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Abstract. We discuss the general Rodrigues problem and we give explicit
determinant formulae for the coefficients when the eigenvalues of the matrix have
double multiplicity (Theorem 5). When n = 4 explicit formulae and effective com-
putations for the exponential map on the Lie group SO(4) are presented.
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1. Introduction

The exponential map exp : gl(n,K) → GL(n,K), where K = C or K = R, and
GL(n,K) denotes the Lie group of the invertible n× n matrices having the entrees
in K, is defined by (9). According to the well-known Hamilton-Cayley Theorem, it
follows that every power Xk, k ≥ n, of the matrix X ∈ Mn(K), is a linear combi-
nation of X0 = In, X

1, . . . , Xn−1, hence exp(X) can be written as in (10), where the
coefficients a0(X), . . . , an−1(X) are uniquely defined and depend on X . Inspired
by the classical Rodrigues formula (11) for the special orthogonal group SO(3), we
call these numbers the Rodrigues coefficients of the exponential map with respect
to the matrix X ∈Mn(K).

Considering an analytic function f(z) defined on an open disk containing the
spectrum of the matrix X ∈ Mn(K) and replace z by X we obtain the matrix
function f̃(X) defined as power series (see Section 2). Similarly, we obtain the
reduced formula (12), where the coefficients are called the Rodrigues coefficients of
f̃ with respect to the matrix X.

In this paper we discuss the Rodrigues problem, that is the problem of deter-
mining the Rodrigues coefficients. Section 2 is dealing with a breaf review of matrix
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functions. We recall the definition of a matrix function by using the Jordan canoni-
cal form, by the Hermite’s interpolation polynomial, by the Cauchy integral formula,
and by a series. The connection betweeen these definitions is given in Theorem 1.
Section 3 is devoted to the study of the Rodrigues general problem in terms of the
spectrum of the matrix X and it discuss the case when the eigenvalues of the matrix
X are pairwise distinct (Theorem 2). Section 4 illustrates the importance of the Her-
mite interpolation polynomial in solving the Rodrigues general problem when the
eigenvalues have double multiplicity (Theorem 4). The determinant formulae for the
Rodrigues coefficients, in this case, are presented in Theorem 5 of Section 5. The
last section contains the explicit formulae when n = 4 and effective computations
for the exponential map on the Lie group SO(4).

2. Short introduction on matrix functions

The concept of matrix function plays an important role in many domains of mathe-
matics with numerous applications in science and engineering, especially in control
theory and in the theory of the differential equations in which exp(tA) has an im-
portant role.

A matrix function can be defined in different ways, the following four being the
most useful for the developments in this presentation.

1. Using the Jordan canonical form
Let f be defined on a neighborhood of the spectrum of A ∈Mn(C). If A has the

Jordan canonical form J , then

f(A) = Xf(J)X−1 = Xdiag(f(Jk(λk)))X
−1 (1)

where

f(Jk) = f(Jk(λk)) =


f(λk) f ′(λk) . . . f (nk−1)(λk)

(nk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 (2)

The right member of the relation (2) is independent of the choice of X and J .

2. Using Hermite interpolation
Let f be defined on the spectrum of A ∈Mn(C). Then

f(A) = r(A), (3)
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where r is the Hermite interpolation polynomial that satisfies the interpolation con-
ditions

r(j)(λi) = f (j)(λj), i = 1, . . . , s, j = 0, . . . , ni − 1,

and λ1, . . . , λs are the distinct eigenvalues of A with the multiplicities n1, . . . ns. The
standard implicit form of this polynomial is

r(t) =

s∑
i=1

ni−1∑
j=0

1

j!
Φ

(j)
i (λi)(t− λi)j

∏
j 6=i

(t− λj)nj

 (4)

where Φi(t) = f(t)/
∏
j 6=i

(t − λj)
nj . Formula (3) is connected to the well-known

Schwerdtfeger formula for matrix functions [9].
If the eigenvalues of the matrix X are pairwise distinct, then the Hermite poly-

nomial r is reduced to Lagrange interpolation polynomial with conditions r(λi) =
f(λi), i = 1, . . . , n,

r(t) =
n∑
i=1

f(λi)li(t), (5)

where li are the Lagrange fundamental polynomials defined by

li(t) =
n∏
j=1
j 6=i

t− λj
λi − λj

, i = 1, . . . , n. (6)

3. Using Cauchy’s integral formula
Let Ω ⊂ C be a domain and f : Ω → C a analytic function. Let A ∈ Mn(C)

be diagonalizable so that all eigenvalues of A are in Ω. We define f(A) ∈ Mn(C)
through

f(A) =
1

2πi

∫
Γ
f(z)(zIn −A)−1dz, (7)

where (zIn − A)−1 is the resolvent of A in z and Γ ⊂ Ω is a simple closed curve
around the spectrum σ(A), oriented in the opposite trigonometric direction.

