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1. Introduction

Let Σp denotes the class of p-valent meromorphic function of the form:

λ (ω) =
1

ωp
+
∞∑
t=p

atω
t, (1)

which are analytic in the punctured open unit disc U∗ = {ω : ω ∈ and 0 <
|ω| < 1} = U − {0}, where U = U∗ ∪ {0}. In particular, Σ1 = Σ is the class of
meromorphic functions defined in U∗ and has simple pole at ω = 0. Here we are
listing some important subclasses of meromorphic functions which will be used in
our subsequal useful work. In 1936, Roberston [22] define these classes of order α.
By MS∗p(α) we mean the subclass of Σp consisting of all meromorphically p-valent
starlike functions of order α defined by

λ (ω) ∈MS∗p(α)⇔ <

(
ωλ
′
(ω)

pλ (ω)

)
< −α (0 ≤ α < 1; ω ∈ U∗). (2)

A function λ (ω) ∈ NS∗p(α) of meromorphically p-valent starlike functions of recip-
rocal order α if and only if

λ (ω) ∈ NS∗p(α)⇔ <
(
pλ (ω)

ωλ′ (ω)

)
< −α (0 ≤ α < 1; ω ∈ U∗). (3)
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A closely related class of meromorphic p-valent convex functions of order α is denoted
by MKp(α) and defined as:

λ(ω) ∈MKp(α)⇔ <
(

(ωλ′(ω))′

pλ′(ω)

)
< −α, ( ω ∈ U∗). (4)

It is readily verified from (2) and (3) that

λ (ω) ∈MKp(α)⇔ −ωλ
′
(ω)

p
∈MS∗p(α). (5)

For simplicity, we write

MS∗p(0) = MS∗p , MKp(0) = MKp.

Many differential and integral operators can be written in terms of convolution of
certain analytic functions. Let δ (ω) ∈

∑
p and having series representation of the

form δ (ω) = 1
ωp +

∞∑
t=0
btω

t, then convolution (Hadamard product) is denoted by λ∗ δ

and defined as

(λ ∗ δ) (ω) =
1

ωp
+

∞∑
t=0

atbtω
t = (δ ∗ λ) (ω) , (6)

where λ (ω) is given in (1). A function λ (ω) is subordinate to δ (ω) in U and written
as λ (ω) ≺ δ (ω) , if there exists a Schwarz function k(ω), which is holomorphic in
U∗ with |k(ω)| < 1, such that λ (ω) = δ(k (ω)). Furthermore, if the function δ (ω) is
univalent in U∗, then we have the following equivalence (see [8, 15, 17, 24]):

λ (ω) ≺ δ (ω) and λ (U) ⊂ δ (U) .

Further, λ (ω) is quasi-subordinate to δ (ω) in U∗ and written is

λ (ω) ≺q δ (ω) ( ω ∈ U∗) ,

if there exist two analytic functions ϕ (ω) and k (ω) in U∗ such that λ(ω)
ϕ(ω) is analytic

in U∗ and
|ϕ (ω)| ≤ 1 and k (ω) ≤ |ω| < 1 ω ∈ U∗,

satisfying
λ (ω) = ϕ (ω) δ (k (ω)) ω ∈ U∗. (7)
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Remark 1. In view of the fact that

< (p (ω)) < 0⇒ <
(

1

p (ω)

)
= <

(
p (ω)

|p (ω)|2

)
< 0.

It follows that a meromorphically p-valent starlike function of reciprocal order
0 is same as a meromorphically p-valent starlike function. When 0 < α < 1, the
function λ (ω) ∈

∑
p is meromorphically p-valent starlike of reciprocal order if and

only if ∣∣∣∣∣pλ
′
(ω)

pλ (ω)
+

1

2α

∣∣∣∣∣ < 1

2α
.

