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Abstract. In this study, we will give some results about Frobenius number,
gaps, and determine number of telescopic numerical semigroup Sk and Arf closure
of Sk such that Sk = 〈8, 8k + 4, 8k + 9〉 where k ≥ 1, k ∈ Z.
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1. Introduction

Let N = {a ∈ Z : a ≥ 0} and Z be integers set. The subset S of N is a numerical
semigroup if

(i) 0 ∈ S

(ii) y1 + y2 ∈ S for all y1, y2 ∈ S

(iii) Card(N \ S) <∞.

The condition (iii) is equivalent to gcd(S) = 1, gcd(S) = greatest common divisor
the element of S.

Let S be a numerical semigroup, then F (S) = max{a : a ∈ Z \ S} is called
Frobenius number of S, m(S) = min{s ∈ S : s > 0} is called multiplicity of S,
n(S) = Card({0, 1, 2, ..., F (S)} ∩ S) is called the number determine of S. If F (S)−
r ∈ S then S is called symmetric numerical semigroup, for all r ∈ Z \S. It is known
that S =< y1, y2 > is symmetric numerical semigroup and F (S) = y1y2 − y1 − y2
(see [1]). If S is a numerical semigroup such that S =< y1, y2, ..., yn > , then we
observe that S =< y1, y2, ..., yn >= {s0 = 0, s1, s2, ..., sn−1, sn = F (S) + 1,→ . . .}
where si < si+1, n = n(S) , and the arrow means that every integer greater than
F (S)+1 belongs to S , for i = 1, 2, ..., n = n(S) . If p ∈ N and p /∈ S,then p is called
gap of S. We denote the set of gaps of S, by H(S) = {p : p ∈ N\S},and the G(S) =
Card(H(S)) is called the genus of S. Also, It is know that F (S) = G(S)+n(S)−1.If
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S is a symmetric numerical semigroup then n(S) = G(S) = F (S)+1
2 ( see [6] ).

S =< y1, y2, y3 > is called a triply-generated telescopic numerical semigroup if
y3 ∈< y1

d ,
y2
d > where d = gcd(y1, y2) (see [5, 7, 2]). If S is a numerical semigroup

such that S =< y1, y2, y3, ..., yn >,then L(S) =< y1, y2 − y1, y3 − y1, ..., yn − y1 >
is called Lipman numerical semigroup of S,and it is known that L0(S) = S ⊆
L1(S) = L(L0(S)) ⊆ L2(S) = L(L1(S)) ⊆ ... ⊆ Lq(S) = L(Lq−1(S)) ⊆ · · · ⊆ N. A
numerical semigroup S is called Arf if y1 + y2 − y3 ∈ S, for all y1, y2, y3 ∈ S such
that y1 ≥ y2 ≥ y3. The intersection of any family of Arf numerical semigroups is
again an Arf numerical semigroup. Thus, since N is an Arf numerical semigroup,
one can consider the smallest Arf numerical semigroup containing a given numerical
semigroup. The smallest Arf numerical semigroup containing a numerical semigroup
is called the Arf closure of S and it is denoted by Arf(S). However, the Arf closure
of S can also be expressed with Lipman numerical semigroup of S (for details see
[3, 6]).

In this paper, we will give some results about Frobenius number, gaps, and
determine number of telescopic numerical semigroup Sk and Arf closure of Sk such
that Sk =< 8, 8k + 4, 8k + 9 > where k ≥ 1, k ∈ Z. Here,Sk is symmetric numerical
semigroup,where k ≥ 1, k ∈ Z. But, any telescopic numerical semigroup is not
symmetric.For example,

S =< 6, 9, 20 >= {0, 6, 9, 12, 15, 18, 20, 21, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38,→ . . .}

is telescopic numerical semigroup but it is not symmetric since F (S) = 37 and
F (S)− v = 37− 3 = 34 /∈ S for v = 3 ∈ Z \ S.

2. Main Results

Proposition 1. ([8]) Sk =< 8, 8k+4, y > is a telescopic numerical semigroup where
k ≥ 1, k ∈ Z and y > 8k + 4 is odd integer number.

