ON MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH LINEAR OPERATOR

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid
Shareef 3, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$

Abstract

The purpose of this article is to define and investigate a new subclass of meromorphic starlike functions by using Liu-Srivastava operator. A number of sufficient conditions for function belonging to this class are derived.

2010 Mathematics Subject Classification: Primary 30C45, Secondary 30C50
Keywords: Meromorphic functions, convolution, integral operator.

1. Introduction

Let Σ_{p} denotes the class of p-valent meromorphic function of the form:

$$
\begin{equation*}
\lambda(\omega)=\frac{1}{\omega^{p}}+\sum_{t=p}^{\infty} a_{t} \omega^{t}, \tag{1}
\end{equation*}
$$

which are analytic in the punctured open unit disc $U^{*}=\{\omega: \omega \in$ and $0<$ $|\omega|<1\}=U-\{0\}$, where $U=U^{*} \cup\{0\}$. In particular, $\Sigma_{1}=\Sigma$ is the class of meromorphic functions defined in U^{*} and has simple pole at $\omega=0$. Here we are listing some important subclasses of meromorphic functions which will be used in our subsequal useful work. In 1936, Roberston [22] define these classes of order α. By $M S_{p}^{*}(\alpha)$ we mean the subclass of Σ_{p} consisting of all meromorphically p-valent starlike functions of order α defined by

$$
\begin{equation*}
\lambda(\omega) \in M S_{p}^{*}(\alpha) \Leftrightarrow \Re\left(\frac{\omega \lambda^{\prime}(\omega)}{p \lambda(\omega)}\right)<-\alpha \quad\left(0 \leq \alpha<1 ; \omega \in U^{*}\right) . \tag{2}
\end{equation*}
$$

A function $\lambda(\omega) \in N S_{p}^{*}(\alpha)$ of meromorphically p-valent starlike functions of reciprocal order α if and only if

$$
\begin{equation*}
\lambda(\omega) \in N S_{p}^{*}(\alpha) \Leftrightarrow \Re\left(\frac{p \lambda(\omega)}{\omega \lambda^{\prime}(\omega)}\right)<-\alpha \quad\left(0 \leq \alpha<1 ; \omega \in U^{*}\right) . \tag{3}
\end{equation*}
$$

A closely related class of meromorphic p-valent convex functions of order α is denoted by $M K_{p}(\alpha)$ and defined as:

$$
\begin{equation*}
\lambda(\omega) \in M K_{p}(\alpha) \Leftrightarrow \Re\left(\frac{\left(\omega \lambda^{\prime}(\omega)\right)^{\prime}}{p \lambda^{\prime}(\omega)}\right)<-\alpha, \quad\left(\omega \in U^{*}\right) \tag{4}
\end{equation*}
$$

It is readily verified from (2) and (3) that

$$
\begin{equation*}
\lambda(\omega) \in M K_{p}(\alpha) \Leftrightarrow-\frac{\omega \lambda^{\prime}(\omega)}{p} \in M S_{p}^{*}(\alpha) . \tag{5}
\end{equation*}
$$

For simplicity, we write

$$
M S_{p}^{*}(0)=M S_{p}^{*}, \quad M K_{p}(0)=M K_{p}
$$

Many differential and integral operators can be written in terms of convolution of certain analytic functions. Let $\delta(\omega) \in \sum_{p}$ and having series representation of the form $\delta(\omega)=\frac{1}{\omega^{p}}+\sum_{t=0}^{\infty} b_{t} \omega^{t}$, then convolution (Hadamard product) is denoted by $\lambda * \delta$ and defined as

$$
\begin{equation*}
(\lambda * \delta)(\omega)=\frac{1}{\omega^{p}}+\sum_{t=0}^{\infty} a_{t} b_{t} \omega^{t}=(\delta * \lambda)(\omega), \tag{6}
\end{equation*}
$$

where $\lambda(\omega)$ is given in (1). A function $\lambda(\omega)$ is subordinate to $\delta(\omega)$ in U and written as $\lambda(\omega) \prec \delta(\omega)$, if there exists a Schwarz function $k(\omega)$, which is holomorphic in U^{*} with $|k(\omega)|<1$, such that $\lambda(\omega)=\delta(k(\omega))$. Furthermore, if the function $\delta(\omega)$ is univalent in U^{*}, then we have the following equivalence (see [8, 15, 17, 24]):

$$
\lambda(\omega) \prec \delta(\omega) \text { and } \lambda(U) \subset \delta(U)
$$

Further, $\lambda(\omega)$ is quasi-subordinate to $\delta(\omega)$ in U^{*} and written is

$$
\lambda(\omega) \prec_{q} \delta(\omega) \quad\left(\omega \in U^{*}\right),
$$

if there exist two analytic functions $\varphi(\omega)$ and $k(\omega)$ in U^{*} such that $\frac{\lambda(\omega)}{\varphi(\omega)}$ is analytic in U^{*} and

$$
|\varphi(\omega)| \leq 1 \quad \text { and } k(\omega) \leq|\omega|<1 \quad \omega \in U^{*}
$$

satisfying

$$
\begin{equation*}
\lambda(\omega)=\varphi(\omega) \delta(k(\omega)) \quad \omega \in U^{*} \tag{7}
\end{equation*}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

Remark 1. In view of the fact that

$$
\Re(p(\omega))<0 \Rightarrow \Re\left(\frac{1}{p(\omega)}\right)=\Re\left(\frac{p(\omega)}{|p(\omega)|^{2}}\right)<0 .
$$

