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A CERTAIN SUBCLASS OF LOG-HARMONIC MAPPINGS

O. Mert and Y. Polatoğlu

Abstract. Let H(D) be the linear space of all analytic functions defined on
the open unit disc D = {z : |z| < 1}, and B denote the set of all functions w ∈ H(D)
satisfying |w(z)| < 1 for all z ∈ D. A log-harmonic mapping is a solution of the non-

linear elliptic partial differential equation fz = w(ff )fz, where the second dilatation
function w belongs to B. In the present paper, we investigate the set of all log-
harmonic mappings f defined on D which are of the form f(z) = zh(z)g(z), where
h and g are in H(D), h(0) = g(0) = 1 and Re(h(z)/g(z)) > 0. The class of such
functions is denoted by SLH(P).
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1. Introduction

Let H(D) be the linear space of all analytic functions defined on the open unit disc
D, and let B be the set of all analytic functions w ∈ H(D) such that |w(z)| < 1 for
all z ∈ D. A log-harmonic mapping defined on D is the solution of the non-linear
elliptic partial differential equation

fz
f

= w

(
fz
f

)
, (1)

where the second dilatation function w ∈ B. The Jacobian

Jf = (1− |w|2)|fz|2

is positive and hence, all non-constant log-harmonic mappings are sense-preserving
on D. It has been shown that if f is a non-vanishing log-harmonic mappings, then
f can be expressed as

f(z) = h(z)g(z),
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where h and g are analytic in D, i.e, h, g ∈ H(D). On the other hand, if f is a non-
constant log-harmonic mapping on D and vanishes at z = 0 but is not identically
zero, then f admits the representation given by

f(z) = z|z|2βh(z)g(z),

where Re(β) > −1/2 and h and g are analytic functions on D with g(0) = 1 and
h(0) 6= 0. Univalent log-harmonic mappings have been studied extensively in [1, 2,
3, 4, 5, 8].

Let Ω be the family of functions φ which are analytic on D, and satisfy the
conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D. If f1 and f2 are analytic functions
on D, then we say that f1 is subordinate to f2 written as f1 ≺ f2, if there exists
a Schwarz function φ ∈ Ω such that f1(z) = f2(φ(z)). Denote by P the family of
functions p of the form p(z) = 1+p1z+p2z

2+p3z
3+· · · , analytic on D with p(0) = 1

and Re(p(z)) > 0 such that p is in P if and only if

p(z) ≺ 1 + z

1− z
⇔ p(z) =

1 + φ(z)

1− φ(z)
(2)

for some function φ ∈ Ω and for all z ∈ D (see [7]).

Lemma 1. [7, Caratheodory′s lemma] If p ∈ P and p(z) = 1 +
∑∞

n=1 pnz
n, then

|pn| ≤ 2 for n ≥ 1. This inequality is sharp for each n.

Let f be the set of all log-harmonic mappings f defined on D which are of the
form

f(z) = zh(z)g(z) (3)

where h(0) = g(0) = 1 and Re(h(z)/g(z)) > 0. The class of such functions is denoted
by SLH(P). In this paper, we will investigate properties of the class SLH(P).

2. Main Results

Theorem 2. (Main Characterization) Let f(z) = zh(z)g(z) be an element of SLH(P),
then

Re

(
f(z)

z

)
> 0⇔ Re

(
h(z)

g(z)

)
> 0. (4)

Proof. Let

Re

(
f(z)

z

)
> 0⇒ Re

(
zh(z)g(z)

z

)
= |g(z)|2Re

(
h(z)

g(z)

)
> 0.
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This shows that Re

(
h(z)

g(z)

)
> 0. Conversely, suppose Re

(
h(z)

g(z)

)
> 0. Then

Re

(
h(z)

g(z)

)
> 0⇒ |g(z)|2Re

(
h(z)

g(z)

)
> 0⇒ Re

(
zh(z)g(z)

z

)
= Re

(
f(z)

z

)
> 0.

Therefore f(z) = zh(z)g(z) ∈ SLH(P) satisfies (4).

Theorem 3. Let f(z) = zh(z)g(z) be an element of SLH(P), then

e1−r
1

1− r

(
1 + r

1− r

) 1
2

≤ |h(z)| ≤ e1+r 1

1 + r

(
1 + r

1− r

) 1
2

, (5)

e1−r
1

1 + r

(
1 + r

1− r

) 1
2

≤ |g(z)| ≤ e1+r 1

1− r

(
1 + r

1− r

) 1
2

. (6)

These inequalities are sharp.

Proof. Since f(z) = zh(z)g(z) is an element of SLH(P), then

w(z) =
fz
f
.
f

fz
=

z
g′(z)

g(z)

1 + z
h′(z)

h(z)

, (7)

where
zfz
f

= 1 + z
h′(z)

h(z)
and

zfz
f

= z
g′(z)

g(z)
.