For p = 1, this class was studied by Sun et al. [26]. For arbitrary fixed real
numbers A and B (−1 ≤ B < A ≤ 1), we denote by P (A,B) the class of the
functions of the form

q (ω) = 1 + c1ω + c2ω
2 + ... ,

which are analytic in the unit disk U and satisfy the condition

q (ω) ≺ 1 +Aω

1 +Bω
. (8)

The class P (A,B) was introduced and studied by Janowski [13]. We also observe
from (8) (see also [23]) that a function q(z) ∈ P (A,B) if and only if∣∣∣∣ q (ω)− 1−AB

1−B2

∣∣∣∣ < A−B
1−B2

, (B 6= −1) , (9)

and

Req (ω) >
1−A

2
, (B = −1) , (10)

In [16] Liu and Srivastava defined the following operator Mm
p (a, b) such that

∑
p to

(11) (see also [1]-[7] and [29], [30]).

Mm
p (a, b)λ (ω) =

1

ωp
+

∞∑
t=n

[
a

a+ b(p+ t)

]m
atω

t (ab > 0, p ∈ N) . (11)

The above integral operator was studied by Mm
1 (a, b) for p = 1.

Mm
1 (a, b)λ (ω) =

1

ω
+

∞∑
t=1

[
a

a+ b(1 + t)

]m
atω

t (a > 0, b ≥ 0,m ∈ N) . (12)

It is easily verified from (12) that

λ (ω) (Mm
1 (a, b)λ (ω))

′
= aMm

1 (a, b)λ (ω)− (a+ b)Mm+1
1 (a, b)λ (ω) (b > 0).
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Motivation from the above cited work we refer [3, 11, 19, 21]. Using the operator
Mm
p (a, b), we introduce the following new class.

Definition 1. A function λ (ω) ∈
∑

p is said to be in the class Qmp (α, β, η;A1, B),
if it satisfies the subordination

p

1− pβ

(1− 2η)ω
(
Mm
p (a, b)λ (ω)

)′
− ηω2

(
Mm
p (a, b)λ (ω)

)′′
(1− η)Mm

p (a, b)λ (ω)− ηω
(
Mm
p (a, b)λ (ω)

)′ + β

 ≺ −1 +A1ω

1 +Bω
,

(13)
where A1 = (1−α)A+αB, 0 ≤ α < 1, 0 ≤ η ≤ 1, −1 ≤ B < A ≤ 1, 0 ≤ pB < 1

and
(
Mm
p (a, b)λ (ω)

)
is defined in (11).

Remark 2. Using (9), (10) and for B 6= −1, the Definition 1.2 is equivalent to∣∣∣∣∣ p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

1−B2

∣∣∣∣∣ < A1 −B
1−B2

, (14)

and for B = −1,

<

[
p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}]
<

1−A1

2
, (15)

also, for B = −1, A1 6= 1, (15) reduces to∣∣∣∣∣1− pβp

( (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)) +
1

1−A1

∣∣∣∣∣ < 1

1−A1
,

(16)
and for B = −1, A1 = 1, we obtain∣∣∣∣∣ p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+ 1

∣∣∣∣∣ < 1, (17)

where
χη (ω) = (1− η)λ (ω)− ηωλ (ω)

′
(18)

In recent years, more and more researchers are interested in the reciprocal case of the
starlike functions (see [9, 10, 14, 20, 25, 28] ). In the present investigation, we give
some sufficient conditions for the function belonging to the class Qmp (α, β, η;A1, B).
In order to establish our main results, we need the following lemmas.
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2. A Set of Lemmas

To derive our main results, we need the following lemmas.

Lemma 1. (Jack’s lemma [12]) Let the (nonconstant) function k(ω) be analytic in
U with k(0) = 0. If |k(ω)| attains its maximum value on the circle |ω| = r < 1 at
a point ω0 ∈ U , then ω0k(ω0)

′
= γk(ω0), where γ is a real number and γ ≥ 1.

Lemma 2. [18] Let Ω be a set in the complex plane C and suppose that φ is a
mapping from C2×U to C which satisfies φ(ix; y; z) /∈ Ω for ω ∈ U , and for all real

x, y such that y ≤ −1+x2

2 . If the function p(ω) = 1 + c1ω + c2ω
2 + ... is analytic in

U and φ(p(ω), ωp
′
(ω), ω)∈ Ω for all ω ∈ U , then Re(p(ω)) > 0.