It follows that a meromorphically p-valent starlike function of reciprocal order 0 is same as a meromorphically p-valent starlike function. When $0<\alpha<1$, the function $\lambda(\omega) \in \sum_{p}$ is meromorphically p-valent starlike of reciprocal order if and only if

$$
\left|\frac{p \lambda^{\prime}(\omega)}{p \lambda(\omega)}+\frac{1}{2 \alpha}\right|<\frac{1}{2 \alpha} .
$$

For $p=1$, this class was studied by Sun et al. [26]. For arbitrary fixed real numbers A and $B(-1 \leq B<A \leq 1)$, we denote by $P(A, B)$ the class of the functions of the form

$$
q(\omega)=1+c_{1} \omega+c_{2} \omega^{2}+\ldots
$$

which are analytic in the unit disk U and satisfy the condition

$$
\begin{equation*}
q(\omega) \prec \frac{1+A \omega}{1+B \omega} . \tag{8}
\end{equation*}
$$

The class $P(A, B)$ was introduced and studied by Janowski [13]. We also observe from (8) (see also [23]) that a function $q(z) \in P(A, B)$ if and only if

$$
\begin{equation*}
\left|q(\omega)-\frac{1-A B}{1-B^{2}}\right|<\frac{A-B}{1-B^{2}}, \quad(B \neq-1), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Req}(\omega)>\frac{1-A}{2}, \quad(B=-1) \tag{10}
\end{equation*}
$$

In [16] Liu and Srivastava defined the following operator $M_{p}^{m}(a, b)$ such that \sum_{p} to (11) (see also [1]-[7] and [29], [30]).

$$
\begin{equation*}
M_{p}^{m}(a, b) \lambda(\omega)=\frac{1}{\omega^{p}}+\sum_{t=n}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m} a_{t} \omega^{t} \quad(a b>0, p \in \mathbb{N}) . \tag{11}
\end{equation*}
$$

The above integral operator was studied by $M_{1}^{m}(a, b)$ for $p=1$.

$$
\begin{equation*}
M_{1}^{m}(a, b) \lambda(\omega)=\frac{1}{\omega}+\sum_{t=1}^{\infty}\left[\frac{a}{a+b(1+t)}\right]^{m} a_{t} \omega^{t} \quad(a>0, b \geq 0, m \in \mathbb{N}) \tag{12}
\end{equation*}
$$

It is easily verified from (12) that

$$
\lambda(\omega)\left(M_{1}^{m}(a, b) \lambda(\omega)\right)^{\prime}=a M_{1}^{m}(a, b) \lambda(\omega)-(a+b) M_{1}^{m+1}(a, b) \lambda(\omega) \quad(b>0)
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

Motivation from the above cited work we refer [3, 11, 19, 21]. Using the operator $M_{p}^{m}(a, b)$, we introduce the following new class.

Definition 1. A function $\lambda(\omega) \in \sum_{p}$ is said to be in the class $Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, if it satisfies the subordination

$$
\begin{equation*}
\frac{p}{1-p \beta}\left\{\frac{(1-2 \eta) \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}-\eta \omega^{2}\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime \prime}}{(1-\eta) M_{p}^{m}(a, b) \lambda(\omega)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}}+\beta\right\} \prec-\frac{1+A_{1} \omega}{1+B \omega}, \tag{13}
\end{equation*}
$$

where $A_{1}=(1-\alpha) A+\alpha B, 0 \leq \alpha<1,0 \leq \eta \leq 1,-1 \leq B<A \leq 1,0 \leq p B<1$ and $\left(M_{p}^{m}(a, b) \lambda(\omega)\right)$ is defined in (11).

Remark 2. Using (9), (10) and for $B \neq-1$, the Definition 1.2 is equivalent to

$$
\begin{equation*}
\left|\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{1-B^{2}}\right|<\frac{A_{1}-B}{1-B^{2}}, \tag{14}
\end{equation*}
$$

and for $B=-1$,

$$
\begin{equation*}
\Re\left[\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}\right]<\frac{1-A_{1}}{2} \tag{15}
\end{equation*}
$$

also, for $B=-1, A_{1} \neq 1$, (15) reduces to

$$
\begin{equation*}
\left|\frac{1-p \beta}{p}\left(\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right)+\frac{1}{1-A_{1}}\right|<\frac{1}{1-A_{1}}, \tag{16}
\end{equation*}
$$

and for $B=-1, A_{1}=1$, we obtain

$$
\begin{equation*}
\left|\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+1\right|<1, \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{\eta}(\omega)=(1-\eta) \lambda(\omega)-\eta \omega \lambda(\omega)^{\prime} \tag{18}
\end{equation*}
$$

In recent years, more and more researchers are interested in the reciprocal case of the starlike functions (see [9, 10, 14, 20, 25, 28]). In the present investigation, we give some sufficient conditions for the function belonging to the class $Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$. In order to establish our main results, we need the following lemmas.

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. . .

2. A Set of Lemmas

To derive our main results, we need the following lemmas.
Lemma 1. (Jack's lemma [12]) Let the (nonconstant) function $k(\omega)$ be analytic in U with $k(0)=0$. If $|k(\omega)|$ attains its maximum value on the circle $|\omega|=r<1$ at a point $\omega_{0} \in U$, then $\omega_{0} k\left(\omega_{0}\right)^{\prime}=\gamma k\left(\omega_{0}\right)$, where γ is a real number and $\gamma \geq 1$.