The equality (7) shows that the second dilatation of f satisfies the conditions of
Schwarz lemma. Using the definition of SLH(P), the equation in (7) and the defini-
tion of subordination, then we obtain

1 + z
h′(z)

h(z)

1− z p
′(z)

p(z)

=
1

1− w(z)
⇔

1 + z
h′(z)

h(z)

1− z p
′(z)

p(z)

≺ 1

1− z
.

On the other hand, the transformation (
1

1− z
) maps |z| = r onto the disc with the

centre C(r) = 1/(1− r2) and the radius ρ(r) = r/(1− r2), then we have∣∣∣∣1 + z h
′(z)
h(z)

1− z p
′(z)
p(z)

− 1

1− r2

∣∣∣∣ ≤ r

1− r2
. (8)
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O. Mert and Y. Polatoğlu – A Certain Subclass of Log-Harmonic Mappings

Simple calculations in (8) gives

1

1 + r

∣∣∣∣1− z p′(z)p(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z
h′(z)

h(z)

∣∣∣∣ ≤ 1

1− r

∣∣∣∣1− z p′(z)p(z)

∣∣∣∣. (9)

Since p ∈ P, then we have

−
∣∣∣∣1− z p′(z)p(z)

∣∣∣∣ ≥ −(1 +
2r

1− r2

)
, (10)

and ∣∣∣∣1− z p′(z)p(z)

∣∣∣∣ ≤ 1 +
2r

1− r2
. (11)

Considering inequalities in (9), (10) and (11), we obtain

− 1

1 + r

(
1 +

2r

1− r2

)
≤
∣∣∣∣1 + z

h′(z)

h(z)

∣∣∣∣ ≤ 1

1− r

(
1 +

2r

1− r2

)
. (12)

On the other hand, we have

Re

(
1 + z

h′(z)

h(z)

)
= 1 + r

∂

∂r
log |h(z)|.

Therefore, the inequality in (12) can be written by

− 1

r(1− r)

(
1 +

2r

1− r2

)
− 1

r
≤ ∂

∂r
log |h(z)| ≤ 1

r(1 + r)

(
1 +

2r

1− r2

)
− 1

r
. (13)

Integrating both sides of (13) from 0 to r, we obtain (5). Since p(z) =
h(z)

g(z)
, if we

use the growth theorem for the class P given by

1− r
1 + r

≤ |p(z)| ≤ 1 + r

1− r
,

in (5), then we obtain (6). These inequalities are sharp, because

w(z) =

z
g′(z)

g(z)

1 + z
h′(z)

h(z)

⇒
1− z p

′(z)

p(z)

1 + z
h′(z)

h(z)

= 1− w(z). (14)

If we take p(z) =
1 + z

1− z
, w(z) = z, then the inequality in (14) can be written by

h′(z)

h(z)
=

3− z2

(1 + z)(1− z)2
. (15)
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Then, respectively, we obtain

h(z) = e1−z.
(1 + z)

1
2

(1− z)
3
2

,

and

g(z) =
h(z)

p(z)
= e1−z.

(1− z)−
1
2

(1 + z)
1
2

.

(a) h(z) (b) g(z)

(c) f(z)

Figure 1: h(z), g(z) and f(z) = zh(z)g(z)
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Theorem 4. Let f(z) = zh(z)g(z) be an element of SLH(P), then

F2(r) ≤ |h′(z)| ≤ F1(r), (16)

where

F1(r) = e1+r
1

1 + r

(
1 + r

1− r

) 1
2
[

1

1− r

(
1 +

2r

1− r2

)
+

2

1− r2

]
,

F2(r) = e1−r
1

1− r

(
1 + r

1− r

) 1
2
[

1

1 + r

(
1 +

2r

1− r2

)
− 2

1− r2

]
,

and

G(−r)
(

1 + r

1− r

) 1
2
(

1 +
2r

1− r2

)
≤ |g′(z)| ≤ G(r)

(
1 + r

1− r

) 1
2
(

1 +
2r

1− r2

)
, (17)

where

G(r) = e1+r
1

(1− r)2
.

These inequalities are sharp.

Proof. Since the second dilatation of f satisfies the conditions Schwarz lemma, then
we can write

−r ≤
∣∣∣∣ z g

′(z)
g(z)

1 + z h
′(z)
h(z)

∣∣∣∣ ≤ r ⇔
− r
∣∣∣∣1 + z

h′(z)

h(z)

∣∣∣∣ ≤ ∣∣∣∣z g′(z)g(z)

∣∣∣∣ ≤ r∣∣∣∣1 + z
h′(z)

h(z)

∣∣∣∣ (18)

Using the inequality (12) in (18), we get (17). Since p(z) =
h(z)

g(z)
, then we obtain

zp′(z)

p(z)
=
zh′(z)

h(z)
− zg′(z)

g(z)

Simple calculations shows that the above equality gives (16).

Corollary 5. Let f(z) = zh(z)g(z) be an element of SLH(P), then

r

(1− r)2
e2(1−r) ≤ |f | ≤ r

(1− r)2
e2(1+r) (19)

This inequality is sharp for the extremal function given in Theorem 3.
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Proof. Since f(z) = zh(z)g(z), then taking modulus on both sides we get

|f | = |zh(z)g(z)| = |z||h(z)||g(z)|.