Lemma 3. [27] Let p(ω) = 1+b1ω+b2ω
2+... be analytic in U and ϑ be analytic and

starlike (with respect to the origin) univalent in U with ϑ(0) = 0. If ωp
′
(ω) ≺ ϑ(ω)

then p(ω) ≺ 1 +
∫ ω
0

ϑ(t)
t dt.

Unless otherwise mentioned, we shall assume that A1 = (1−α)A+αB, 0 ≤ α < 1,
0 ≤ η ≤ 1, −1 ≤ B < A ≤ 1, 0 ≤ pB < 1 and p ∈ N .

3. Main Results

We begin by stating the following result.

Theorem 4. Let λ (ω) ∈
∑

p. Then λ (ω) ∈ Qmp (α, β, η;A1, B) if and only if

p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
≺ −1 +A1ω

1 +Bω
. (19)

Proof. Let λ (ω) ∈ Qmp (α, β, η;A1, B), then it follows from definition that

p

1− pβ

(1− 2η)ω
(
Mm
p (a, b)λ (ω)

)′
− ηω2

(
Mm
p (a, b)λ (ω)

)′′
(1− η)Mm

p (a, b)λ (ω)− ηω
(
Mm
p (a, b)λ (ω)

)′ + β

 ≺ −1 +A1ω

1 +Bω
.

(20)
Let

χη (ω) = (1− η)λ (ω)− ηωλ (ω)
′
.

Mulitiplying Mm
p (a, b) both side(

Mm
p (a, b)χη (ω)

)
= (1− η)

(
Mm
p (a, b)λ (ω)

)
− ηω

(
Mm
p (a, b)λ (ω)

)′
. (21)
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Differentiate equation (21) by ω,

ω
(
Mm
p (a, b)χη (ω)

)′
= (1− 2η)ω

(
Mm
p (a, b)λ (ω)

)′
− ηω2

(
Mm
p (a, b)λ (ω)

)′′
. (22)

Using (21), (22), (20) and after some simplifications we get (19). The converse is
straight forward.

Theorem 5. Let λ (ω) ∈
∑

p. Then λ (ω) ∈ Qmp (α, β, η;A1, B), where Mm
p (a, b)λ (ω)

is defined in (11), if the the following conditions are satisfied (i) for B 6= −1

∞∑
t=p

[
a

a+ b(p+ t)

]m
|at| |1− η + ηt|

∣∣p (1−B2
)

(A1 −B) (β + t) + (1− pβ) (1−A1) (1 +B)
∣∣

< |1− η + ηp|
∣∣(1− pβ) (1 +B) (A1 − 1)− p

(
1−B2

)
(A1 −B) (β − p)

∣∣ ,
(ii) for B = −1, A1 6= 1

∞∑
t=p

[
a

a+ b(p+ t)

]m
|at| |(1− pβ) (1−A1) (1− ηt)| < |[2p (1− β)− (1−A1) (1− pβ)] (1− η + ηp)| ,

(iii) for B = −1, A1 = 1

∞∑
t=p

∣∣∣∣[ a

a+ b(p+ t)

]m∣∣∣∣ |at| |(1− η − ηt) p (t+ β)| < |(1− η + ηp) p (p− β)| .

Proof. (i) For B 6= −1, then by the condition (14) we only need to show that∣∣∣∣∣ p
(
1−B2

)
(1− pβ) (A1 −B)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

A1 −B

∣∣∣∣∣ < 1. (23)

We first observe the∣∣∣∣∣ p
(
1−B2

)
(1− pβ) (A1 −B)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

A1 −B

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
p
(
1−B2

)
(A1 −B)

(
ω
(
Mm
p (a, b)χη (ω)

)′
+β
(
Mm
p (a, b)χη (ω)

) )+ (1− pβ) (1−A1B)
(
Mm
p (a, b)χη (ω)

)
(
Mm
p (a, b)χη (ω)

)
(1− pβ) (A1 −B)

∣∣∣∣∣∣∣∣∣∣
.(24)
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Using (21), (22) in (24), we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p
(
1−B2

