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Abstract. We show that the space Lip0(Rn) is the dual space of L1(Rn; Rn)/N
where N is the subspace of L1(Rn; Rn) consisting of vector fields whose di-
vergence vanishes identically. We prove that although the quotient space
L1(Rn; Rn)/N is weakly sequentially complete, the subspace N is not nicely
placed - in other words, its unit ball is not closed for the topology τm of local
convergence in measure. We prove that if Ω is a bounded open star-shaped
subset of Rn and X is a dilation-stable closed subspace of L1(Ω) consisting of
continuous functions, then the unit ball of X is compact for the compact-open
topology on Ω. It follows in particular that such spaces X, when they have
Grothendieck’s approximation property, have unconditional finite-dimensional
decompositions and are isomorphic to weak*-closed subspaces of l1. Numerous
examples are provided where such results apply.

1. Introduction

Among the wealth of important discoveries due to Uffe Haagerup, one can
single out what is now universally called Haagerup’s approximation property, a
fundamental concept in operator algebras and their various applications. The
present work investigates approximation properties on a much lesser scale, and
the tools we use are familiar to every functional analyst: among them, dilation
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operators on star-shaped domains and Grothendieck’s approximation property.
Our purpose is to analyse some natural subspaces (and quotient spaces) of L1.
We are therefore outside the reflexive world, where the lack of compactness can
hurt some proofs and where some natural operators become unbounded. This
leads us to weaken the topologies, thus to enter the realm of non-locally convex
spaces and to use the topology τm of convergence in measure. Such tools will
allow us to provide satisfactory results on subspaces of L1 which satisfy quite
weak assumptions: for instance, we show (Corollary 3.3) that if Ω is a star-
shaped bounded open subset of Rn, if X is a closed subspace of L1(Ω) consisting
of continuous functions and stable under the dilation operators (Tρ), and if X
has Grothendieck’s approximation property, then X is isomorphic to a weak-star
closed subspace of l1. Hence such a space has a “somewhat discrete” structure. It
turns out that these assumptions are satisfied by many classical spaces. Moreover
these spaces X have unconditional finite dimensional decompositions. We there-
fore apply a rule of thumb which has been discovered by Nigel Kalton and some
of his co-authors: homogeneity of a Banach space X implies unconditionality on
X.

We now outline the content of this note. Let Ω be an open subset of Rn,
equipped with the Lebesgue measure denoted m. A closed subspace X of L1(Ω)
is called nicely placed if its unit ball is closed for the topology τm of local conver-
gence in measure (see Chapter IV in [21] or [25]). It is known that the quotient
space L1/X is L-complemented in its bidual (and thus weakly sequentially com-
plete) when X is nicely placed, and the same conclusion holds when we consider
integrable functions with values in a finite-dimensional normed space (see e.g.
p.200 in [21]), in particular integrable vector fields on Rn. Our first result is
somewhat negative: we show that the free space F(Rn) over Rn is isometric to
the quotient of the space (L1(Rn))n = L1(Rn; Rn) of integrable vector fields on
Rn by the space N of divergence-free vector fields, and we show that although
F(Rn) shares many properties of spaces which are L-complemented in their bid-
ual, the space N is not nicely placed. This discards a natural conjecture, but
leads to several questions. In the second (independent) part of our paper, we
show that if Ω is star-shaped and bounded, homogeneous subspaces X of L1(Ω)
consisting of continuous functions are very special examples of nicely placed sub-
spaces: their unit ball BX is actually τm-compact locally convex. This bears
strong consequences on the structure of such spaces.

2. Divergence-free vector fields and the space F(Rn)

We first provide a representation result for the predual of the space of Lipschitz
functions on the space Rn.

We recall the usual notation

Lip0(Rn) = {f : Rn → R, such that f(0) = 0 and sup
x 6=y

|f(x)− f(y)|
|x− y|

< +∞.}

(1)
Functions in Lip0(Rn) are the continuous functions from Rn into R such that
f(0) = 0 with a distribution gradient in L∞(Rn). The vector space Lip0(Rn) is a
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Banach space, with norm

‖f‖Lip0(Rn) = sup
x 6=y

|f(x)− f(y)|
|x− y|

= ‖∇f‖L∞(Rn).