Lemma 2. [18] Let Ω be a set in the complex plane C and suppose that ϕ is a mapping from $C^{2} \times U$ to C which satisfies $\phi(i x ; y ; z) \notin \Omega$ for $\omega \in U$, and for all real x, y such that $y \leq-\frac{1+x^{2}}{2}$. If the function $p(\omega)=1+c_{1} \omega+c_{2} \omega^{2}+\ldots$ is analytic in U and $\phi\left(p(\omega), \omega p^{\prime}(\omega), \omega\right) \in \Omega$ for all $\omega \in U$, then $\operatorname{Re}(p(\omega))>0$.

Lemma 3. [27] Let $p(\omega)=1+b_{1} \omega+b_{2} \omega^{2}+\ldots$ be analytic in U and ϑ be analytic and starlike (with respect to the origin) univalent in U with $\vartheta(0)=0$. If $\omega p^{\prime}(\omega) \prec \vartheta(\omega)$ then $p(\omega) \prec 1+\int_{0}^{\omega} \frac{\vartheta(t)}{t} d t$.

Unless otherwise mentioned, we shall assume that $A_{1}=(1-\alpha) A+\alpha B, 0 \leq \alpha<1$, $0 \leq \eta \leq 1,-1 \leq B<A \leq 1,0 \leq p B<1$ and $p \in N$.

3. Main Results

We begin by stating the following result.
Theorem 4. Let $\lambda(\omega) \in \sum_{p}$. Then $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$ if and only if

$$
\begin{equation*}
\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\} \prec-\frac{1+A_{1} \omega}{1+B \omega} . \tag{19}
\end{equation*}
$$

Proof. Let $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, then it follows from definition that
$\frac{p}{1-p \beta}\left\{\frac{(1-2 \eta) \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}-\eta \omega^{2}\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime \prime}}{(1-\eta) M_{p}^{m}(a, b) \lambda(\omega)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}}+\beta\right\} \prec-\frac{1+A_{1} \omega}{1+B \omega}$.
Let

$$
\begin{equation*}
\chi_{\eta}(\omega)=(1-\eta) \lambda(\omega)-\eta \omega \lambda(\omega)^{\prime} . \tag{20}
\end{equation*}
$$

Mulitiplying $M_{p}^{m}(a, b)$ both side

$$
\begin{equation*}
\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)=(1-\eta)\left(M_{p}^{m}(a, b) \lambda(\omega)\right)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime} . \tag{21}
\end{equation*}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic...

Differentiate equation (21) by ω,

$$
\begin{equation*}
\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}=(1-2 \eta) \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}-\eta \omega^{2}\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime \prime} . \tag{22}
\end{equation*}
$$

Using (21), (22), (20) and after some simplifications we get (19). The converse is straight forward.
Theorem 5. Let $\lambda(\omega) \in \sum_{p}$. Then $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, where $M_{p}^{m}(a, b) \lambda(\omega)$ is defined in (11), if the the following conditions are satisfied (i) for $B \neq-1$

$$
\begin{aligned}
& \sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m}\left|a_{t}\right||1-\eta+\eta t|\left|p\left(1-B^{2}\right)\left(A_{1}-B\right)(\beta+t)+(1-p \beta)\left(1-A_{1}\right)(1+B)\right| \\
< & |1-\eta+\eta p|\left|(1-p \beta)(1+B)\left(A_{1}-1\right)-p\left(1-B^{2}\right)\left(A_{1}-B\right)(\beta-p)\right|,
\end{aligned}
$$

(ii) for $B=-1, A_{1} \neq 1$
$\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m}\left|a_{t}\right|\left|(1-p \beta)\left(1-A_{1}\right)(1-\eta t)\right|<\left|\left[2 p(1-\beta)-\left(1-A_{1}\right)(1-p \beta)\right](1-\eta+\eta p)\right|$,
(iii) for $B=-1, A_{1}=1$

$$
\sum_{t=p}^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right||(1-\eta-\eta t) p(t+\beta)|<|(1-\eta+\eta p) p(p-\beta)| .
$$

Proof. (i) For $B \neq-1$, then by the condition (14) we only need to show that

$$
\begin{equation*}
\left|\frac{p\left(1-B^{2}\right)}{(1-p \beta)\left(A_{1}-B\right)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{A_{1}-B}\right|<1 \tag{23}
\end{equation*}
$$

We first observe the

$$
\begin{aligned}
& \left|\frac{p\left(1-B^{2}\right)}{(1-p \beta)\left(A_{1}-B\right)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{A_{1}-B}\right| \\
= & \left\lvert\, \frac{p\left(1-B^{2}\right)\left(A_{1}-B\right)\binom{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+(1-p \beta)\left(1-A_{1} B\right)\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)(1-p \beta)\left(A_{1}-B\right)}\right.
\end{aligned}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

Using (21), (22) in (24), we get

$$
\left.\begin{align*}
& \left|\begin{array}{c}
p\left(1-B^{2}\right)\left(A_{1}-B\right)\binom{(1-2 \eta) \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}-\eta \omega^{2}\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime \prime}}{+\beta\left((1-\eta)\left(M_{p}^{m}(a, b) \lambda(\omega)\right)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}\right.}+ \\
(1-p \beta)\left(1-A_{1} B\right)\left((1-\eta)\left(M_{p}^{m}(a, b) \lambda(\omega)\right)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}\right)
\end{array}\right| \\
& (1-p \beta)\left(A_{1}-B\right)\left((1-\eta)\left(M_{p}^{m}(a, b) \lambda(\omega)\right)-\eta \omega\left(M_{p}^{m}(a, b) \lambda(\omega)\right)^{\prime}\right)
\end{align*} \right\rvert\,
$$