)
(A1 −B)

 (1− 2η)ω
(
Mm
p (a, b)λ (ω)

)′
− ηω2

(
Mm
p (a, b)λ (ω)

)′′
+β
(

(1− η)
(
Mm
p (a, b)λ (ω)

)
− ηω

(
Mm
p (a, b)λ (ω)

)′)
+

(1− pβ) (1−A1B)
(

(1− η)
(
Mm
p (a, b)λ (ω)

)
− ηω

(
Mm
p (a, b)λ (ω)

)′)
(1− pβ) (A1 −B)

(
(1− η)

(
Mm
p (a, b)λ (ω)

)
− ηω

(
Mm
p (a, b)λ (ω)

)′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤

|1− η + ηp|
∣∣p (1−B2

)
(A1 −B) (β − p) + (1− pβ) (1−A1B)

∣∣
+

∣∣∣∣∣ ∞∑t=p
[

a
a+b(p+t)

]m
atω

t+p (1− η + ηt)
(
p
(
1−B2

)
(A1 −B) (β + t) + (1− pβ) (1−A1B)

)∣∣∣∣∣
|1− η + ηp| |(1− pβ) (A1 −B)|+

∣∣∣∣∣ ∞∑t=p
[

a
a+b(p+t)

]m
atωt+p (1− η + ηt) (1− pβ) (A1 −B)

∣∣∣∣∣

<

|1− η + ηp|
∣∣p (1−B2

)
(A1 −B) (β − p) + (1− pβ) (1−A1B)

∣∣
+

∞∑
t=p

[
a

a+b(p+t)

]m
|at| |1− η + ηt|

∣∣p (1−B2
)

(A1 −B) (β + t) + (1− pβ) (1−A1B)
∣∣

|1− η + ηp| |(1− pβ) (A1 −B)|+
∞∑
t=p

[
a

a+b(p+t)

]m
|at| |1− η + ηt| |(1− pβ) (A1 −B)|

. (25)

Now by using the inequality (23), we have

|1− η + ηp|
∣∣p (1−B2

)
(A1 −B) (β − p) + (1− pβ) (1−A1B)

∣∣
+
∞∑
t=p

[
a

a+b(p+t)

]m
|at| |1− η + ηt|

∣∣p (1−B2
)

(A1 −B) (β + t) + (1− pβ) (1−A1B)
∣∣

|1− η + ηp| |(1− pβ) (A1 −B)|+
∞∑
t=p

[
a

a+b(p+t)

]m
|at| |1− η + ηt| |(1− pβ) (A1 −B)|

< 1,

which, in conjunction with (25), completes the proof of (i) for Theorem 3.2.
(ii): If B = −1, A1 6= 1, by the virtue of the condition (16) we only need to show

that∣∣∣∣∣(1−A1) (1− pβ)

p

( (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)) + 1

∣∣∣∣∣ < 1. (26)
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We first observe that∣∣∣∣∣ (1−A1) (1− pβ)

p

( (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)
)

+ 1

∣∣∣∣∣

≤

|1− η + ηp| |(1−A1) (1− pβ)− p (1− β)|

+

∣∣∣∣∣ ∞∑t=p
[

a
a+b(p+t)

]m
atω

t+pp
[(

1− ηt+ ηt2
)

+ β (1− η + ηt)
]

+ (1− pβ) (1−A1) (1− ηt)

∣∣∣∣∣
|p (1− β) (1− η + ηp)|+

∣∣∣∣∣ ∞∑t=p
[

a
a+b(p+t)

]m
atωt+pp [(1− ηt+ ηt2) + β (1− η + ηt)]

∣∣∣∣∣

<

|1− η + ηp| |(1−A1) (1− pβ)− p (1− β)|

+
∞∑
t=p

[
a

a+b(p+t)

]m
|at|

∣∣p [(1− ηt+ ηt2
)

+ β (1− η + ηt)
]∣∣+ |(1− pβ) (1−A1) (1− ηt)|

|p (1− β) (1− η + ηp)|+
∞∑
t=p

[
a

a+b(p+t)

