A CERTAIN SUBCLASS OF LOG-HARMONIC MAPPINGS

O. Mert and Y. Polatoğlu

Abstract. Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc $\mathbb{D}=\{z:|z|<1\}$, and \mathcal{B} denote the set of all functions $w \in H(\mathbb{D})$ satisfying $|w(z)|<1$ for all $z \in \mathbb{D}$. A log-harmonic mapping is a solution of the nonlinear elliptic partial differential equation $\bar{f}_{\bar{z}}=w\left(\frac{\bar{f}}{f}\right) f_{z}$, where the second dilatation function w belongs to \mathcal{B}. In the present paper, we investigate the set of all logharmonic mappings f defined on \mathbb{D} which are of the form $f(z)=z h(z) \overline{g(z)}$, where h and g are in $H(\mathbb{D}), h(0)=g(0)=1$ and $\operatorname{Re}(h(z) / g(z))>0$. The class of such functions is denoted by $\mathcal{S}_{L H}(\mathcal{P})$.

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Log-harmonic mapping, radius of starlikeness, distortion theorem, growth theorem, coefficient inequality.

1. Introduction

Let $H(\mathbb{D})$ be the linear space of all analytic functions defined on the open unit disc \mathbb{D}, and let \mathcal{B} be the set of all analytic functions $w \in H(\mathbb{D})$ such that $|w(z)|<1$ for all $z \in \mathbb{D}$. A log-harmonic mapping defined on \mathbb{D} is the solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\bar{f}_{\bar{z}}}{\bar{f}}=w\left(\frac{f_{z}}{f}\right), \tag{1}
\end{equation*}
$$

where the second dilatation function $w \in \mathcal{B}$. The Jacobian

$$
J_{f}=\left(1-|w|^{2}\right)\left|f_{z}\right|^{2}
$$

is positive and hence, all non-constant log-harmonic mappings are sense-preserving on \mathbb{D}. It has been shown that if f is a non-vanishing log-harmonic mappings, then f can be expressed as

$$
f(z)=h(z) \overline{g(z)},
$$

where h and g are analytic in \mathbb{D}, i.e, $h, g \in H(\mathbb{D})$. On the other hand, if f is a nonconstant log-harmonic mapping on \mathbb{D} and vanishes at $z=0$ but is not identically zero, then f admits the representation given by

$$
f(z)=z|z|^{2 \beta} h(z) \overline{g(z)},
$$

where $\operatorname{Re}(\beta)>-1 / 2$ and h and g are analytic functions on \mathbb{D} with $g(0)=1$ and $h(0) \neq 0$. Univalent log-harmonic mappings have been studied extensively in $[1,2$, $3,4,5,8]$.

Let Ω be the family of functions ϕ which are analytic on \mathbb{D}, and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. If f_{1} and f_{2} are analytic functions on \mathbb{D}, then we say that f_{1} is subordinate to f_{2} written as $f_{1} \prec f_{2}$, if there exists a Schwarz function $\phi \in \Omega$ such that $f_{1}(z)=f_{2}(\phi(z))$. Denote by \mathcal{P} the family of functions p of the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$, analytic on \mathbb{D} with $p(0)=1$ and $\operatorname{Re}(p(z))>0$ such that p is in \mathcal{P} if and only if

$$
\begin{equation*}
p(z) \prec \frac{1+z}{1-z} \Leftrightarrow p(z)=\frac{1+\phi(z)}{1-\phi(z)} \tag{2}
\end{equation*}
$$

for some function $\phi \in \Omega$ and for all $z \in \mathbb{D}$ (see [7]).
Lemma 1. [7, Caratheodory's lemma] If $p \in \mathcal{P}$ and $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$, then $\left|p_{n}\right| \leq 2$ for $n \geq 1$. This inequality is sharp for each n.

Let f be the set of all log-harmonic mappings f defined on \mathbb{D} which are of the form

$$
\begin{equation*}
f(z)=z h(z) \overline{g(z)} \tag{3}
\end{equation*}
$$

where $h(0)=g(0)=1$ and $\operatorname{Re}(h(z) / g(z))>0$. The class of such functions is denoted by $\mathcal{S}_{L H}(\mathcal{P})$. In this paper, we will investigate properties of the class $\mathcal{S}_{L H}(\mathcal{P})$.