Lip0(Rn) is the dual space of the Banach space denoted F(Rn), also known as
the Lipschitz-free space over Rn. Let us recall that it has been recently shown by
N. Weaver ([35]) that the free space over an arbitrary metric space M is strongly
unique isometric predual of its dual Lip0(M). In particular, any Banach space
whose dual is isometric to Lip0(Rn) coincide with F(Rn). Following [32], we
represent the space Lip0(Rn) as a closed subspace of (L∞(Rn))n, and then we
check that this closed subspace is exactly the orthogonal space to a subspace N
of the predual L1(Rn; Rn). Thus the free space is identical with the quotient space
L1(Rn; Rn)/N . This approach relies on de Rham’s theorem on closed currents and
an integration by parts. However, some technicalities are needed since derivatives
must be taken in the distribution sense (see Remark 2.6). It should be noted
that free spaces over convex open subsets of Rn are similarly represented in the
recent work [5], without using Weaver’s work - which requests a slightly different
approach.

We begin with two simple lemmas.

Lemma 2.1. Let X = L1(Rn; Rn) be the Banach space of integrable vector fields
and let N be the subspace of X made of vector fields with null distribution diver-
gence:

N = {(fj)1≤j≤n ∈ X,
∑

1≤j≤n

∂fj

∂xj

= 0}. (2)

Then N is a closed subspace of X.

N.B. It is convenient to note the elements F = (fj)1≤j≤n ∈ L1(Rn; Rn) as vector
fields

F =
∑

1≤j≤n

fj
∂

∂xj

.

The distribution divergence of F is then defined by divF =
∑

1≤j≤n
∂fj

∂xj
.

Proof. Let
(
Fk =

∑
1≤j≤n fk,j∂j

)
k≥1

be a sequence of vector fields of N , converg-

ing in X with limit F =
∑

1≤j≤n fj∂j (this means that for all j ∈ {1, . . . , n},
limk fj,k = fj in L1(Rn)). Let φ ∈ C∞c (Rn): we have

〈∂fk,j

∂xj

, φ〉D ′(Rn),D(Rn) = −〈fk,j,
∂φ

∂xj

〉D ′(Rn),D(Rn) = −
∫

Rn

fk,j(x)
∂φ

∂xj

(x)dx,

and consequently

lim
k
〈∂fk,j

∂xj

, φ〉D ′(Rn),D(Rn) = −
∫

Rn

fj(x)
∂φ

∂xj

(x)dx = 〈∂fj

∂xj

, φ〉D ′(Rn),D(Rn),
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which implies 0 = limk〈
∑

1≤j≤n

∂fk,j

∂xj︸ ︷︷ ︸
=0

, φ〉D ′(Rn),D(Rn) = 〈
∑

1≤j≤n
∂fj

∂xj
, φ〉D ′(Rn),D(Rn),

and thus divF = 0, proving the sought result. �

Lemma 2.2. The space Lip0(Rn) is isometrically isomorphic to the closed L∞(Rn)
currents, i.e. to the subspace

Cn = {(uj)1≤j≤n ∈ (L∞(Rn))n, such that
∂uj

∂xk

=
∂uk

∂xj

for 1 ≤ j < k ≤ n}. (3)

More precisely, the mapping

Lip0(Rn) 3 a 7→ da ∈ Cn,

is an isomorphism of Banach spaces.

N.B. As in Lemma 2.1, we can prove that Cn is a closed subspace of the Banach
space (L∞(Rn))n. All the derivatives are taken in the distribution sense. It is
convenient to note the elements of Cn as u =

∑
1≤j≤n ujdxj, so that for a ∈

Lip0(Rn), we have

da =
∑

1≤j≤n

∂a

∂xj

dxj.

Proof. From the definition of Lip0(Rn), we see that da is a L∞(Rn) current and
also that da is closed since, in the distribution sense, we have

∂2a

∂xj∂xk

=
∂2a

∂xk∂xj

,

meaning that the linear mapping given in the lemma is well-defined from Lip0(Rn)
into Cn. This mapping is also isometric (and thus one-to-one) since

‖da‖Cn = ‖∇a‖L∞(Rn) = ‖a‖Lip0(Rn).

For concluding the proof, we need only to prove that this mapping is onto: in
fact thanks to de Rham’s theorem on closed currents (see [7] p.94 or [23] p.334),
if u ∈ Cn, there exists a distribution w on Rn such that

dw = u.

As a result, the distribution w has a gradient in Lp
loc for any p ∈ (1,+∞) and

the Sobolev embedding theorem implies that (taking p > n) w is a (Hölder)
continuous function. We can take now

a(x) = w(x)− w(0),

and we find that a belongs to Lip0(Rn) and satisfies da = u. �

We now state and prove a representation result for F(Rn).