]m
|at| |p [(1− ηt+ ηt2) + β (1− η + ηt)]|

.(27)

By using the inequality (26), we have

|1− η + ηp| |(1−A1) (1− pβ)− p (1− β)|

+
∞∑
t=p

[
a

a+b(n+t)

]m
|at|
∣∣p [(1− ηt+ ηt2

)
+ β (1− η + ηt)

]∣∣+ |(1− pβ) (1−A1) (1− ηt)|

|p (1− β) (1− η + ηp)|+
∞∑
t=p

[
a

a+b(n+t)

]m
|at| |p [(1− ηt+ ηt2) + β (1− η + ηt)]|

< 1,

which, in conjunction with (27) completes the proof of (ii) for Theorem 3.2.
(iii): If B = −1, A1 = 1, by virtue of the condition (17), we only need to show

that ∣∣∣∣∣ p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+ 1

∣∣∣∣∣ < 1. (28)
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We first observe that∣∣∣∣∣ p

1− pβ

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+ 1

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(1− η + ηp)

(
1− p2

)
+
∞∑
t=p

[
a

a+b(p+t)

]m
atω

t+p (1− η − ηt) (1 + pt)

(1− pβ) (1− η + ηp) +
∞∑
t=p

[
a

a+b(p+t)

]m
atωt+p (1− η − ηt) (1− pβ)

∣∣∣∣∣∣∣∣
≤

|1− η + ηp|
∣∣1− p2∣∣+

∞∑
t=p

∣∣∣[ a
a+b(p+t)

]m∣∣∣ |at| ∣∣ωt+p∣∣ |(1− η − ηt) (1 + pt)|

|(1− pβ) (1− η + ηp)|+
∞∑∣∣∣[ a

a+b(p+t)

]m∣∣∣ |at| |ωt+p| |(1− η − ηt) (1− pβ)|

<

|1− η + ηp|
∣∣1− p2∣∣+

∞∑
t=p

∣∣∣[ a
a+b(p+t)

]m∣∣∣ |at| |(1− η − ηt) (1 + pt)|

|(1− pβ) (1− η + ηp)|+
∞∑∣∣∣[ a

a+b(p+t)

]m∣∣∣ |at| |(1− η − ηt) (1− pβ)|
. (29)

Now by using the inequality (28) we have

|1− η + ηp|
∣∣1− p2∣∣+

∞∑
t=p

∣∣∣[ a
a+b(p+t)

]m∣∣∣ |at| |(1− η − ηt) (1 + pt)|

|(1− pβ) (1− η + ηp)|+
∞∑∣∣∣[ a

a+b(p+t)

]m∣∣∣ |at| |(1− η − ηt) (1− pβ)|
< 1.

which, in conjunction with (29) completes the proof of (iii) for Theorem 3.2.

Theorem 6. If λ (ω) ∈
∑

p satisfies any one of the following conditions
(i) for B 6= −1

∣∣£m
p (a, b)χη (ω)

∣∣ < (1− pβ) (A1 −B)

(1− pβ) (A1 −B)− 1 + |B|
, (30)

(ii) for B = −1, −1 < A1 ≤ 0

∣∣£m
p (a, b)χη (ω)

∣∣ < (1− pβ) (1−A1) (1 +A1)

2pβ (1 +A1) + 2 (1−A1)
, (31)

(iii) for B = −1, A1 = 1

∣∣£m
p (a, b)χη (ω)

∣∣ < (1− pβ)

2− pβ
, (32)
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then λ (ω) ∈ Qmp (α, β, η;A1, B), where

£m
p (a, b)χη (ω) = 1 +

(
Mm
p (a, b)χη (ω)

)′′(
Mm
p (a, b)χη (ω)

)′ − (Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) .
Proof. (i) for B 6= −1. Let

k (ω) =

1 + 1+|B|
1+|B|+A1−B

p
1−pβ

(
ω(Mm

p (a,b)χη(ω))
′

(Mm
p (a,b)χη(ω))

+ β

)
1− 1+|B|

1+|B|+A1−B

− 1, (ω ∈ U) , (33)

then the function k is analytic in U with k(0) = 0. Using (33) and after some
simplifications, we obtain

pω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) =
(1− pβ) (A1 −B) k (ω)− 1 + |B|

1 + |B|
. (34)

Differentiating both sides of (34) logarithmically we get

1 +

(
Mm
p (a, b)χη (ω)

)′′(
Mm
p (a, b)χη (ω)

)′ − (Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) =
(1− pβ) (A1 −B)ωk

′
(ω)

(1− pβ) (A1 −B) k (ω)− 1 + |B|
.