2. Main Results

Theorem 2. (Main Characterization) Let $f(z)=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f(z)}{z}\right)>0 \Leftrightarrow \operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0 \tag{4}
\end{equation*}
$$

Proof. Let

$$
\operatorname{Re}\left(\frac{f(z)}{z}\right)>0 \Rightarrow \operatorname{Re}\left(\frac{z h(z) \overline{g(z)}}{z}\right)=|g(z)|^{2} \operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0 .
$$

This shows that $\operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0$. Conversely, suppose $\operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0$. Then

$$
\operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0 \Rightarrow|g(z)|^{2} \operatorname{Re}\left(\frac{h(z)}{g(z)}\right)>0 \Rightarrow \operatorname{Re}\left(\frac{z h(z) \overline{g(z)}}{z}\right)=\operatorname{Re}\left(\frac{f(z)}{z}\right)>0 .
$$

Therefore $f(z)=z h(z) \overline{g(z)} \in \mathcal{S}_{L H}(\mathcal{P})$ satisfies (4).
Theorem 3. Let $f(z)=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{align*}
& e^{1-r} \frac{1}{1-r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}} \leq|h(z)| \leq e^{1+r} \frac{1}{1+r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}} \tag{5}\\
& e^{1-r} \frac{1}{1+r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}} \leq|g(z)| \leq e^{1+r} \frac{1}{1-r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}} \tag{6}
\end{align*}
$$

These inequalities are sharp.
Proof. Since $f(z)=z h(z) \overline{g(z)}$ is an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{equation*}
w(z)=\frac{\bar{f}_{\bar{z}}}{\bar{f}} \cdot \frac{f}{f_{z}}=\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}} \tag{7}
\end{equation*}
$$

where

$$
\frac{z f_{z}}{f}=1+z \frac{h^{\prime}(z)}{h(z)} \quad \text { and } \quad \frac{\bar{z} \bar{f}_{\bar{z}}}{\bar{f}}=z \frac{g^{\prime}(z)}{g(z)} .
$$

The equality (7) shows that the second dilatation of f satisfies the conditions of Schwarz lemma. Using the definition of $\mathcal{S}_{L H}(\mathcal{P})$, the equation in (7) and the definition of subordination, then we obtain

$$
\frac{1+z \frac{h^{\prime}(z)}{h(z)}}{1-z \frac{p^{\prime}(z)}{p(z)}}=\frac{1}{1-w(z)} \Leftrightarrow \frac{1+z \frac{h^{\prime}(z)}{h(z)}}{1-z \frac{p^{\prime}(z)}{p(z)}} \prec \frac{1}{1-z} .
$$

On the other hand, the transformation $\left(\frac{1}{1-z}\right)$ maps $|z|=r$ onto the disc with the centre $C(r)=1 /\left(1-r^{2}\right)$ and the radius $\rho(r)=r /\left(1-r^{2}\right)$, then we have

$$
\begin{equation*}
\left|\frac{1+z \frac{h^{\prime}(z)}{h(z)}}{1-z \frac{p^{\prime}(z)}{p(z)}}-\frac{1}{1-r^{2}}\right| \leq \frac{r}{1-r^{2}} \tag{8}
\end{equation*}
$$

Simple calculations in (8) gives

$$
\begin{equation*}
\frac{1}{1+r}\left|1-z \frac{p^{\prime}(z)}{p(z)}\right| \leq\left|1+z \frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{1}{1-r}\left|1-z \frac{p^{\prime}(z)}{p(z)}\right| . \tag{9}
\end{equation*}
$$

Since $p \in \mathcal{P}$, then we have

$$
\begin{equation*}
-\left|1-z \frac{p^{\prime}(z)}{p(z)}\right| \geq-\left(1+\frac{2 r}{1-r^{2}}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|1-z \frac{p^{\prime}(z)}{p(z)}\right| \leq 1+\frac{2 r}{1-r^{2}} \tag{11}
\end{equation*}
$$

Considering inequalities in (9), (10) and (11), we obtain

$$
\begin{equation*}
-\frac{1}{1+r}\left(1+\frac{2 r}{1-r^{2}}\right) \leq\left|1+z \frac{h^{\prime}(z)}{h(z)}\right| \leq \frac{1}{1-r}\left(1+\frac{2 r}{1-r^{2}}\right) . \tag{12}
\end{equation*}
$$

On the other hand, we have

$$
\operatorname{Re}\left(1+z \frac{h^{\prime}(z)}{h(z)}\right)=1+r \frac{\partial}{\partial r} \log |h(z)| .
$$