Now by using the inequality (23), we have

$$
\begin{gathered}
|1-\eta+\eta p|\left|p\left(1-B^{2}\right)\left(A_{1}-B\right)(\beta-p)+(1-p \beta)\left(1-A_{1} B\right)\right| \\
+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m}\left|a_{t}\right||1-\eta+\eta t|\left|p\left(1-B^{2}\right)\left(A_{1}-B\right)(\beta+t)+(1-p \beta)\left(1-A_{1} B\right)\right| \\
|1-\eta+\eta p|\left|(1-p \beta)\left(A_{1}-B\right)\right|+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m}\left|a_{t}\right||1-\eta+\eta t|\left|(1-p \beta)\left(A_{1}-B\right)\right|
\end{gathered} 1,
$$

which, in conjunction with (25), completes the proof of (i) for Theorem 3.2.
(ii): If $B=-1, A_{1} \neq 1$, by the virtue of the condition (16) we only need to show that

$$
\begin{equation*}
\left|\frac{\left(1-A_{1}\right)(1-p \beta)}{p}\left(\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right)+1\right|<1 . \tag{26}
\end{equation*}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

We first observe that

$$
\begin{align*}
& \left|\frac{\left(1-A_{1}\right)(1-p \beta)}{p}\left(\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right)+1\right| \\
\leq & \frac{+\left|\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m} a_{t} \omega^{t+p} p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]+(1-p \beta)\left(1-A_{1}\right)(1-\eta t)\right|}{|p(1-\beta)(1-\eta+\eta p)|+\left|\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m} a_{t} \omega^{t+p} p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]\right|} \\
< & \left.\frac{|1-\eta+\eta p|\left|\left(1-A_{1}\right)(1-p \beta)-p(1-\beta)\right|}{|p(1-\beta)(1-\eta+\eta p)|+\sum_{t=p}^{\infty}\left[\frac{a}{a+b+b(p+t)}\right]^{m}\left|a_{t}\right|\left|p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]\right|+\left|(1-p \beta)\left(1-A_{1}\right)(1-\eta t)\right|}\right]^{m}\left|a_{t}\right|\left|p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]\right|
\end{align*}
$$

By using the inequality (26), we have

$$
\begin{gathered}
|1-\eta+\eta p|\left|\left(1-A_{1}\right)(1-p \beta)-p(1-\beta)\right| \\
+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(n+t)}\right]^{m}\left|a_{t}\right|\left|p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]\right|+\left|(1-p \beta)\left(1-A_{1}\right)(1-\eta t)\right| \\
|p(1-\beta)(1-\eta+\eta p)|+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(n+t)}\right]^{m}\left|a_{t}\right|\left|p\left[\left(1-\eta t+\eta t^{2}\right)+\beta(1-\eta+\eta t)\right]\right|
\end{gathered} 1,
$$

which, in conjunction with (27) completes the proof of (ii) for Theorem 3.2.
(iii): If $B=-1, A_{1}=1$, by virtue of the condition (17), we only need to show that

$$
\begin{equation*}
\left|\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+1\right|<1 . \tag{28}
\end{equation*}
$$

We first observe that

$$
\begin{align*}
& \left|\frac{p}{1-p \beta}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+1\right| \\
= & \left|\frac{(1-\eta+\eta p)\left(1-p^{2}\right)+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m} a_{t} \omega^{t+p}(1-\eta-\eta t)(1+p t)}{(1-p \beta)(1-\eta+\eta p)+\sum_{t=p}^{\infty}\left[\frac{a}{a+b(p+t)}\right]^{m} a_{t} \omega^{t+p}(1-\eta-\eta t)(1-p \beta)}\right| \\
\leq & \frac{|1-\eta+\eta p|\left|1-p^{2}\right|+\sum_{t=p}^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right|\left|\omega^{t+p}\right||(1-\eta-\eta t)(1+p t)|}{|(1-p \beta)(1-\eta+\eta p)|+\sum^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right|\left|\omega^{t+p}\right||(1-\eta-\eta t)(1-p \beta)|} \\
< & \frac{|1-\eta+\eta p|\left|1-p^{2}\right|+\sum_{t=p}^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right||(1-\eta-\eta t)(1+p t)|}{|(1-p \beta)(1-\eta+\eta p)|+\sum^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right||(1-\eta-\eta t)(1-p \beta)|} . \tag{29}
\end{align*}
$$

Now by using the inequality (28) we have

$$
\frac{|1-\eta+\eta p|\left|1-p^{2}\right|+\sum_{t=p}^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right||(1-\eta-\eta t)(1+p t)|}{|(1-p \beta)(1-\eta+\eta p)|+\sum^{\infty}\left|\left[\frac{a}{a+b(p+t)}\right]^{m}\right|\left|a_{t}\right||(1-\eta-\eta t)(1-p \beta)|}<1
$$

which, in conjunction with (29) completes the proof of (iii) for Theorem 3.2.
Theorem 6. If $\lambda(\omega) \in \sum_{p}$ satisfies any one of the following conditions
(i) for $B \neq-1$

$$
\begin{equation*}
\left|£_{p}^{m}(a, b) \chi_{\eta}(\omega)\right|<\frac{(1-p \beta)\left(A_{1}-B\right)}{(1-p \beta)\left(A_{1}-B\right)-1+|B|} \tag{30}
\end{equation*}
$$