(35)
By virtue of (30) and (35), we find that∣∣∣∣∣1 +

(
Mm
p (a, b)χη (ω)

)′′(
Mm
p (a, b)χη (ω)

)′ − (Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) ∣∣∣∣∣
= (1− pβ) (A1 −B)

∣∣∣∣∣ ωk
′
(ω)

(1− pβ) (A1 −B) k (ω)− 1 + |B|

∣∣∣∣∣ ,
and ∣∣£m

p (a, b)χη (ω)
∣∣ < (1− pβ) (A1 −B)

(1− pβ) (A1 −B)− 1 + |B|
.

Next, we claim that |k (ω)| < 1. Indeed if not there exists a point ω0 ∈ U such
that

max
|ω|≤|ω0|

|k (ω)| = |k (ω0)| = 1, ω0 ∈ U.

Applying Lemma 2.1 to k (ω) at the point ω0, we have

ω0k
′
(ω0) = γk(ω0), (γ ≥ 1) .
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By writing
k(ω0) = eiθ, (0 ≤ θ ≤ 2π) ,

and setting ω = ω0 in (35), we get

∣∣£m
p (a, b)χη (ω0)

∣∣ = (1− pβ) (A1 −B)

∣∣∣∣ γ

(1− pβ) (A1 −B)− (1 + |B|) e−iθ

∣∣∣∣ ,
which implies

∣∣£m
p (a, b)χη (ω0)

∣∣ ≥ (1− pβ) (A1 −B)

∣∣∣∣ 1

(1− pβ) (A1 −B)− (1 + |B|) e−iθ

∣∣∣∣ .
This implies that

∣∣£m
p (a, b)χη (ω0)

∣∣2 ≥ [(1− pβ) (A1 −B)]2

[(1− pβ) (A1 −B)]2 + (1 + |B|)2 − 2 (1− pβ) (A1 −B) (1 + |B|) cos θ
.

(36)
Since the right hand side of (36) takes its minimum value for cos θ = −1, we have

∣∣£m
p (a, b)χη (ω0)

∣∣2 ≥ [(1− pβ) (A1 −B)]2

[(1− pβ) (A1 −B) + (1 + |B|)]2
.

This contradicts our condition (30) of Theorem 2.4. Therefore, we conclude that
|k (ω)| < 1, which shows that∣∣∣∣∣∣∣∣∣∣

1 + 1+|B|
1+|B|+A1−B

p
1−pβ

(
ω(Mm

p (a,b)χη(ω))
′

(Mm
p (a,b)χη(ω))

+ β

)
1− 1+|B|

1+|B|+A1−B

− 1

∣∣∣∣∣∣∣∣∣∣
< 1, (B 6= −1, ω ∈ U) .

This implies that∣∣∣∣∣ p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+ 1

∣∣∣∣∣ < (A1 −B)

(1 + |B|)
,
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then, we have ∣∣∣∣∣ p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+

1−A1B

(1−B2)

∣∣∣∣∣
≤

∣∣∣∣∣ p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+ 1

∣∣∣∣∣+

∣∣∣∣1−A1B

1−B2
− 1

∣∣∣∣
<

A1 −B
1 + |B|

+
|B| (A1 −B)

1−B2

=
A1 −B
1−B2

, (B 6= −1, ω ∈ U) .