Therefore, the inequality in (12) can be written by

$$
\begin{equation*}
-\frac{1}{r(1-r)}\left(1+\frac{2 r}{1-r^{2}}\right)-\frac{1}{r} \leq \frac{\partial}{\partial r} \log |h(z)| \leq \frac{1}{r(1+r)}\left(1+\frac{2 r}{1-r^{2}}\right)-\frac{1}{r} . \tag{13}
\end{equation*}
$$

Integrating both sides of (13) from 0 to r, we obtain (5). Since $p(z)=\frac{h(z)}{g(z)}$, if we use the growth theorem for the class \mathcal{P} given by

$$
\frac{1-r}{1+r} \leq|p(z)| \leq \frac{1+r}{1-r},
$$

in (5), then we obtain (6). These inequalities are sharp, because

$$
\begin{equation*}
w(z)=\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}} \Rightarrow \frac{1-z \frac{p^{\prime}(z)}{p(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}}=1-w(z) \tag{14}
\end{equation*}
$$

If we take $p(z)=\frac{1+z}{1-z}, w(z)=z$, then the inequality in (14) can be written by

$$
\begin{equation*}
\frac{h^{\prime}(z)}{h(z)}=\frac{3-z^{2}}{(1+z)(1-z)^{2}} . \tag{15}
\end{equation*}
$$

O. Mert and Y. Polatoğlu - A Certain Subclass of Log-Harmonic Mappings

Then, respectively, we obtain

$$
h(z)=e^{1-z} \cdot \frac{(1+z)^{\frac{1}{2}}}{(1-z)^{\frac{3}{2}}},
$$

and

$$
g(z)=\frac{h(z)}{p(z)}=e^{1-z} \cdot \frac{(1-z)^{-\frac{1}{2}}}{(1+z)^{\frac{1}{2}}} .
$$

(a) $h(z)$
(b) $g(z)$

(c) $f(z)$

Figure 1: $h(z), g(z)$ and $f(z)=z h(z) \overline{g(z)}$

Theorem 4. Let $f(z)=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{equation*}
F_{2}(r) \leq\left|h^{\prime}(z)\right| \leq F_{1}(r), \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}(r)=e^{1+r} \frac{1}{1+r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}}\left[\frac{1}{1-r}\left(1+\frac{2 r}{1-r^{2}}\right)+\frac{2}{1-r^{2}}\right], \\
& F_{2}(r)=e^{1-r} \frac{1}{1-r}\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}}\left[\frac{1}{1+r}\left(1+\frac{2 r}{1-r^{2}}\right)-\frac{2}{1-r^{2}}\right],
\end{aligned}
$$

and

$$
\begin{equation*}
G(-r)\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}}\left(1+\frac{2 r}{1-r^{2}}\right) \leq\left|g^{\prime}(z)\right| \leq G(r)\left(\frac{1+r}{1-r}\right)^{\frac{1}{2}}\left(1+\frac{2 r}{1-r^{2}}\right) \tag{17}
\end{equation*}
$$

where

$$
G(r)=e^{1+r} \frac{1}{(1-r)^{2}} .
$$

These inequalities are sharp.
Proof. Since the second dilatation of f satisfies the conditions Schwarz lemma, then we can write

$$
\begin{gather*}
-r \leq\left|\frac{z \frac{g^{\prime}(z)}{g(z)}}{1+z \frac{h^{\prime}(z)}{h(z)}}\right| \leq r \Leftrightarrow \\
-r\left|1+z \frac{h^{\prime}(z)}{h(z)}\right| \leq\left|z \frac{g^{\prime}(z)}{g(z)}\right| \leq r\left|1+z \frac{h^{\prime}(z)}{h(z)}\right| \tag{18}
\end{gather*}
$$

Using the inequality (12) in (18), we get (17). Since $p(z)=\frac{h(z)}{g(z)}$, then we obtain

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{z h^{\prime}(z)}{h(z)}-\frac{z g^{\prime}(z)}{g(z)}
$$

Simple calculations shows that the above equality gives (16).
Corollary 5. Let $f(z)=z h(z) \overline{g(z)}$ be an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{equation*}
\frac{r}{(1-r)^{2}} e^{2(1-r)} \leq|f| \leq \frac{r}{(1-r)^{2}} e^{2(1+r)} \tag{19}
\end{equation*}
$$

This inequality is sharp for the extremal function given in Theorem 3.