Theorem 2.3. Let X = L1(Rn; Rn) be the Banach space of integrable vector fields
and let N be the closed subspace of X made of vector fields with null distribution
divergence as defined by (2). Then, the free space F(Rn) over Rn is isometric to
X/N and we have

Lip0(Rn) = (X/N)∗.
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Proof. Note that it suffices to prove the last equation Lip0(Rn) = (X/N)∗ since
by Weaver’s result the isometric predual is unique. The case n = 1 is easy since,
in that case N = {0}, so that X/N = L1(R); thanks to Lemma 2.2, we have also
Lip0(R) = C1 = L∞(R), proving our claim which reduces to

(
L1(R)

)∗
= L∞(R).

Let us now assume that n ≥ 2. We start with a lemma.

Lemma 2.4. We define

X × Lip0(Rn) 3 (f, a) 7→ Φ(f, a) =

∫
Rn

∑
1≤j≤n

fj
∂a

∂xj

dx ∈ R.

The mapping Φ is bilinear continuous. Moreover for a ∈ Lip0(Rn) and f ∈ N
(given by (2)),we have Φ(f, a) = 0.

Proof of the lemma. The bilinearity and continuity of Φ are obvious. Let ρ ∈
C∞c (Rn; R+), supported in the unit ball, even with integral 1; we set for ε >
0, ρε(x) = ε−nρ(x/ε) and we define

aε(x) = (a ∗ ρε)(x) =

∫
a(y)ρε(x− y)dy.

We note that aε ∈ C∞ and daε = da ∗ ρε, which is thus bounded in (L∞(Rn))n

by ‖da‖L∞(Rn) and converges a.e. towards da, thanks to Lebesgue differentiation
Theorem1 (of course, no convergence in L∞ is expected). We have thus∫

Rn

∑
1≤j≤n

fj
∂a

∂xj

dx = lim
ε

∫
Rn

∑
1≤j≤n

fj
∂aε

∂xj

dx

= lim
ε

(
lim

k→+∞

∫
Rn

∑
1≤j≤n

fj(x)
∂aε

∂xj

(x)χ0(x/k)dx
)
, (4)

where χ0 is a C∞c function, valued in [0, 1], equal to 1 on |x| ≤ 1/2 and supported
in |x| ≤ 1. We note that∫

fj(x)
∂aε

∂xj

(x)χ0(x/k)dx = 〈fj(x), χ0(x/k)
∂aε

∂xj

(x)〉D ′,D

= 〈fj(x),
∂

∂xj

{
aε(x)χ0(x/k)

}
〉D ′,D − 〈fj(x), aε(x)(∂jχ0)(x/k)k

−1〉D ′,D

= −〈∂fj

∂xj

(x), aε(x)χ0(x/k)〉D ′,D −
∫
aε(x)fj(x)(∂jχ0)(x/k)k

−1dx, (5)

1[1] For u ∈ L∞(Rn), we have |(u ∗ ρε)(x)− u(x)| =

=
∣∣∣∣∫ (

u(y)− u(x)
)
ρε(x− y)dy

∣∣∣∣ ≤ 1
εn|Bn|

∫
|y−x|≤ε

|u(y)− u(x)|dy︸ ︷︷ ︸
→0, a.e. in x

(Lebesgue’s differentiation theorem)

|Bn|‖ρ‖L∞(Rn).
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and since f ∈ N , we find∫
Rn

∑
1≤j≤n

fj
∂a

∂xj

dx = − lim
ε

(
lim

k→+∞

∫
Rn

aε(x)
( ∑
1≤j≤n

fj(x)(∂jχ0)(x/k)k
−1

)
dx

)
.