Therefore, we conclude that λ (ω) ∈ Qmp (α, β, η;A1, B), for B 6= −1.
(ii) For B = −1, −1 < A1 ≤ 0, analogously to Theorem 2.2 we let

k (ω) =

1 + 1−A1
2

1

p
1−pβ

(
ω(Mm

p (a,b)χη(ω))
′

(Mm
p (a,b)χη(ω))

+β

)
1− 1−A1

2

− 1. (37)

Working on the similar lines as in Theorem 3.3 in (i), we have∣∣∣∣∣
(

1− pβ
p

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)(
Mm
p (a, b)χη (ω)

) + 1

∣∣∣∣∣ < 2

1−A1
− 1.

This implies that∣∣∣∣∣
(

1− pβ
p

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)(
Mm
p (a, b)χη (ω)

) +
1

1−A1

∣∣∣∣∣
≤

∣∣∣∣∣
(

1− pβ
p

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

)(
Mm
p (a, b)χη (ω)

) + 1

∣∣∣∣∣+

∣∣∣∣ 1

1−A1
− 1

∣∣∣∣ ,
<

2

1−A1
− 1− 1

1−A1
+ 1,

=
1

1−A1
, (B = −1,−1 < A1 ≤ 0, ω ∈ U) .

Therefore, we conclude that λ (ω) ∈ Qmp (α, β, η;A1, B) for B = −1, −1 < A1 ≤
0.

(iii) For B = −1, A1 = 1

k (ω) =
p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+ 1. (38)
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Working on the similar lines as in Theorem 3.3 in (i), we have∣∣∣∣∣ p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+ 1

∣∣∣∣∣ < 1.

This implies that

p

1− pβ

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
< −1 + ω

1− ω
.

Therefore, we conclude that λ (ω) ∈ Qmp (α, β, η;A1, B) for B = −1, A1 = 1.

Theorem 7. If λ (ω) ∈
∑

p satisfies

<
(
£m
p (a, b)χη (ω)

)
<

{
− (1−A1)+pβ(A1−B)

2(1−pβ)(A1−B) , for B + 1−B
2(1−pβ) ≤ A1 ≤ 1

− (1−pβ)(A1−B)
2[(1−A1)+pβ(A1−B)] , for B < A1 ≤ B + 1−B

2(1−pβ)
, (39)

then λ (ω) ∈ Qmp (α, β, η;A1, B).

Proof. Suppose that

g (ω) =

− p
1−pβ

(
ω(Mm

p (a,b)χη(ω))
′

(Mm
p (a,b)χη(ω))

+ β

)
− 1−A1

1−B

1− 1−A1
1−B

− 1, (ω ∈ U) . (40)

Then g (ω) is analytic in U . It follows from (40) that

−pω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) =
(1− pβ) (A1 −B) g (ω) + (1−A1) + pβ (A1 −B)

1−B
,

(41)
Differentiating (41) logarithmically, we obtain

−£m
p (a, b)χη (ω) =

(1− pβ) (A1 −B) g
′
(ω)

(1− pβ) (A1 −B) g (ω) + (1−A1) + pβ (A1 −B)
=
(
g (ω) , ωg

′
(ω) , ω

)
,

where

Φ (r, s, t) =
(1− pβ) (A1 −B) s

(1− pβ) (A1 −B) r + (1−A1) + pβ (A1 −B)
.
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For all real x and y satisfying y ≤ −1+x2

2 , we have

< (Φ (ix, y, ω)) =
(1− pβ) (A1 −B) y

i (1− pβ) (A1 −B)x+ (1−A1) + pβ (A1 −B)

≤ −1 + x2

2

(1− pβ) (A1 −B) [(1−A1) + pβ (A1 −B)]

i [(1− pβ) (A1 −B)]2 x+ [(1−A1) + pβ (A1 −B)]2

≤

 −
(1−A1)+pβ(A1−B)
2(1−pβ)(A1−B) ,

(
B + 1−B

2(1−pβ) ≤ A1 ≤ 1
)

− (1−pβ)(A1−B)
2[(1−A1)+pβ(A1−B)] ,

(
B < A1 ≤ B + 1−B

2(1−pβ)

) .