4. Matrix functions defined as power series
If the function f is given by f(z) =

∑∞
k=0 ckz

k on an open disk containing the
eigenvalues of A, then

f(A) =

∞∑
k=0

ckA
k, (8)
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where we suppose the convergence of the series. The exponential map, considered
in various contexts, is the most important example for this definition (see Section
3). Another important example is given by

Cay(A) = In + 2A+ 2A2 + · · · ,

which defines in some situations the Cayley transform Cay(A) = (In+A)(In−A)−1

(for details see the paper [3]).
The following important result is well-known (see for instance [12]).

Theorem 1. Let be A ∈ Mn(C) and let f be an analytical function defined on a
domain containing the spectrum of A. Denote

1. fJ(A) the matrix f(A) defined with the Jordan canonical form;

2. fH(A) the matrix f(A) defined with the Hermite’s interpolation polynomial;

3. fC(A) the matrix f(A) defined with the Cauchy’s integral formula.

Then fJ(A) = fH(A) = fC(A).

3. The Rodrigues general problem

The exponential map exp : gl(n,C) = Mn(C)→ GL(n,C) is defined

exp(X) =
∞∑
k=0

1

k!
Xk. (9)

According to the well-known Hamilton-Cayley theorem, it follows that every power
Xk, k ≥ n, is a linear combination of powers X0, X1,. . ., Xn−1, hence we can write

exp(X) =
n−1∑
k=0

ak(X)Xk, (10)

where the real coefficients a0(X), . . . , an−1(X) are uniquely defined and depend on
the matrix X. From this formula, it follows that exp(X) is a polynomial of X with
coefficients functions of X.

The problem to find a such formula for exp(X) is reduced to the problem to
determine the coefficients a0(X), . . . , an−1(X). We will call this problem, the Ro-
drigues problem, and the numbers a0(X), . . . , an−1(X) Rodrigues coefficients of the
exponential map with respect to the matrix X ∈Mn(C).
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The origin of this problem is the classical Rodriques formula obtained in 1840
for the special orthogonal group SO(3):

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2, (11)

where
√

2θ = ‖X‖ and we denoted by ‖X‖ Frobenius norm of the matrix X. From
the many arguments pointing out the importance of this formula we mention here
the study of the rigid body rotation in R3, and the parametrization of the rotations
in R3.

Now, for the general construction, we consider an analytic function f , such that
the induced matrix series f̃(X) is convergent in an open subset of Mn(C). Then, via
Hamilton-Cayley-Frobenius Theorem we can write a reduced form for matrix f̃(X):

f̃(X) =

n−1∑
k=0

a
(f)
k (X)Xk. (12)

We call the above relation, the Rodrigues formula with respect to f . The numbers

a
(f)
0 (X), . . . , a

(f)
n−1(X) are the Rodrigues coefficients of the map f̃ with respect to the

matrix X ∈Mn(C). Clearly, the real coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are uniquely

defined, they depend on the matrix X, and f̃(X) is a polynomial of X.
The following result concerning the solution to the general Rodrigues problem

with respect to the function f for simple multiplicity is obtained by D. Andrica and
O.-L. Chender [2]. The special case n = 2 is also discussed in the recent book [15].

Theorem 2. Assume that the eigenvalues λ1, . . . , λn of the matrix X are pairwise
distinct. Then we have :

1) The Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are given by the formulas

a
(f)
k (X) =

V
(f)
n,k (λ1, . . . , λn)

Vn (λ1, . . . , λn)
, k = 0, . . . , n− 1, (13)

where Vn (λ1, . . . , λn) is the Vandermonde determinant of order n, and V
(f)
n,k (λ1, . . . , λn)

is the determinant of order n obtained from Vn (λ1, . . . , λn) by replacing the line k+1
by f(λ1), . . . , f(λn).