(6)

On the other hand, the term (∂jχ0)(x/k) is vanishing outside of {x, k/2 < |x| <
k}, so that∣∣∣∣∫

Rn

aε(x)fj(x)(∂jχ0)(x/k)k
−1dx

∣∣∣∣
≤

∫
k
2
≤|x|≤k

|aε(x)− aε(0)||fj(x)|dx k−1‖∂jχ0‖L∞(Rn)

+

∫
Rn

|aε(0)||fj(x)|dx k−1‖∂jχ0‖L∞(Rn). (7)

Since ‖daε‖L∞(Rn) ≤ ‖da‖L∞(Rn) = L < +∞, we obtain

|aε(x)− aε(0)| ≤ L|x|,
so that the first term in the right-hand side of (7) is bounded above by∫

k
2
≤|x|≤k

L|x||fj(x)|dx k−1‖∂jχ0‖L∞(Rn) ≤
∫
|x|≥k/2

|fj(x)|dxL‖∂jχ0‖L∞(Rn),

which is independent of ε and goes to 0 when k goes to +∞ since each fj belongs
to L1(Rn). Moreover, we have a(0) = 0 and thus

aε(0) =

∫ (
a(y)− a(0)

)
ρ(−y/ε)ε−ndy,

so that

|aε(0)| ≤ L

∫
|y|ρ(y/ε)ε−ndy ≤ εC0, C0 =

∫
|z|ρ(z)dz,

and we obtain that the second term in the right-hand side of (7) is bounded above
by ∫

Rn

εC0|fj(x)|dx k−1‖∂jχ0‖L∞(Rn),

which goes to 0 when k → +∞ since each fj belongs to L1(Rn). Finally the right-
hand side of (7) goes to 0 when k → +∞ and this implies that the left-hand side
of (6) is zero, which is the sought result.

�

This lemma implies that the mapping Φ̃ defined on X/N × Lip0(Rn) by

Φ̃
(
p(f), a

)
= Φ(f, a),

where p : X → X/N is the canonical surjection, is well-defined and is a continuous
bilinear mapping.
• Going back to the proof of Theorem 2.3, we see that Φ̃ induces a continuous

linear mapping L from Lip0(Rn) into (X/N)∗ defined by

Lip0(Rn) 3 a 7→ L(a) ∈ (X/N)∗, (L(a))(p(f)) = Φ(f, a).
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We check first that L is one-to-one.

Lemma 2.5. Let a ∈ Lip0(Rn) such that for all f ∈ X, Φ(f, a) = 0. Then we
have a = 0.

Proof of the lemma. Let χk ∈ C∞c (Rn; R+), χk = 1 on |x| ≤ k. We have for
f = (χk

∂a
∂xj

)1≤j≤n (which belongs to X)

0 = Φ(f, a) =

∫
Rn

χk(x)
∑

1≤j≤n

( ∂a
∂xj

(x)
)2
dx,

which implies that da = 0 on |x| ≤ k for any k and thus da = 0, inducing
a = 0. �

• Finally, let us prove that L is onto. Let ξ ∈ (X/N)∗; since ξ ◦ p ∈ X∗ =(
L∞(Rn)

)n
, we find (uj)1≤j≤n ∈

(
L∞(Rn)

)n
such that

〈ξ, p(f)〉(X/N)∗,X/N =

∫ ∑
1≤j≤n

ujfjdx, ∀f ∈ N,
∫ ∑

1≤j≤n

fjujdx = 0.

Let j, k be given in {1, . . . , n}. We have

〈∂uj

∂xk

− ∂uk

∂xj

, ϕ〉D ′,D = 〈uj,−
∂ϕ

∂xk

〉D ′,D + 〈uk,
∂ϕ

∂xj

〉D ′,D =

∫ (
ukfk + ujfj

)
dx,

with fj = − ∂ϕ
∂xk

, fk = ∂ϕ
∂xj
. The vector field (fj∂j + fk∂k) is L1 with null diver-

gence and we get
∂uj

∂xk

− ∂uk

∂xj

= 0,

proving that the current u =
∑

1≤j≤n ujdxj is closed and thus belongs to Cn (see

(3)). Lemma 2.2 implies that there exists a ∈ Lip0(Rn) such that da = u, proving
that L is onto. �

Remark 2.6. The proof of Lemma 2.4 is giving a little bit more than the state-
ment of this lemma: in fact Formula (5) holds without the assumption f ∈ N
and we obtain from the sequel of the proof that, for (f, a) ∈ X × Lip0(Rn), and
ρ, χ0 as in Lemma 2.4,∫

Rn

∑
1≤j≤n

fj
∂a

∂xj

dx = − lim
ε→0

(
lim

k→+∞
〈

∑
1≤j≤n

∂fj

∂xj

, (a ∗ ρε)(x)χ0(x/k)〉D ′,D

)
,

a formula which can be written for the L1(Rn) vector field F =
∑

1≤j≤n fj∂xj
as∫

Rn

F (a)dx = − lim
ε→0

(
lim

k→+∞
〈divF, (a ∗ ρε)(x)χ0(x/k)〉D ′,D

)
. (8)