Using inequalities (5) and (6), we get (19).

Corollary 6. Let f(z) = zh(z)g(z) be an element of SLH(P), then

1

1 + r

1

(1− r)3

(
1 +

2r

1− r2

)2

e4(1−r) ≤ Jf ≤
1

(1− r)6

(
1 +

2r

1− r2

)
e4(1+r) (20)

This inequality is sharp for the extremal function given in Theorem 3.

Proof. Using the definition of Jacobian of f , then we have

|fz|2(1− r2) ≤ Jf = (1− |w(z)|2)|fz|2 ≤ |fz|2.

Also we have zfz
f = 1 + z h

′(z)
h(z) . Thus, considering Corollary 5 and inequality in (12),

we obtain (20).

Theorem 7. The radius of starlikenes of the class SLH(P) is the smallest positive
root of the equation ϕ(r) = 1− 2r − r2 in (0, 1).

Proof. The radius of starlikenes of the class sense-preserving log-harmonic mappings
is defined by

rs = sup

{
r : Re

zfz − zfz
f

> 0, 0 < r < 1

}
.

Due to the definition of the class SLH(P),

Re
h(z)

g(z)
> 0⇒ h(z)

g(z)
= p(z)⇒

zfz − zfz
f

= 1 + z
h′(z)

h(z)
− z g

′(z)

g(z)

Re
zfz − zfz

f
= Re

(
1 + z

h′(z)

h(z)
− z g

′(z)

g(z)

)
= Re

(
1 + z

p′(z)

p(z)

)
≥ 1− 2r

1− r2
=

1− 2r − r2

1− r2
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Therefore, ϕ(r) = 1 − 2r − r2 ⇒ ϕ(1) = −2 < 0, ϕ(0) = 1. Thus, the smallest
positive root r0 of the equation ϕ(r) = 1 − 2r − r2 = 0 lies on 0 and 1. Thus

Re
zfz − zfz

f
> 0 is valid for |z| = r < r0. Hence the radius of starlikeness rs for

SLH(P) is not less than r0.

Theorem 8. Let f(z) = zh(z)g(z) be an element SLH(P), where h(z) = 1 + a1z +
a2z

2... and g(z) = 1 + b1z + b2z
2..., then we have

(i) |an| ≤ 2
n−1∑
k=0

|bk|+ |bn|, |b0| = 1 (21)

(ii) |an+1 − bn+1| ≤ 4 + 4
n∑
k=1

Reakbk, (22)

(iii)

n∑
k=1

|ak − bk|2 ≤ 4 +

n−1∑
k=1

|a2k + b2k| (23)

These inequalities are sharp.

Proof. (i) Since

Re
h(z)

g(z)
> 0⇒ h(z)

g(z)
= p(z)⇒ h(z) = g(z)p(z),

then we write

(1+a1z+a2z
2+...+anz

n+...) = (1+b1z+b2z
2+...+bnz

n+...)(1+p1z+p2z
2+...+pnz

n+...).

Comparing the coefficients of zn on both sides, we get

an = b1pn−1 + b2pn−3 + ...+ p1bn−1 + bn.

In view of Lemma 1, we obtain the coefficient inequality given in (21).

(ii) Since p ∈ P, then the conditions p(0) = 1 and Re(p(z)) > 0 are satisfied.
From subordination condition given in (2), we obtain

p(z) =
1 + φ(z)

1− φ(z)
⇔ φ(z) =

p(z)− 1

p(z) + 1

Therefore

φ(z) =
p(z)− 1

p(z) + 1
=

h(z)
g(z) − 1

h(z)
g(z) + 1

=
h(z)− g(z)

h(z) + g(z)
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which gives
(h(z)− g(z)) = φ(z)(h(z) + g(z)).

This shows that (h(z) − g(z)) is majorized by (h(z) + g(z)). Using the coefficient
inequality for majorized functions, we write

|an+1 − bn+1|2 =

n∑
k=0

|ak+1 − bk+1|2 ≤ 4 +

n∑
k=0

|ak + bk|2

|an+1 − bn+1|2 =

n∑
k=0

(ak+1 − bk+1)(ak+1 − bk+1) ≤ 4 +

n∑
k=0

(ak + bk)(ak − bk)

which gives (22). This method is based on the Rogogonski method [9].

(iii) Using the equality (h(z)− g(z)) = φ(z)(h(z) + g(z)) and Clunie method [6], we
write

n∑
k=1

(ak−bk)zk+

∞∑
k=n+1

(ak−bk)zk =

[
4+

n−1∑
k=1

(ak+bk)z
k+

∞∑
k=n

(ak+bk)z
k

]( ∞∑
k=1

ckz
k

)
⇒

n∑
k=1

|ak − bk|2r2k +

∞∑
k=n+1

|ak|2r2k ≤
[
4 +

n−1∑
k=1

|ak + bk|2r2k
]

Letting r → 1, we obtain desired bound given in (23).
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