2) The Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are linear combinations of

f(λ1), . . . , f(λn) having the coefficients rational functions of λ1, . . . , λn.

There are two ways to prove this result. A direct proof is given in the paper [2]
(see also [6] and [7]) and it uses the so-called ”trace method” to obtain from relation

(9) a linear system with the unknowns a
(f)
0 (X), . . . , a

(f)
n−1(X).

The second proof is based on the following important result (see [12]):
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Theorem 3. For the polynomials p, q ∈ C[z] and A ∈Mn(C) we have p(A) = q(A)
if and only if p and q take the same values on the spectrum of A.

From this result and relation (9) it follows that the polynomial f̃ is exactly
the Lagrange interpolation polynomial satisfying the conditions f̃(λj) = f(λj), j =

1, . . . , n. Therefore, the Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) in (10) are the

coefficients of the Lagrange polynomial under the above interpolation conditions.

4. The solution of the Rodrigues problem when the eigenvalues have
double multiplicity

In this subsection, we assume that the function f is defined on the spectrum of the
matrix X ∈M2s(C) and the distinct eigenvalues λ1, . . . , λs of X have double multi-
plicity, that is n1 = · · · = ns = 2. In this case the Hermite interpolation polynomial
r satisfies the conditions r(λi) = f(λi), r

′(λi) = f ′(λi), i = 1, . . . , s. We obtain that
the polynomial f̃ is exactly the Hermite interpolation polynomial r satisfying the

above conditions, hence the Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) in (10) are

the coefficients of r. To get the algebraic form of polynomial r in the general case
is a difficult problem [13]. After algebraic computations, we get the following result
[10]:

Theorem 4. For any k = 0, 1, . . . , n− 1, we have

a
(f)
k (X) =

(−1)k+1
s∑
i=1

1
s∏
j=1
j 6=i

(λi − λj)2


f ′(λi)− 2f(λi)

s∑
j=1
j 6=i

1

λi − λj

σi,2s−k−1

−

f(λi)

1 + 2λi

s∑
j=1
j 6=i

1

λi − λj

− λif ′(λi)
σi,2s−k−2


(14)

In formula (11), σi,k(λ1, . . . , λs) = sk(λ1, λ1, . . . , λ̂i, λ̂i, . . . , λs, λs) is the symmet-

ric polynomial of order k in 2s− 2 variable λ1, λ1, . . . , λ̂i, λ̂i, . . . , λs, λs, of which λi
is missing, for all k = 1, . . . , 2s− 2.
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5. The determinant formulae

The formulas (11) can be written in a compact and uniform form by using convenient
determinants. The starting point is the formula (13) applicated for the function f
defined on the spectrum of the matrix X ∈M2s(C), which we assume is analytical.
We consider the distinct eigenvalues λ1, λ

′
1, λ2, λ

′
2, . . . , λs, λ

′
s of the matrix X and we

let successively λ′1 → λ1, λ
′
2 → λ2, . . . , λ

′
s → λs. Using the derivative formula of a

functional determinant and l’Hôpital’s rule we obtain the following result:

Theorem 5. If the eigenvalues λ1, . . . , λs of the matrix X are pairwise distinct,

then the Rodrigues coefficients a
(f)
0 (X), . . . , a

(f)
n−1(X) are given by

a
(f)
k (X) =

1∏
1≤i<j≤s

(λj − λi)4
detU

(f,f ′)
n,k (λ1, . . . , λs) (15)

where U
(f,f ′)
n,k (λ1, . . . , λs) is the n× n matrix defined in n× 2 blocks

U
(f,f ′)
n,k (λ1, . . . , λs) =

([
U

(f,f ′)
k (λ1)

]
. . .
[
U

(f,f ′)
k (λs)

])
and the block U

(f,f ′)
k is given by

U
(f,f ′)
k (λj) =



1 0
λj 1
...

...
f(λj) f ′(λj)

...
...

λn−1
j (n− 1)λn−2

j


, j = 1, . . . , s. (16)

The entries f(λj), f
′(λj) are found on the line k + 1, and the entries situated on

the second column are obtained by derivation in relation to λj of the corresponding
entries on the first column.