When a belongs to C1
c (Rn), the above formula follows from a standard integration

by parts and the right-hand side of (8) is −〈divF, a〉D ′(1),C1
c
, although in the more

general case tackled here, we have to pay attention to the fact that divF could
be a distribution of order 1 which is not defined a priori on Lipschitz continuous
functions.
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Note that for n = 2, we have

F(R2) = L1(R2; R2)/
(
∇⊥L2(R) ∩ L1(R2; R2)

)
,

where ∇⊥ denotes the orthogonal gradient, and for n = 3,

F(R3) = L1(R3; R3)/
(
curl L3/2(R3; R3) ∩ L1(R3; R3)

)
.

More generally in Rn, divergence-free vector fields have an “antiderivative” ωX

which is a differential form of degree (n− 2).
As shown in [6], the Lipschitz-free space Lip0(Rn) over Rn is weakly sequentially

complete. Since it is now represented as a quotient space of L1, it is natural to
wonder whether the kernel N of the quotient map is “nicely placed” (see [11]), in
other words if its unit ball is closed in L1 for the topology τm of local convergence
in measure. Indeed, the quotient of L1 by any such space enjoys a strong form of
weak sequential completeness ([34]). But one has:

Proposition 2.7. Let n > 1, let X = L1(Rn; Rn) be the Banach space of in-
tegrable vector fields and let N be the subspace of X of vector fields with null
distribution divergence:

N = {(fj)1≤j≤n ∈ X,
∑

1≤j≤n

∂fj

∂xj

= 0}.

Then N is not nicely placed, that is, its unit ball is not closed for the topology
τm of local convergence in measure.

Proof. First observe that the space N is translation invariant, and thus is stable
under convolution with integrable functions. If N is nicely placed, it follows
from Boclé’s differentiation lemma ([3]) that if a measure-valued vector field X ∈
(M(Rn))n is divergence-free, then its absolutely continuous part is divergence-
free as well. Indeed, Boclé’s lemma shows that if (ck) is an approximation of
identity in the convolution algebra L1(Rn) and µ is a singular measure, then
(µ ∗ ck) converges to 0 in quasi-norm ‖ . ‖p for all 0 < p < 1, and it follows
that a nicely placed translation-invariant space of measures is stable under the
Radon-Nikodym projection (see the proof of Lemma 1.5 in [15]). Let us provide
an example of an unstable divergence-free vector field in the case n = 2.

Let χ ∈ C1
c (R2) be arbitrary, and H = 1R+ . We consider the function ψ ∈

L2(R2) defined by
ψ(x1, x2) = χ(x1, x2)H(x1)

The field

X = ∇⊥ψ =
∂ψ

∂x2

∂

∂x1

− ∂ψ

∂x1

∂

∂x2

,

is divergence-free. Moreover

X =
∂χ

∂x2

H(x1)
∂

∂x1

−
( ∂χ
∂x1

H(x1) + χδ0(x1)
) ∂

∂x2

=
∂χ

∂x2

H(x1)
∂

∂x1

− ∂χ

∂x1

H(x1)
∂

∂x2︸ ︷︷ ︸
V

−χδ0(x1)
∂

∂x2︸ ︷︷ ︸
W

,
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The field V takes its values in L1, the field W is singular and

div(V +W ) = 0, div W = − ∂χ

∂x2

δ0(x1) 6= 0,

as soon as ∂χ
∂x2

(0, x2) does not vanish identically. This concludes the proof, and

actually shows that the vector field V 6∈ N is the limit of the ‖ . ‖1-bounded
sequence (X ∗ ck) ⊂ N for the topology of local convergence in measure. �

We recall that a Banach space Z has property (X) if every z∗∗ ∈ Z∗∗ such that
z∗∗(weak∗ −

∑
x∗k) =

∑
z∗∗(x∗k) for every weakly unconditionally convergent se-

ries (x∗k) actually belongs to Z (see p. 147 in [21]). In other words, property (X)
means that elements of Z are those elements of Z∗∗ which are somehow σ-additive.
If Z has (X), then Z is strongly unique isometric predual for every equivalent
norm, and is weakly sequentially complete ([18]). Moreover, every space which
is L-complemented in its bidual has (X) ([34]). However, the following question
seems to be open.