We now put

Ω =

{
Re (ξ)

{
− (1−A1)+pβ(A1−B)

2(1−pβ)(A1−B) , for B + 1−B
2(1−pβ) ≤ A1 ≤ 1

− (1−pβ)(A1−B)
2[(1−A1)+pβ(A1−B)] , for B < A1 ≤ B + 1−B

2(1−pβ)

}
,

then Φ (ix, y, ω) /∈ Ω for all real x, y such that y ≤ −1+x2

2 . Moreover, in view of

(39), we know that Φ
(
g (ω) , ωg

′
(ω) , ω

)
∈ Ω. Thus, by Lemma 2.2, we deduce that

Re (g (ω)) > 0, which shows that the desired assertion of Theorem 3.4 holds.

Theorem 8. If λ (ω) ∈
∑

p satisfies any one of the following conditions
(i) for B 6= −1∣∣∣∣∣∣
{

p
(
1−B2

)
(1− pβ) (A1 −B)

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+

1−A1B

A1 −B

}′∣∣∣∣∣∣ ≤ ϑ |ω|τ , (42)

(ii) for B = −1, A1 6= 1∣∣∣∣∣∣
{

1 +
(1−A1) (1− pβ)

p

( (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

))}
′ ∣∣∣∣∣∣ ≤ ϑ |ω|τ ,

(43)
(iii) for B = −1, A1 = 1∣∣∣∣∣∣

{
p

(1− pβ)

(
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

)
+ 1

}′∣∣∣∣∣∣ < 1 ≤ ϑ |ω|τ , (44)

then λ (ω) ∈ Qmp (α, β, η;A1, B), where 0 < ϑ ≤ τ + 1, τ ≥ 0.
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Proof. (i) for B 6= −1,we define the function ψ (ω) by

ψ (ω) = ω

[
p
(
1−B2

)
(1− pβ) (A1 −B)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

A1 −B

]
,

then ψ (ω) is regular in U and ψ(0) = 0. The condition of theorem gives us that∣∣∣∣(ψ (ω)

ω

)′∣∣∣∣ ≤ ϑ |ω|τ .
It follows that∣∣∣∣(ψ (ω)

ω

)∣∣∣∣ =

∣∣∣∣∫ ω

0

(
ψ (t)

t

)′
dt

∣∣∣∣ ≤ ∫ |ω|
0

ϑ |ω|τ d |t| = ϑ

τ + 1
|ω|τ+1 .

This implies that∣∣∣∣(ψ (ω)

ω

)∣∣∣∣ ≤ ϑ

τ + 1
|ω|τ+1 < 1, (0 < ϑ ≤ τ + 1, τ ≥ 0) .

Therefore, by the definition of ψ (ω), we conclude that∣∣∣∣∣ p
(
1−B2

)
(1− pβ) (A1 −B)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

A1 −B

∣∣∣∣∣ < 1,

which is equivalent to∣∣∣∣∣ p

(1− pβ)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+

1−A1B

A1 −B

∣∣∣∣∣ < (A1 −B)

(1−B2)
.

Therefore, we conclude that λ (ω) ∈ Qmp (α, β, η;A1, B).
(ii) for B = −1, A1 6= 1, we define the function

ψ (ω) =

[
1 +

(1−A1) (1− pβ)

p

{ (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

) }] .
Then ψ (ω) is regular in U and ψ(0) = 0. Working on the similar lines as in Theorem
3.5 in (i) we can be easily verified.∣∣∣∣∣(1− pβ)

p

{ (
Mm
p (a, b)χη (ω)

)
ω
(
Mm
p (a, b)χη (ω)

)′
+ β

(
Mm
p (a, b)χη (ω)

) }+
1

1−A1

∣∣∣∣∣ < 1

1−A1
.
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(iii) for B = −1, A1 = 1

ψ (ω) = ω

[
p

(1− pβ)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+ 1

]
,

Then ψ (ω) is regular in U and ψ(0) = 0. Using similar arguments as in proof of
(iii) can be easily get.∣∣∣∣∣ p

(1− pβ)

{
ω
(
Mm
p (a, b)χη (ω)

)′(
Mm
p (a, b)χη (ω)

) + β

}
+ 1

∣∣∣∣∣ < 1.

This completes the proof.
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