The entries f(λj), f
′(λj) are found on the line k+ 1, and the entries situated on

the second column are obtained by derivation with respect to λj of the corresponding
entries on the first column.

6. Examples

6.1. The general case n = 4

To illustrate the formula (15), we consider n = 4, the analytical function f is defined
on the spectrum of the matrix X ∈M4(C) with distinct eigenvalues λ1, λ2, each with
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double multiplicity. The blocks (16) defined by the 4 × 2 matrices which give the

Rodrigues coefficients a
(f)
0 (X), a

(f)
1 (X), a

(f)
2 (X), a

(f)
3 (X) from formula (12) are

U
(f,f ′)
0 (λ1) =


f(λ1) f ′(λ1)
λ1 1
λ2

1 2λ1

λ3
1 3λ2

1

 , U
(f,f ′)
0 (λ2) =


f(λ2) f ′(λ2)
λ2 1
λ2

2 2λ2

λ3
2 3λ2

2

 ,

U
(f,f ′)
1 (λ1) =


1 0

f(λ1) f ′(λ1)
λ2

1 2λ1

λ3
1 3λ2

1

 , U
(f,f ′)
1 (λ2) =


1 0

f(λ2) f ′(λ2)
λ2

2 2λ2

λ3
2 3λ2

2

 ,

U
(f,f ′)
2 (λ1) =


1 0
λ1 1

f(λ1) f ′(λ1)
λ3

1 3λ2
1

 , U
(f,f ′)
2 (λ2) =


1 0
λ2 1

f(λ2) f ′(λ2)
λ3

2 3λ2
2

 ,

U
(f,f ′)
3 (λ1) =


1 0
λ1 1
λ2

1 2λ1

f(λ1) f ′(λ1)

 , U
(f,f ′)
3 (λ2) =


1 0
λ2 1
λ2

2 2λ2

f(λ2) f ′(λ2)

 ,

Applying formula (12) we obtain

a
(f)
0 (X) =

1

(λ2 − λ1)4
det
([
U

(f,f ′)
0 (λ1)

] [
U

(f,f ′)
0 (λ2)

])
=

1

(λ2 − λ1)4

∣∣∣∣∣∣∣∣
f(λ1) f ′(λ1) f(λ2) f ′(λ2)
λ1 1 λ2 1
λ2

1 2λ1 λ2
2 2λ2

λ3
1 3λ2

1 λ3
2 3λ2

2

∣∣∣∣∣∣∣∣ ,
a

(f)
1 (X) =

1

(λ2 − λ1)4
det
([
U

(f,f ′)
1 (λ1)

] [
U

(f,f ′)
1 (λ2)

])
=

1

(λ2 − λ1)4

∣∣∣∣∣∣∣∣
1 0 1 0

f(λ1) f ′(λ1) f(λ2) f ′(λ2)
λ2

1 2λ1 λ2
2 2λ2

λ3
1 3λ2

1 λ3
2 3λ2

2

∣∣∣∣∣∣∣∣ ,
a

(f)
2 (X) =

1

(λ2 − λ1)4
det
([
U

(f,f ′)
2 (λ1)

] [
U

(f,f ′)
2 (λ2)

])
=
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1

(λ2 − λ1)4

∣∣∣∣∣∣∣∣
1 0 1 0
λ1 1 λ2 1

f(λ1) f ′(λ1) f(λ2) f ′(λ2)
λ3

1 3λ2
1 λ3

2 3λ2
2

∣∣∣∣∣∣∣∣ ,
a

(f)
3 (X) =

1

(λ2 − λ1)4
det
([
U

(f,f ′)
3 (λ1)

] [
U

(f,f ′)
3 (λ2)

])
=

1

(λ2 − λ1)4

∣∣∣∣∣∣∣∣
1 0 1 0
λ1 1 λ2 1
λ2

1 2λ1 λ2
2 2λ2

f(λ1) f ′(λ1) f(λ2) f ′(λ2)

∣∣∣∣∣∣∣∣ .
6.2. The exponential map on SO(4)

It is well-known that the set of all real n × n orthogonal matrices is a Lie group,
denoted by O(n), with respect to the standard multiplication. The subset of O(n)
consisting of those matrices having the determinant equal to +1 is a subgroup,
denoted by SO(n) and called the special orthogonal group of the Euclidean space Rn.
Due to geometric reasons, the elements of SO(n) are also called rotation matrices.
The Lie algebra so(n) of SO(n) consists in all skew-symmetric matrices in Mn(R)
and the Lie bracket is the standard matrices commutator [A,B] = AB − BA. The
exponential map exp : so(n) → SO(n) is defined by the same formula (9) because,
by the naturality property, it is the restriction exp |so(n) of the exponential map
exp : gl(n,R)→ GL(n,R).