Problem: Assume n > 1. Does the Banach space F(Rn) enjoy Property (X)?

3. Closed subspaces of L1 consisting of continuous functions on a
star-shaped domain

When X is a nicely placed subspace of L1, a distinguished subspace of X∗ is a
candidate for being the natural predual of X. We denote (see Definition IV.3.8
in [21]):

X] = {x∗ ∈ X∗; x∗ is τm − continuous on BX}.
The following proposition is valid in any separable L1-space, and requests no

topology on the measure space.

Proposition 3.1. Let X be a closed subspace of L1(m). Let (Tn) be a sequence
of bounded linear operators from L1(m) to itself such that limn ‖Tn(f)− f‖1 = 0
for every f ∈ L1. We assume that:
(1) Tn(X) ⊂ X for every n ≥ 1, and the restriction of Tn to X is a weakly
compact operator.
(2) Tn is (τm − τm)-continuous on ‖ . ‖1-bounded subsets of L1 for every n ≥ 1.

Then the space X is nicely placed and is isometric to the dual (X])∗ of the
space X].

Proof. Let (fk) be a sequence in BX , which τm-converges to g ∈ L1. By (2),
for every n the sequence (Tn(fk))k is τm-convergent to Tn(g). Since by (1) this
sequence is weakly relatively compact in L1, we have

lim
k
‖Tn(fk − g)‖1 = 0

and thus Tn(g) ∈ X for every n. But since (Tn) is an approximating sequence it
follows that g ∈ X and thus X is nicely placed.

Note now that for any h ∈ L∞ and any n, the restriction of T ∗n(h) to X is
τm-continuous on the unit ball of X, that is, belongs to X]. If follows that X]
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separates X, and thus by Theorem 1.3 in [17] the space X] is an isometric predual
of X, and moreover it is an M -ideal in its bidual X∗.

�

The following theorem is the main application of Proposition 3.1. If Ω is a
star-shaped open subset of Rn, ρ ∈ (0, 1) and f is any function defined on Ω,
we denote Tρ(f)(x) = f(ρx) for every x ∈ Ω. We equip Ω with the topology
induced by Rn and with the Lebesgue measure. We denote by τK the compact-
open topology on the space C(Ω), that is, the topology of uniform convergence
on compact subsets of Ω. With this notation, the following holds:

Theorem 3.2. Let Ω be a star-shaped bounded open subset of Rn, and let X be a
closed vector subspace of L1(Ω). We assume that X ⊂ C(Ω), and that Tρ(X) ⊂ X
for every ρ ∈ (0, 1). Then the closed unit ball BX = {f ∈ X; ‖f‖1 ≤ 1} of X is
τK-compact and the topologies τK and τm coincide on BX .

Proof. For showing this, pick any ρ ∈ (0, 1). We denote byK = Ω the closure of Ω
in Rn, which is compact since Ω is bounded. The set Tρ(BX) is weakly relatively
compact in L1(Ω), hence Tρ2(BX) is weakly relatively compact in C(K), and
thus pointwise (on K) relatively compact in C(K). Since Tρ2(BX) is also weakly
relatively compact in L1(Ω), by Lebesgue’s dominated convergence theorem it is
‖ . ‖1- relatively compact in L1(Ω), and therefore Tρ3(BX) is ‖ . ‖∞-relatively
compact in C(K). Since ρ ∈ (0, 1) was arbitrary, it follows that BX is relatively
compact in C(Ω) for the compact-open topology τK . If we let T(n−1)/n = Tn for
convenience, we can apply Proposition 3.1 with the same notation, and conclude
that BX is τm-closed in L1. Note now that any τK-convergent sequence in BX is
τm-convergent, and it follows that its limit belongs to BX since BX is τm-closed in
L1. Therefore BX is τK-compact. Finally, compactness shows that the topologies
τK and τm coincide on BX .

�

The motivation for this result is that it implies that the unit ball BX of X is
τm-compact locally convex, since τK is locally convex. Such subspaces of L1 have
been previously studied in some detail ([11], [12]). It can be shown in particular
that, under the mild assumption that they enjoy Grothendieck’s approximation
property, they yield to a satisfactory unconditional decomposition. The precise
statement is given below, in the special case considered in Theorem 3.2. Note
that it has been shown by W. B. Johnson and M. Zippin [26] that every quotient
of c0 is isomorphic to a subspace of c0, and almost isometric versions of their
result have been shown by Alspach [2] and James [24]. Hence (2) below actually
improves on (1). Observe that (2) implies that X is arbitrarily close to weak*-
closed subspaces of l1.