(ii) for $B=-1,-1<A_{1} \leq 0$

$$
\begin{equation*}
\left|£_{p}^{m}(a, b) \chi_{\eta}(\omega)\right|<\frac{(1-p \beta)\left(1-A_{1}\right)\left(1+A_{1}\right)}{2 p \beta\left(1+A_{1}\right)+2\left(1-A_{1}\right)} \tag{31}
\end{equation*}
$$

(iii) for $B=-1, A_{1}=1$

$$
\begin{equation*}
\left|£_{p}^{m}(a, b) \chi_{\eta}(\omega)\right|<\frac{(1-p \beta)}{2-p \beta}, \tag{32}
\end{equation*}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .
then $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, where

$$
£_{p}^{m}(a, b) \chi_{\eta}(\omega)=1+\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime \prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}-\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)} .
$$

Proof. (i) for $B \neq-1$. Let

$$
\begin{equation*}
k(\omega)=\frac{1+\frac{1+|B|}{1+|B|+A_{1}-B} \frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{p}(a, b) \chi_{\eta}(\omega)\right)^{2}}+\beta\right)}{1-\frac{1+|B|}{1+|B|+A_{1}-B}}-1, \quad(\omega \in U), \tag{33}
\end{equation*}
$$

then the function k is analytic in U with $k(0)=0$. Using (33) and after some simplifications, we obtain

$$
\begin{equation*}
\frac{p \omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}=\frac{(1-p \beta)\left(A_{1}-B\right) k(\omega)-1+|B|}{1+|B|} . \tag{34}
\end{equation*}
$$

Differentiating both sides of (34) logarithmically we get
$1+\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime \prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}-\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}=\frac{(1-p \beta)\left(A_{1}-B\right) \omega k^{\prime}(\omega)}{(1-p \beta)\left(A_{1}-B\right) k(\omega)-1+|B|}$.
By virtue of (30) and (35), we find that

$$
\begin{aligned}
& \left|1+\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime \prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}-\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right| \\
= & (1-p \beta)\left(A_{1}-B\right)\left|\frac{\omega k^{\prime}(\omega)}{(1-p \beta)\left(A_{1}-B\right) k(\omega)-1+|B|}\right|
\end{aligned}
$$

and

$$
\left|£_{p}^{m}(a, b) \chi_{\eta}(\omega)\right|<\frac{(1-p \beta)\left(A_{1}-B\right)}{(1-p \beta)\left(A_{1}-B\right)-1+|B|}
$$

Next, we claim that $|k(\omega)|<1$. Indeed if not there exists a point $\omega_{0} \in U$ such that

$$
\max _{|\omega| \leq\left|\omega_{0}\right|}|k(\omega)|=\left|k\left(\omega_{0}\right)\right|=1, \quad \omega_{0} \in U .
$$

Applying Lemma 2.1 to $k(\omega)$ at the point ω_{0}, we have

$$
\omega_{0} k^{\prime}\left(\omega_{0}\right)=\gamma k\left(\omega_{0}\right),(\gamma \geq 1)
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

By writing

$$
k\left(\omega_{0}\right)=e^{i \theta}, \quad(0 \leq \theta \leq 2 \pi),
$$

and setting $\omega=\omega_{0}$ in (35), we get

$$
\left|£_{p}^{m}(a, b) \chi_{\eta}\left(\omega_{0}\right)\right|=(1-p \beta)\left(A_{1}-B\right)\left|\frac{\gamma}{(1-p \beta)\left(A_{1}-B\right)-(1+|B|) e^{-i \theta}}\right|
$$

which implies

$$
\left|£_{p}^{m}(a, b) \chi_{\eta}\left(\omega_{0}\right)\right| \geq(1-p \beta)\left(A_{1}-B\right)\left|\frac{1}{(1-p \beta)\left(A_{1}-B\right)-(1+|B|) e^{-i \theta}}\right|
$$

This implies that

$$
\begin{equation*}
\left|£_{p}^{m}(a, b) \chi_{\eta}\left(\omega_{0}\right)\right|^{2} \geq \frac{\left[(1-p \beta)\left(A_{1}-B\right)\right]^{2}}{\left[(1-p \beta)\left(A_{1}-B\right)\right]^{2}+(1+|B|)^{2}-2(1-p \beta)\left(A_{1}-B\right)(1+|B|) \cos \theta} . \tag{36}
\end{equation*}
$$

Since the right hand side of (36) takes its minimum value for $\cos \theta=-1$, we have

$$
\left|£_{p}^{m}(a, b) \chi_{\eta}\left(\omega_{0}\right)\right|^{2} \geq \frac{\left[(1-p \beta)\left(A_{1}-B\right)\right]^{2}}{\left[(1-p \beta)\left(A_{1}-B\right)+(1+|B|)\right]^{2}}
$$

This contradicts our condition (30) of Theorem 2.4. Therefore, we conclude that $|k(\omega)|<1$, which shows that

$$
\left|\frac{1+\frac{1+|B|}{1+|B|+A_{1}-B} \frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)}{1-\frac{1+|B|}{1+|B|+A_{1}-B}}-1\right|<1, \quad(B \neq-1, \omega \in U)
$$