It is known that for every compact connected Lie group the exponential map is
surjective (see T. Bröcker, T. tom Dieck [8] or D. Andrica, I.N. Casu [1] for the stan-
dard proof), that is every compact connected Lie group is exponential (see the mono-
graph of M. Wüstner [18] for details about the exponential groups). Because the
group SO(n) is compact it follows that the exponential map exp : so(n) → SO(n)
is surjective, which is an important property (see also [14]). Indeed, it implies the
existence of a locally inverse function log : SO(n)→ so(n), and this has interesting
applications. In the paper of J.Gallier, D.Xu [11] is mentioned that the functions exp
and log for the group SO(n) can be used in the study of motion interpolation. Also,
the surjectivity of the exponential map for the group SO(n) gives the possibility to
describe in a natural way the rotations of the Euclidean space Rn (see R.-A. Rohan
[17]). To describe the image of the exponential map of an arbitrary Lie group is a
very difficult open problem (see [4] and [5]).

The matrices in so(n) have two essential properties which simplify the compu-
tation of the Rodrigues coefficients:

9
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• If n is odd, then they are singular, i.e. they have one eigenvalue equal to 0
(possible with a multiplicity);

• The non-zero eigenvalues are purely imaginary and, of course, conjugated.

The general skew-symmetric matrix X ∈ so(4) is

X =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 ,

and the corresponding characteristic polynomial is given by

pX(t) = t4 + (a2 + b2 + c2 + d2 + e2 + f2)t2 + (af − be+ cd)2.

Let ±iα,±iβ, be the eigenvalues of the matrix X, where α, β ∈ R.
To illustrate the formulas obtained in the previous subsection, we consider the

situation α = β 6= 0. That is the distinct eigenvalues are λ1 = −iα, λ2 = iα,
each with double multiplicity, hence the characteristic polynomial of matrix X is
pX(t) = t4 + 2α2t2 + α4.

The Rodrigues coefficients a0(X), a1(X), a2(X), a3(X) of the exponential map
with respect to the matrix X are

a0(X) =
1

(2iα)4

∣∣∣∣∣∣∣∣
e−iα e−iα eiα eiα

−iα 1 iα 1
−α2 −2iα −α2 2iα
iα3 −3α2 −iα3 −3α2

∣∣∣∣∣∣∣∣ =
1

2
(α sinα+ 2 cosα),

a1(X) =
1

(2iα)4

∣∣∣∣∣∣∣∣
1 0 1 0

e−iα e−iα eiα eiα

−α2 −2iα −α2 2iα
iα3 −3α2 −iα3 −3α2

∣∣∣∣∣∣∣∣ =
1

2α
(3 sinα− α cosα),

a2(X) =
1

(2iα)4

∣∣∣∣∣∣∣∣
1 0 1 0
−iα 1 iα 1
e−iα e−iα eiα eiα

iα3 −3α2 −iα3 −3α2

∣∣∣∣∣∣∣∣ =
sinα

2α
,

a3(X) =
1

(2iα)4

∣∣∣∣∣∣∣∣
1 0 1 0
−iα 1 iα 1
−α2 −2iα −α2 2iα
e−iα e−iα eiα eiα

∣∣∣∣∣∣∣∣ =
1

2α3
(sinα− α cosα),
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where we have used simple elementary transformations with determinants and the
well-known trigonometric formulas 2i sinα = eiα − e−iα, and 2 sinα = eiα + e−iα.

The corresponding Rodrigues formula is

exp(X) =
1

2
(α sinα+ 2 cosα)I4 +

1

2α
(3 sinα− α cosα)X+ (17)

sinα

2α
X2 +

1

2α3
(sinα− α cosα)X3.

Formula (17) has been obtained by D. Andrica and R.-A. Rohan [6] by using the
Putzer method [16].
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