> O. Mert and Y. Polatoğlu - A Certain Subclass of Log-Harmonic Mappings

Proof. Since $f(z)=z h(z) \overline{g(z)}$, then taking modulus on both sides we get

$$
|f|=|z h(z) \overline{g(z)}|=|z||h(z)||g(z)| .
$$

Using inequalities (5) and (6), we get (19).
Corollary 6. Let $f(z)=z h(z) g(z)$ be an element of $\mathcal{S}_{L H}(\mathcal{P})$, then

$$
\begin{equation*}
\frac{1}{1+r} \frac{1}{(1-r)^{3}}\left(1+\frac{2 r}{1-r^{2}}\right)^{2} e^{4(1-r)} \leq J_{f} \leq \frac{1}{(1-r)^{6}}\left(1+\frac{2 r}{1-r^{2}}\right) e^{4(1+r)} \tag{20}
\end{equation*}
$$

This inequality is sharp for the extremal function given in Theorem 3.
Proof. Using the definition of Jacobian of f, then we have

$$
\left|f_{z}\right|^{2}\left(1-r^{2}\right) \leq J_{f}=\left(1-|w(z)|^{2}\right)\left|f_{z}\right|^{2} \leq\left|f_{z}\right|^{2} .
$$

Also we have $\frac{z f_{z}}{f}=1+z \frac{h^{\prime}(z)}{h(z)}$. Thus, considering Corollary 5 and inequality in (12), we obtain (20).

Theorem 7. The radius of starlikenes of the class $\mathcal{S}_{L H}(\mathcal{P})$ is the smallest positive root of the equation $\varphi(r)=1-2 r-r^{2}$ in $(0,1)$.

Proof. The radius of starlikenes of the class sense-preserving log-harmonic mappings is defined by

$$
r_{s}=\sup \left\{r: \operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>0,0<r<1\right\} .
$$

Due to the definition of the class $\mathcal{S}_{L H}(\mathcal{P})$,

$$
\begin{aligned}
\operatorname{Re} \frac{h(z)}{g(z)} & >0 \Rightarrow \frac{h(z)}{g(z)}=p(z) \Rightarrow \\
\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f} & =1+z \frac{h^{\prime}(z)}{h(z)}-\bar{z} \frac{\overline{g^{\prime}(z)}}{\overline{g(z)}} \\
\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f} & =\operatorname{Re}\left(1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right) \\
& =\operatorname{Re}\left(1+z \frac{p^{\prime}(z)}{p(z)}\right) \\
\geq & 1-\frac{2 r}{1-r^{2}}=\frac{1-2 r-r^{2}}{1-r^{2}}
\end{aligned}
$$

```
O. Mert and Y. Polatoğlu - A Certain Subclass of Log-Harmonic Mappings
```

Therefore, $\varphi(r)=1-2 r-r^{2} \Rightarrow \varphi(1)=-2<0, \varphi(0)=1$. Thus, the smallest positive root r_{0} of the equation $\varphi(r)=1-2 r-r^{2}=0$ lies on 0 and 1 . Thus $R e \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}>0$ is valid for $|z|=r<r_{0}$. Hence the radius of starlikeness r_{s} for $\mathcal{S}_{L H}(\mathcal{P})$ is not less than r_{0}.

Theorem 8. Let $f(z)=z h(z) \overline{g(z)}$ be an element $\mathcal{S}_{L H}(\mathcal{P})$, where $h(z)=1+a_{1} z+$ $a_{2} z^{2} \ldots$ and $g(z)=1+b_{1} z+b_{2} z^{2} \ldots$, then we have

$$
\begin{align*}
& \text { (i) } \quad\left|a_{n}\right| \leq 2 \sum_{k=0}^{n-1}\left|b_{k}\right|+\left|b_{n}\right|, \quad\left|b_{0}\right|=1 \tag{21}\\
& \text { (ii) }\left|a_{n+1}-b_{n+1}\right| \leq 4+4 \sum_{k=1}^{n} \operatorname{Rea}_{k} \bar{b}_{k}, \tag{22}\\
& \text { (iii) } \quad \sum_{k=1}^{n}\left|a_{k}-b_{k}\right|^{2} \leq 4+\sum_{k=1}^{n-1}\left|a_{k}^{2}+b_{k}^{2}\right| \tag{23}
\end{align*}
$$