Corollary 3.3. Let Ω be a star-shaped bounded open subset of Rn, and let X
be a closed vector subspace of L1(Ω). We assume that X ⊂ C(Ω), and that
Tρ(X) ⊂ X for every ρ ∈ (0, 1). Then X = (X])∗ isometrically, where X] denotes
the subspace of X∗ consisting of the linear forms which are τK-continuous on BX .
Moreover:
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(1) for any ε > 0, there exists a subspace Eε of c0 such that dBM(X], Eε) < 1 + ε.
(2) If X has Grothendieck’s approximation property, then for any ε > 0 there is
a quotient space Yε of c0 such that dBM(X], Yε) < 1 + ε. Moreover there exists a
sequence of finite rank operators (Ai) on X] such that

(a) supN,|εi|=1 ‖
∑N

i=1 εiAi‖ < 1 + ε.

(b) for every f ∈ X, one has f =
∑∞

i=1A
∗
i (f), where the series is norm-

convergent.

Proof. Since our assumptions imply that the unit ball BX of X is τm-compact
locally convex, X = (X])∗ isometrically and (1) follows from Proposition 2.1
in [11]. If X has the approximation property, it actually has the unconditional
metric approximation property (UMAP ) and moreover its natural predual X] is
arbitrarily close to quotients of c0 by Theorem 3.3 in [11].

Since X = (X])∗ has (UMAP ) and X] is an M -ideal in its bidual, and thus
in particular a strict u-ideal, we may apply Theorem 3.2.2 in [30] which shows in
particular that X] has (UMAP ). Now Theorem 3.8 in [4] shows the existence
of a sequence (Ai) of finite rank operators satisfying (a) and a weaker version
of (b) where norm-convergence is replaced by weak*-convergence. But for every
f ∈ X, the series

∑∞
i=1A

∗
i (f) is weakly unconditionally convergent, hence norm-

convergent since X does not contain c0. This concludes the proof.
�

Remark 3.4. The above proofs allow to state some more results. Indeed, if Ω is
a star-shaped bounded open subset of Rn, and X is a closed vector subspace of
L1(Ω) such that X ⊂ C(Ω), then an easy modification of the proof of Theorem
3.2 shows that the Banach space X (equipped with the norm ‖ . ‖1) has the Schur
property: that is, every weakly compact subset of X is actually norm-compact.

Moreover, in the notation of Corollary 3.3, the unit ball BX is τm-closed in
L1(Ω) and thus by [14] the quotient space L1/X is weakly sequentially complete.
Moreover, since this unit ball is even τm-compact locally convex, the space X
satisfies by [27] the following extension result: ifX ⊂ Y separable, any continuous
linear operator from X to a C(K)-space Z extends to a continuous linear operator
from Y to Z.

Examples: 1) Proposition 3.1 trivially applies to any reflexive subspace X of
L1, by taking Tn = IdL1 for all n. Note that in such a space X the τm-topology
coincide with the norm topology, hence X] = X∗. This provides examples of
spaces X such that (1) and (2) hold true, but Tn does not induce a compact
operator on X- take any infinite dimensional reflexive space X.

2) The subspace Har(Ω) of L1(Ω) which consists of harmonic functions satisfies
the assumptions of Theorem 3.2. This is also the case for the Bergman space
L1

a(Ω) of integrable holomorphic functions on Ω star-shaped open bounded in
Cn ' R2n. Actually, it is clear that many spaces of holomorphic functions on
unit balls of Cn provide examples where Theorem 3.2 and Corollary 3.3 apply.

3) More generally, if G : Ω → (L∞, weak∗) is a continuous function, the space

XG = {f ∈ L1(Ω); f(x) =

∫
Ω

f(ω)G(x)(ω)dm(ω) for all x ∈ Ω}
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is ‖ . ‖1-closed and consists of continuous functions. It follows that the space
X(Gi

) =
⋂

i∈I EGi
is ‖ . ‖1-closed and consists of continuous functions for an

arbitrary collection of continuous maps (Gi). When this space is moreover stable
under the dilation operators Tρ, Theorem 3.2 applies.

4) If ∆ denotes the Laplace operator, a function f is called biharmonic if
∆2(f) = ∆ ◦ ∆(f) = 0. The space of biharmonic functions on Ω satisfies the
assumptions of Theorem 3.2.