This implies that

$$
\left|\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+1\right|<\frac{\left(A_{1}-B\right)}{(1+|B|)}
$$

then, we have

$$
\begin{aligned}
& \left|\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+\frac{1-A_{1} B}{\left(1-B^{2}\right)}\right| \\
\leq & \left|\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+1\right|+\left|\frac{1-A_{1} B}{1-B^{2}}-1\right| \\
< & \frac{A_{1}-B}{1+|B|}+\frac{|B|\left(A_{1}-B\right)}{1-B^{2}} \\
= & \frac{A_{1}-B}{1-B^{2}}, \quad(B \neq-1, \quad \omega \in U) .
\end{aligned}
$$

Therefore, we conclude that $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, for $B \neq-1$.
(ii) For $B=-1,-1<A_{1} \leq 0$, analogously to Theorem 2.2 we let

$$
\begin{equation*}
k(\omega)=\frac{1+\frac{1-A_{1}}{2} \frac{1}{\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{m}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)}}{1-\frac{1-A_{1}}{2}}-1 . \tag{37}
\end{equation*}
$$

Working on the similar lines as in Theorem 3.3 in (i), we have

$$
\left|\left(\frac{1-p \beta}{p}\right) \frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+1\right|<\frac{2}{1-A_{1}}-1 .
$$

This implies that

$$
\begin{aligned}
& \left|\left(\frac{1-p \beta}{p}\right) \frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\frac{1}{1-A_{1}}\right| \\
\leq & \left|\left(\frac{1-p \beta}{p}\right) \frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+1\right|+\left|\frac{1}{1-A_{1}}-1\right|, \\
< & \frac{2}{1-A_{1}}-1-\frac{1}{1-A_{1}}+1, \\
= & \frac{1}{1-A_{1}}, \quad\left(B=-1,-1<A_{1} \leq 0, \quad \omega \in U\right) .
\end{aligned}
$$

Therefore, we conclude that $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$ for $B=-1,-1<A_{1} \leq$ 0.
(iii) For $B=-1, A_{1}=1$

$$
\begin{equation*}
k(\omega)=\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+1 . \tag{38}
\end{equation*}
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

Working on the similar lines as in Theorem 3.3 in (i), we have

$$
\left|\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+1\right|<1 .
$$

This implies that

$$
\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)<-\frac{1+\omega}{1-\omega} .
$$

Therefore, we conclude that $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$ for $B=-1, A_{1}=1$.
Theorem 7. If $\lambda(\omega) \in \sum_{p}$ satisfies

$$
\Re\left(£_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)<\left\{\begin{array}{l}
-\frac{\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)}{2(1-p \beta)\left(A_{1}-B\right)}, \quad \text { for } B+\frac{1-B}{2(1-p \beta)} \leq A_{1} \leq 1 \tag{39}\\
-\frac{(1-p \beta)\left(A_{1}-B\right)}{2\left[\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)\right]}, \quad \text { for } B<A_{1} \leq B+\frac{1-B}{2(1-p \beta)}
\end{array},\right.
$$

then $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$.
Proof. Suppose that

$$
\begin{equation*}
g(\omega)=\frac{-\frac{p}{1-p \beta}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)-\frac{1-A_{1}}{1-B}}{1-\frac{1-A_{1}}{1-B}}-1, \quad(\omega \in U) . \tag{40}
\end{equation*}
$$

Then $g(\omega)$ is analytic in U. It follows from (40) that

$$
\begin{equation*}
\frac{-p \omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}=\frac{(1-p \beta)\left(A_{1}-B\right) g(\omega)+\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)}{1-B}, \tag{41}
\end{equation*}
$$

Differentiating (41) logarithmically, we obtain

$$
-£_{p}^{m}(a, b) \chi_{\eta}(\omega)=\frac{(1-p \beta)\left(A_{1}-B\right) g^{\prime}(\omega)}{(1-p \beta)\left(A_{1}-B\right) g(\omega)+\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)}=\left(g(\omega), \omega g^{\prime}(\omega), \omega\right),
$$

where

$$
\Phi(r, s, t)=\frac{(1-p \beta)\left(A_{1}-B\right) s}{(1-p \beta)\left(A_{1}-B\right) r+\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)} .
$$

Saqib Hussain ${ }^{1}$, Zhi-Gang Wang ${ }^{2}$, Syed Ghoos Ali Shah ${ }^{1}$, Zahid Shareef ${ }^{3}$, Asifa Tasleem ${ }^{1}$ and Maslina Darus ${ }^{4}$ - On meromorphic. .