These inequalities are sharp.
Proof. (i) Since

$$
R e \frac{h(z)}{g(z)}>0 \Rightarrow \frac{h(z)}{g(z)}=p(z) \Rightarrow h(z)=g(z) p(z)
$$

then we write
$\left(1+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots\right)=\left(1+b_{1} z+b_{2} z^{2}+\ldots+b_{n} z^{n}+\ldots\right)\left(1+p_{1} z+p_{2} z^{2}+\ldots+p_{n} z^{n}+\ldots\right)$.
Comparing the coefficients of z^{n} on both sides, we get

$$
a_{n}=b_{1} p_{n-1}+b_{2} p_{n-3}+\ldots+p_{1} b_{n-1}+b_{n} .
$$

In view of Lemma 1, we obtain the coefficient inequality given in (21).
(ii) Since $p \in \mathcal{P}$, then the conditions $p(0)=1$ and $\operatorname{Re}(p(z))>0$ are satisfied. From subordination condition given in (2), we obtain

$$
p(z)=\frac{1+\phi(z)}{1-\phi(z)} \Leftrightarrow \phi(z)=\frac{p(z)-1}{p(z)+1}
$$

Therefore

$$
\phi(z)=\frac{p(z)-1}{p(z)+1}=\frac{\frac{h(z)}{g(z)}-1}{\frac{h(z)}{g(z)}+1}=\frac{h(z)-g(z)}{h(z)+g(z)}
$$

which gives

$$
(h(z)-g(z))=\phi(z)(h(z)+g(z)) .
$$

This shows that $(h(z)-g(z))$ is majorized by $(h(z)+g(z))$. Using the coefficient inequality for majorized functions, we write

$$
\begin{gathered}
\left|a_{n+1}-b_{n+1}\right|^{2}=\sum_{k=0}^{n}\left|a_{k+1}-b_{k+1}\right|^{2} \leq 4+\sum_{k=0}^{n}\left|a_{k}+b_{k}\right|^{2} \\
\left|a_{n+1}-b_{n+1}\right|^{2}=\sum_{k=0}^{n}\left(a_{k+1}-b_{k+1}\right)\left(\bar{a}_{k+1}-\bar{b}_{k+1}\right) \leq 4+\sum_{k=0}^{n}\left(a_{k}+b_{k}\right)\left(\bar{a}_{k}-\bar{b}_{k}\right)
\end{gathered}
$$

which gives (22). This method is based on the Rogogonski method [9].
(iii) Using the equality $(h(z)-g(z))=\phi(z)(h(z)+g(z))$ and Clunie method [6], we write

$$
\begin{gathered}
\sum_{k=1}^{n}\left(a_{k}-b_{k}\right) z^{k}+\sum_{k=n+1}^{\infty}\left(a_{k}-b_{k}\right) z^{k}=\left[4+\sum_{k=1}^{n-1}\left(a_{k}+b_{k}\right) z^{k}+\sum_{k=n}^{\infty}\left(a_{k}+b_{k}\right) z^{k}\right]\left(\sum_{k=1}^{\infty} c_{k} z^{k}\right) \Rightarrow \\
\sum_{k=1}^{n}\left|a_{k}-b_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|a_{k}\right|^{2} r^{2 k} \leq\left[4+\sum_{k=1}^{n-1}\left|a_{k}+b_{k}\right|^{2} r^{2 k}\right]
\end{gathered}
$$

Letting $r \rightarrow 1$, we obtain desired bound given in (23).

References

[1] Z. Abdulhadi, Typically real log-harmonic mappings, Int. J. Math. Math. Sci. 31(1) (2002), 1-9.
[2] Z. Abdulhadi, Close-to-starlike log-harmonic mappings, Int. J. Math. Math. Sci. 19(3) (1996), , 563-574.
[3] Z. Abdulhadi, D. Bshouty, Univalent functions in $H \bar{H}(D)$, Trans. Amer. Math. Soc. 305(2) (1988), 841-849.
[4] Z. Abdulhadi, W. Hengartner, One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203(2) (1996), 333-351.
[5] Z. Abdulhadi, Y. Abu Muhanna, Starlike log-harmonic mappings of order alpha, JIPAM, 7(4) (2006), Article 123.
[6] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
[7] A. W. Goodman, Univalent functions, Vol. I, II, Mariner Pub. Inc., Washington, 1983.
[8] H. E. Özkan Uçar, Y. Polatoğlu, Bounded log-harmonic functions with positive real part, J. Math. Anal. Appl. 399 (2013), 418-421.
[9] W. Rogogonski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48(2) (1943), 48-82.

Oya Mert
Department of Mathematics, Faculty of Science and Arts
Tekirdag̃ Namık Kemal University, Tekirdag̃, Turkey
email: oyamert@nku.edu.tr
Yaşar Polatoğlu
Department of Mathematics and Computer Science
Istanbul Kültür University,
Istanbul, Turkey
email: y.polatoglu@iku.edu.tr