5) The sequence (xk(t) = 2k(t2
k
))k≥1 in L1([−1, 1]) is equivalent to the unit

vector basis of l1 ([19]) and thus its closed linear span is contained in C((−1, 1))
and is isomorphic to l1. More generally, let Λ = (λi)i≥1 be an increasing sequence
of positive real numbers such that infi(λi+1 − λi) > 0 and

∑
i≥1 λ

−1
i < +∞. The

Müntz space M1(Λ) is the closed linear span of the sequence (tλi)i≥1 in L1([0, 1]).
Then M1(Λ) is contained in C([0, 1)) (see [20]) and Theorem 3.2 and Corollary 3.3
apply to the space M1(Λ). Note that in [16] this result is shown using analyticity
of the elements of M1(Λ) on (0, 1) but actually continuity suffices as shown above.
Also, the point 0 does not belong to the interior of the unit interval but the reader
will check that this causes no inconvenience in the above proofs. We refer to [8]
for precise recent results on the geometry of Müntz spaces. Let us also mention
that Müntz spaces of functions on the cube [0, 1]n have been investigated (see [22]
and subsequent works), and Theorem 3.2 applies to such spaces as well.

6) Theorem 3.2, Corollary 3.3 and Remark 3.4 have an Lp-version for p > 1, and
actually this version is rather easier since there is no need to enter the “Kalton
zone” 0 ≤ p < 1 in this case. Recall that Theorem 4.4 in [28] states in particular
that if 1 < p < +∞, a subspace X of Lp whose unit ball is ‖ . ‖1-compact is
arbitrarily close in Banach-Mazur distance to subspaces of lp. Along the lines
of the above proofs, it follows that if Ω is an arbitrary bounded open subset of
Rn, if 1 < p < +∞ and if X ⊂ Lp(Ω) is a closed subspace which consists of
continuous functions, then for every ε > 0, there is a subspace Eε ⊂ lp such
that dBM(X,Eε) < 1 + ε. Note that in this case, there is no need to assume
homogeneity or any approximation property.

7) It is interesting to compare the dilation operators with the approximation
schemes from harmonic analysis. Let T be the unit circle equipped with the Haar
measure, and (σn) the sequence of Fejer kernels. If we let Tn(f) = f ∗ σn, then
of course lim ‖Tn(f) − f‖1 = 0 for every f ∈ L1(T). Any translation invariant
subspace X = L1

Λ(T) satisfies Tn(X) ⊂ X, and weak compactness is obvious
since the Tn’s are finite rank operators. However, condition (2) of Proposition
3.1 fails. Actually, no non-zero weakly compact operator on L1 satisfies (2),
since the existence of 0 6= F ∈ L∞ whose restriction to BL1 is τm-continuous
would follow and there is no such F . We now consider two specific examples of
translation-invariant subspaces of L1(T).

Let X = L1
N(T) = H1(D) be the classical Hardy space on the unit disc, seen

as a subspace of L1(T). Then X is nicely placed and X = (X])∗ ([14]) but the
unit ball BX is not τm-compact. Actually, every infinite-dimensional translation-
invariant subspace L1

Λ(T) contains an isomorphic copy of l2 (since Λ contains an
infinite Sidon set) and thus fails to have a τm-relatively compact unit ball. The
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topology τm is strictly finer than the weak* topology associated with X] = VMO
on BX . However, weak* convergent sequences admit subsequences whose Cesaro
means are τm-convergent to the same limit (Corollary 4.3 in [15]). The operators
Tn are (τm−τm)- continuous on BX , but not onX (by the argument from Example
3.6(b) in [21]).

Let Λ =
⋃

n≥1{k.2n; 0 < |k| ≤ n} and let X = L1
Λ(T). It follows from the

proof of Theorem III.1 in [17] that the restrictions of the operators Tn to BX are
(τm − τm)-continuous, but however the space X is not nicely placed. This shows
in particular that condition (2) of Proposition 3.1 cannot be weakened: assuming
(τm − τm)-continuity of the (Tn)’s on bounded subsets of X does not suffice to
reach the conclusion.

Let us conclude this note with an open question:

Problem: Let Ω be a star-shaped open subset of Rn, and let X ⊂ L1(Ω) be
a Banach space which satisfies the assumptions of Theorem 3.2. Assume that
f ∈ X vanishes on a neighbourhood of 0. Does it follow that f = 0 ?
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