For all real x and y satisfying $y \leq-\frac{1+x^{2}}{2}$, we have

$$
\begin{aligned}
\Re(\Phi(i x, y, \omega)) & =\frac{(1-p \beta)\left(A_{1}-B\right) y}{i(1-p \beta)\left(A_{1}-B\right) x+\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)} \\
& \leq-\frac{1+x^{2}}{2} \frac{(1-p \beta)\left(A_{1}-B\right)\left[\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)\right]}{i\left[(1-p \beta)\left(A_{1}-B\right)\right]^{2} x+\left[\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)\right]^{2}} \\
& \leq \begin{cases}-\frac{\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)}{2(1-p \beta)\left(A_{1}-B\right)}, & \left(B+\frac{1-B}{2(1-p \beta)} \leq A_{1} \leq 1\right) \\
-\frac{(1-p \beta)\left(A_{1}-B\right)}{2\left[\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)\right]}, & \left(B<A_{1} \leq B+\frac{1-B}{2(1-p \beta)}\right)\end{cases}
\end{aligned}
$$

We now put

$$
\Omega=\left\{\operatorname{Re}(\xi)\left\{\begin{array}{l}
-\frac{\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)}{2(1-p \beta)\left(A_{1}-B\right)}, \text { for } B+\frac{1-B}{2(1-p \beta)} \leq A_{1} \leq 1 \\
-\frac{(1-p \beta)\left(A_{1}-B\right)}{2\left[\left(1-A_{1}\right)+p \beta\left(A_{1}-B\right)\right]}, \text { for } B<A_{1} \leq B+\frac{1-B}{2(1-p \beta)}
\end{array}\right\}\right.
$$

then $\Phi(i x, y, \omega) \notin \Omega$ for all real x, y such that $y \leq-\frac{1+x^{2}}{2}$. Moreover, in view of (39), we know that $\Phi\left(g(\omega), \omega g^{\prime}(\omega), \omega\right) \in \Omega$. Thus, by Lemma 2.2, we deduce that $\operatorname{Re}(g(\omega))>0$, which shows that the desired assertion of Theorem 3.4 holds.

Theorem 8. If $\lambda(\omega) \in \sum_{p}$ satisfies any one of the following conditions
(i) for $B \neq-1$

$$
\begin{equation*}
\left|\left\{\frac{p\left(1-B^{2}\right)}{(1-p \beta)\left(A_{1}-B\right)}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+\frac{1-A_{1} B}{A_{1}-B}\right\}^{\prime}\right| \leq \vartheta|\omega|^{\tau} \tag{42}
\end{equation*}
$$

(ii) for $B=-1, A_{1} \neq 1$

$$
\begin{equation*}
\left|\left\{1+\frac{\left(1-A_{1}\right)(1-p \beta)}{p}\left(\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right)\right\}^{\prime}\right| \leq \vartheta|\omega|^{\tau} \tag{43}
\end{equation*}
$$

(iii) for $B=-1, A_{1}=1$

$$
\begin{equation*}
\left|\left\{\frac{p}{(1-p \beta)}\left(\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right)+1\right\}^{\prime}\right|<1 \leq \vartheta|\omega|^{\tau}, \tag{44}
\end{equation*}
$$

then $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$, where $0<\vartheta \leq \tau+1, \tau \geq 0$.

Proof. (i) for $B \neq-1$, we define the function $\psi(\omega)$ by

$$
\psi(\omega)=\omega\left[\frac{p\left(1-B^{2}\right)}{(1-p \beta)\left(A_{1}-B\right)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{A_{1}-B}\right]
$$

then $\psi(\omega)$ is regular in U and $\psi(0)=0$. The condition of theorem gives us that

$$
\left|\left(\frac{\psi(\omega)}{\omega}\right)^{\prime}\right| \leq \vartheta|\omega|^{\tau} .
$$

It follows that

$$
\left|\left(\frac{\psi(\omega)}{\omega}\right)\right|=\left|\int_{0}^{\omega}\left(\frac{\psi(t)}{t}\right)^{\prime} d t\right| \leq \int_{0}^{|\omega|} \vartheta|\omega|^{\tau} d|t|=\frac{\vartheta}{\tau+1}|\omega|^{\tau+1} .
$$

This implies that

$$
\left|\left(\frac{\psi(\omega)}{\omega}\right)\right| \leq \frac{\vartheta}{\tau+1}|\omega|^{\tau+1}<1, \quad(0<\vartheta \leq \tau+1, \tau \geq 0)
$$

Therefore, by the definition of $\psi(\omega)$, we conclude that

$$
\left|\frac{p\left(1-B^{2}\right)}{(1-p \beta)\left(A_{1}-B\right)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{A_{1}-B}\right|<1
$$

which is equivalent to

$$
\left|\frac{p}{(1-p \beta)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+\frac{1-A_{1} B}{A_{1}-B}\right|<\frac{\left(A_{1}-B\right)}{\left(1-B^{2}\right)} .
$$

Therefore, we conclude that $\lambda(\omega) \in Q_{p}^{m}\left(\alpha, \beta, \eta ; A_{1}, B\right)$.
(ii) for $B=-1, A_{1} \neq 1$, we define the function

$$
\psi(\omega)=\left[1+\frac{\left(1-A_{1}\right)(1-p \beta)}{p}\left\{\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right\}\right] .
$$

Then $\psi(\omega)$ is regular in U and $\psi(0)=0$. Working on the similar lines as in Theorem 3.5 in (i) we can be easily verified.

$$
\left|\frac{(1-p \beta)}{p}\left\{\frac{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}+\beta\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}\right\}+\frac{1}{1-A_{1}}\right|<\frac{1}{1-A_{1}} .
$$

(iii) for $B=-1, A_{1}=1$

$$
\psi(\omega)=\omega\left[\frac{p}{(1-p \beta)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+1\right],
$$

Then $\psi(\omega)$ is regular in U and $\psi(0)=0$. Using similar arguments as in proof of (iii) can be easily get.

$$
\left|\frac{p}{(1-p \beta)}\left\{\frac{\omega\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)^{\prime}}{\left(M_{p}^{m}(a, b) \chi_{\eta}(\omega)\right)}+\beta\right\}+1\right|<1 .
$$

This completes the proof.
Acknowledgements. he present investigation was supported by UKM under Grant no. GUP-2019-032 and the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China.