Proposition 2. ([4]) Let S =< u1, u2, ..., un > be a numerical semigroup and
d = gcd{u1, u2, ..., un−1}. If T =< u1

d , u2
d , ..., un−1

d > is numerical semigroup then

1. F (S) = dF (T ) + (d− 1)un

2. G(S) = dG(T ) + (d−1)(un−1)
2 .

Proposition 3. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then, we have
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(a) F (Sk) = 32k + 23
(b) n(Sk) = 16k + 12
(c) G(Sk) = 16k + 12.

Proof. (a) We find that F (T ) = 2(2k+1)−2−2k−1 = 2k−1 since d = gcd(8, 8k+
4) = 4 and T =< 8

4 ,
8k+4
4 >=< 2, 2k + 1 > , where k ≥ 1, k ∈ Z. In this case, we

obtain that F (Sk) = 4(2k−1)+(4−1)(8k+9) = 32k+23 from Proposition (2)-(1).

(b)-(c) It is trivial n(Sk) = G(Sk) = F (Sk)+1
2 = 32k+24

2 = 16k + 12 from Sk is
symmetric numerical semigroup.

Theorem 1. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then Arf(Sk) = {0, 8, 16, 24, ..., 8k, 8k + 4, 8k + 8,→ . . .}.

Proof. It is trivial m0 = 8 since L0(Sk) = Sk. Thus, we write L1(Sk) =< 8, 8k −
4, 8k + 1 > . In this case,

(1) If 8k − 4 < 8 ( if k = 1 ) then S1 =< 8, 12, 17 > and we obtain

L1(S1) =< 8, 4, 9 >=< 4, 9 >,m1 = 4,

L2(S1) =< 4, 5 >,m2 = 4

and
L3(S1) =< 4, 1 >=< 1 >= N,m3 = 1.

Thus, we have Arf(S1) = {0, 8, 12, 16,→ ...}.

(2) If 8k − 4 > 8 ( if k ≥ 2 ) then

L1(Sk) =< 8, 8k − 4, 8k + 1 >,m1 = 8.

In this case, we write L2(Sk) =< 8, 8k − 12, 8k − 7 > .
(a) If k = 2 then

L2(S2) =< 8, 4, 9 >=< 4, 9 >,m2 = 4,

L3(S2) =< 4, 5 >,m3 = 4

and
L4(S2) =< 4, 1 >=< 1 >= N,m4 = 1.

Thus, we write Arf(S2) = {0, 8, 16, 20, 24,→ ...}.
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(b) If k > 2 then L2(Sk) =< 8, 8k − 12, 8k − 7 >,m2 = 8, and L3(Sk) =<
8, 8k − 20, 8k − 15 > . In this case,
(i) If k = 3 then

L3(S3) =< 8, 4, 9 >=< 4, 9 >,m3 = 4,

L4(S3) =< 4, 5 >,m4 = 4

and
L5(S3) =< 4, 1 >=< 1 >= N,m5 = 1.

So, we find that Arf(S3) = {0, 8, 16, 24, 28, 32,→ ...}.
(ii) If k > 3 then L3(Sk) =< 8, 8k − 20, 8k − 15 > ,m3 = 8, and L4(Sk) =<
8, 8k − 28, 8k − 23 > . In this case,

(1)If k = 4 then

L4(S4) =< 8, 4, 9 >=< 4, 9 >,m4 = 4,

L5(S4) =< 4, 5 >,m5 = 4

and
L6(S3) =< 4, 1 >=< 1 >= N,m6 = 1.

Thus, we have Arf(S4) = {0, 8, 16, 24, 32, 36, 40,→ ...}.
(2) If k > 4 then L4(Sk) =< 8, 8k − 28, 8k − 23 >, m4 = 8, and we write

L5(Sk) =< 8, 8k − 36, 8k − 31 > . If we continue the operations then we obtain Arf
closure of Sk =< 8, 8k + 4, 8k + 9 > as follows

Arf(Sk) = {0, 8, 16, 24, ..., 8k, 8k + 4, 8k + 8,→ ...}.
Thus,the proof is completed.

Corollary 2. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then, we have
(a) F (Arf(Sk) = 8k + 7
(b) n(Arf(Sk)) = k + 2
(c) G(Arf(Sk)) = 7k + 6.

