVITY

For notational convenience, let us define the partial trace x(S) of S = [Sji]x €

X(S) = ZSjj S Mn
J

Then (1.6) says that
p positive = [lp]| = [Ix(Cy)|- (2.1)

For selfadjoint S, its modulus |S| € By is defined as the positive (semi-definite)
square root of S?. Further its positive part ST and the negative part S~ are defined
as

St:=1-{|S|+S} and S :=3-{|S|-S}.
All [S], ST and S~ belong to the cone By and the decomposition
S=S"-S"
is called the Jordan decomposition of S. (See [3, p. 99].)
Lemma 2.1. If ¢ is a selfadjoint linear map : M, — M, with Choi matriz C,,

IXUCDI < m-lell

A proof is found in [2, Theorem 6.2].
Theorem 2.2. Let ¢ be a selfadjoint linear map : M, — M, with Choi matriz
C,. Define completely positive linear maps oW and @ by
C,o = C:; and C,pe) = C;.

Then ¢ = oM — @ and [|® + @ || <m - [|¢]|.
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Proof. By (2.1) and Lemma 2.1

1™ + @) = lIx(ICNI < m - [l
O

When ¢ is positive, a decomposition (1.7) with completely positive o) and
©® | for which C,u) + C,e is block-diagonal and

oW (L) + 0@ (L) = m - (1),

can be constructed rather easily.
We need a result in M, ) for its proof.

Lemma 2.3.

A B X <+B
[B* C]eap:» [iB* Y}efpg IX,Y>0,X+Y =A+C.

A B

Proof. By (1.3), {B* c

} € PB_ means that A,C' > 0 and

(x|Az) - (z|Cz) > |(x|Bz)|*> VxeC"
which implies that
(z|3(A+ C)z) > |(z|Bz)] VazeCm (2.2)
We may assume here that A 4+ C' is invertible. Then, with D := {5(A + )}z,
(2.2) means that the numerical radius of D™*BD™! is < 1, that is,
lz[* > Kz|(D™'BD™a)| ¥z eCm.
Then by [I, Theorem 1] there are R, T > 0 such that R + T = 21, and

R +D"1BD™! >0
+D1B*D! T -

Let X :=DRD and Y := DT D . Then

> 0.

X+Y=A+C and [X iB]

+B* Y
0

To apply some results of M3 ) to the case of M, the following trivial facts
will be used without any mention.

(1) A;>0 (j=1,2,....,m) = diag(A;,...,An) € Py C Po.

(2) S=[Siljx € P- = [gpp Spa

ap Sq q

:| eP_ (in M(gym) Vp<g.



58 T. ANDO

(3) If {él* g] € PBo (resp. € P4) in Mg, then, for any 1 < j <k <m,

the (block) matrix S € By (resp. € P, ) where
S;j=A,Sjr=DB,Sk; =B, Sk =C, and S, =0if p# jor q+#k.

Theorem 2.4. Let ¢ be a positive linear map : M,,, — M,,. Then there are
completely positive linear maps ) (j =1,2) : M, — M, such that ¢ = @) —
02 the Choi matriz of oM 4+ 0@ is block-diagonal and

(p(l)(jm) + (p(Q)([m) = m: (P([m)
Proof. Let C, = [Sji];x be the Choi matrix of ¢. Since

Sjj Sjk . .
|:Skj Sk/J €eP. inMp, Vi<k

by Lemma 2.3 there are 0 < X5, X ; € M, such that

Xj,k + X;C’j == Sjj + Skk: and |::|:Skj Xk;,j

} > 0. (2.3)

Let ¢ (5 = 1,2) be the selfadjoint linear maps: M, — M, with respective Choi
matrix C,) (j = 1,2) given by

C,a = %{Diag(cw) +diag(Ar, ..., Ay + cg,}

and
C,e = %{Diag(CSo) +diag(Ar, ..., An) — cw},
where
Diag(C,,) := diag(Si1, - - -, Smm)
and

A= ) X+ Y X (G=12,...,m).

1<k<j J<k<m

Then it is clear that ¢ = o) — »? and by (2.3)
X(Cwm + C<p<2)) =m - x(Cy),

and that the Choi matrix of ¢ + ) is block-diagonal. That C,io € Po (=

1,2) comes also from (2.3). Therefore both o) (j = 1,2) are completely positive
by (1.4). O

Optimality of the constant m in Theorem 2.4 is pointed out in [2, p.28]. In
fact, when m = n, for the positive linear map ¢o(X) := X7 (transpose map) any
decomposition oy = (1) — ) with completely positive ) (j = 1,2) satisfies
necessarily

o™ + || > m - [lpoll.
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3. CASE OF SUPER-POSITIVITY

In the case of decomposition with super-positive linear maps, there is no canon-
ical decomposition as Jordan decomposition in Section 2. However, the same idea
as in the proof of Theorem 2.4 can be used to find a suitable decomposition.

This approach was used already in [2, Theorem 7.4]. Let me present the same
result again to show how the difference of scalars, m and 2m — 1, appears.

Lemma 3.1.

A B A+C 4B
[B* (J}em‘ = [iB* A+C]E‘B+'

A proof is found in [2, Theorem 4.10]. This lemma corresponds to Lemma 2.3.

Theorem 3.2. Let ¢ be a positive linear map : M,,, — M,,. Then there are
super-positive linear maps V) (j = 1, 2) : M, — M, such that ¢ = o) —
the Choi matriz of o) + ©® is block-diagonal and

90(1)(1771) + 90(2)(1771) = (2m - 1) ) @(Im)'
Proof. Let C, = [S;1];x be the Choi matrix of ¢, and let () (j = 1,2) be the

linear maps with respective Choi matrix C,u (j = 1,2) given by

Cu = 3{(m —1) - Diag(C,) + L & x(C,) + C,. }
and
C,i = %{(m — 1) - Diag(C,,) + I ® X(C,) — cw}.
It is clear that
X<C¢<1> + C¢<2)> = (2m —1) - x(C,),

and that the Choi matrix of oM + ¢ is block-diagonal.
It remains to show that C_u) € P (j = 1,2). As in the proof of Theorem 2.4,
this follows principally from Lemma 3.1:

Sjj + Sii ﬂ:Sjk .
[ 45, Sjj+skk} € Vi<k

O

Optimality of the constant 2m —1 in Theorem 3.2 is pointed out in [2, Theorem
7.6]. In fact, when m = n, for the (completely) positive map ¢o(X) = X (zdentity
map), any decomposition py = 1 — ¢® with super-positive o) (j = 1,2)
satisfies necessarily

lo® + @) > @m—1) |0l
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