References

[1] M. K. Aouf and T. M. Seoudy, Some properties of a certain subclass of multivalent analytic functions involving the Liu-Owa operator. Comput. Math. Appl., 60, (2010), 1525-1535.
[2] M. K. Aouf and T. M. Seoudy, Some preserving subordination and super ordination of analytic functions involving the Liu-Owa integral operator, Comput. Math. Appl., 62 (2011), 3575-3580.
[3] M. Albehbahi and M. Darus, New subclass of multivalent hypergeometric meromorphic functions, Kragujevac J. Math., 42 (2018), 83-95.
[4] M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan, Integral means of certain classes of analytic functions defined by Dziok-Srivastava operator, Acta Universitatis Apulensis, 26 (2011), 321-330.
[5] M. K. Aouf and T. M. Seoudy, Some preserving subordination and superordination of the Liu-Owa integral operator, Complex Anal. Oper. Theory, 7 (2013), 275-283.
[6] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32.
[7] N. E. Cho and S. Owa, Sufficient conditions for meromorphic starlikeness and close to-convexity of order α, Int. J. Math. Sci., 26 (2001), 317-319.
[8] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, Springer-Verlag, New York, 1983.
[9] Z.-G. Wang, M. Naeem, S. Hussain, T. Mahmood and A. Rasheed, A class of analytic functions related to convexity and functions with bounded turning, AIMS Mathematics, 5 (2020), 1926-1935.
[10] F. Ghanim M. Darus and S. Gaboury, On new linear operator associated with gaussian hupergeometric functions, J. Inform. Math. Sci., 7 (2015), 121-130.
[11] S. Hussaina, J. Bibia, M. Razab and M. Darus, On subclass of meromorphic multivalent functions associated with Liu-Srivastava operator, J. Nonlinear Sci. Appl., 10 (2017), 4954-4965.
[12] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971) 469-474.
[13] W. Janowski, Some extremal problems for certain families of analytic functions, I, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys., 21 (1973), 17-25.
[14] J. S. Kang, S. Owa and H. M. Srivastava, Quasi-convolution properties of certain subclasses of analytic functions, Bull. Belg. Math. Soc. 3 (1996), 603-608.
[15] A. Rasheed, S. Hussain, S. G. A. Shah, M. Darus and S. Lodhi, Majorization problem for two subclasses of meromorphic functions associated with a convolution operator, AIMS Mathematics, 5 (2020), 5157-5170.
[16] J. L. Liu and S. Owa, Properties of certain integral operators, Int. J. Math. Math. Sci., 3 (2004), 69-75.
[17] S. S. Miller and P. T. Mocanu, Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
[18] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations, 67 (1987), 199-211.
[19] L.-N. Ma and S.-H. Li, On certain class of meromorphically multivalent reciprocal starlike functions associated with the Liu-Srivastava operator defined by subordination, Filomat, 28 (2014), 1965-1982.
[20] S. Najafzadeh and S. R. Kulkarni, Study of certain properties of univalent functions based on Ruscheweyh derivative, South Asian Bull. Math. 32 (2008), 475488.
[21] N. Wu and J. Zheng, T - and Hayman T-points of meromorphic functions for small functions in the unit disk, Acta Math. Sci. Ser. B (Engl. Ed.), 32 (2012), 1662-1674.
[22] M. S. Roberston, On the theory of univalent functions, Ann. of Math. (2), 37 (1936), 374-408.
[23] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37 (1985), 48-61.
[24] H. M. Srivastava and S. Owa, Current topics in analytic function theory, World Scientific Publishing Co., Inc., River Edge, NJ., 1992.
[25] C. Shengjianga and L. Weichuanb, On uniqueness of Meromorphic functions with shared-sets in an angular domain, Acta Math. Sci., 31 (2011), 194-206.
[26] Y. Sun, W.-P. Kuang and Z.-G. Wang, On meromorphic starlike functions of reciprocal order α, Bull. Malays. Math. Sci. Soc., 35 (2012), 469-477.
[27] D.-G. Yang, Some criteria for multivalently starlikeness, Southeast Asian Bull. Math., 24 (2000), 491-497.
[28] R. Yamakawa, Certain subclasses of p-valently starlike functions with negative coefficients, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992, 393-402.
[29] S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, and M. Darus, Application of quasisubordination to certain classes of meromorphic functions, Journal of Function Spaces, vol. 20208 pages, 2020.
[30] S. G. A. Shah, S. Noor, M. Darus, W. Ul Haq, and S. Hussain, On meromorphic functions defined by a new class of Liu-Srivastava integral operator, International Journal of Analysis and Applications, vol. 18, no. 6, 2020.
${ }^{1}$ Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
${ }^{2}$ School of Mathematics and Computing Science, Hunan First Normal University, Changsha, 410205 Hunan, People's Republic of China
${ }^{3}$ Mathematics and Natural Science, Higher Colleges of Technology, Fujairah Men's, Fujairah 4114, UAE
${ }^{4}$ Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

E-mail: saqib_math@yahoo.com, wangmath@163.com, alishahsyedghoos@gmail.com, zshareef@hct.ac.ae and maslina@ukm.edu.my