Proof. (a) It is clear.
(b) Let a and b be the cardinalities of the subsets {0, 8, 16, 24, ..., 8k} and {8k +
4, 8k+ 8} of Arf(Sk) = {0, 8, 16, 24, ..., 8k, 8k+ 4, 8k+ 8,→ ...}, respectively. In this
case, we find that a + b = k + 2.
(c) G(Arf(Sk)) = F (Arf(Sk)) + 1− n(Arf(Sk)) = 8k + 7 + 1− (k + 2) = 7k + 6.

Corollary 3. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then,
(a) F (Sk) = F (Arf(Sk) + 8(3k + 2)
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(b) n(Sk) = n(Arf(Sk)) + 5(3k + 2)
(c) G(Sk) = G(Arf(Sk)) + 3(3k + 2).

Proof. It is trivial from Proposition 3 and Corollary 2.

The following corollaries are satisfied from Proposition 3 and Corollary 2.

Corollary 4. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then, we have
(a) F (Sk+1) = F (Sk) + 32
(b) n(Sk+1) = n(Sk) + 16
(c) G(Sk+1) = G(Sk) + 16.

Corollary 5. Let Sk =< 8, 8k + 4, 8k + 9 > be a telescopic numerical semigroup
where k ≥ 1, k ∈ Z. Then,
(a) F (Arf(Sk+1)) = F (Arf(Sk)) + 8
(b) n(Arf(Sk+1)) = n(Arf(Sk)) + 1
(c) G(Arf(Sk+1)) = G(Arf(Sk)) + 7.

Example 1. We put k = 1 in Sk =< 8, 8k + 4, 8k + 9 > triply-generated telescopic
numerical semigroup. Then, we have

S1 =< 8, 12, 17 >

= {0, 8, 12, 16, 17, 20, 24, 25, 28, 29, 30, 32, 33, 34, 36, 37, 40, 41, 42, 44, 45, 46, 48, 49, ...

, 53, 54, 56,→ . . .}.

In this case, we obtain
F (S1) = 55 , n(S1) = 28

H(S1) = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 18, 19, 21, 22, 23, 26, 27, 30, 31, 35, 38, 39, 43, 47, 55},

G(S1) = Card(H(S1)) = 28, Arf(S1) = {0, 8, 12, 16,→ . . .}, F (Arf(S1)) = 15,
H(Arf(S1)) = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15}, G(Arf(S1)) = Card(H(Arf(S1))) =
13 and n(Arf(S1)) = 3. If we take k = 2 then, we write

S2 =< 8, 20, 25 >

= {0, 8, 16, 20, 24, 25, 28, 32, 33, 40, 41, 44, 45, 48, 49, 50, 52, 53, 56, 57, 58, 60,

61, 64, 65, 68, 69, 70, 72, ..., 78, 80, ..., 86, 88,→ . . .}.

In this case, we find F (S2) = 87, n(S2) = 44,G(S2)) = 44, Arf(S2) = {0, 8, 18, 20, 24,→
. . .}, F (Arf(S2)) = 23, G(Arf(S2)) = 20 and n(Arf(S2)) = 4. So, we obtain
F (Arf(S1))+40 = 15+40 = 55 = F (S1), G(Arf(S1))+15 = 13+15 = 28 = G(S1),
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Sedat İlhan – On a Family of Telescopic Numerical Semigroups

n(Arf(S1)) + 25 = 3 + 25 = 28 = n(S1), F (S1) + 32 = 55 + 32 = 87 = F (S2),
n(S1) + 16 = 28 + 16 = 44 = n(S2),G(S1) + 16 = 28 + 16 = 44 = G(S2) and
F (Arf(S1)) + 8 = 15 + 8 = 23 = F (Arf(S2)), n(Arf(S1)) + 1 = 3 + 1 = 4 =
n(Arf(S2)), G(Arf(S1)) + 7 = 13 + 7 = 20 = G(Arf(S2)).
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[2] S.İlhan , On a class of telescopic numerical semigroups, Int. J. Contemporary
Math. Sci., 1(2006),2,81-83.
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