ON STAR COLORING OF LEXICOGRAPHIC PRODUCT OF GRAPHS

Sivakami R, Kaliraj K, Vernold Vivin J

Abstract

A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number $\chi_{s}(G)$ of G is the least number of colors needed to star color G. In this paper, we determine the star chromatic number of lexicographic product of complete graph with complete graph $K_{m}\left[K_{n}\right]$, complete graph with wheel graph $K_{m}\left[W_{n}\right]$, complete graph with path $K_{m}\left[P_{n}\right]$ and path with path $P_{m}\left[P_{n}\right]$.

2010 Mathematics Subject Classification: 05C15, 05C75.
Keywords: star coloring, lexicographic product, wheel graph.

1. Introduction

All graphs in this paper are finite, simple, connected and undirected graph and we follow $[2,3,8]$ for terminology and notation that are not defined here. We denote the vertex set and the edge set of G by $V(G)$ and $E(G)$, respectively. Branko Grünbaum introduced the concept of star chromatic number in 1973. A star coloring $[1,5,6]$ of a graph G is a proper vertex coloring in which every path on four vertices uses at least three distinct colors. The star chromatic number $\chi_{s}(G)$ of G is the least number of colors needed to star color G.

During the years star coloring of graphs has been studied extensively by several authors, for instance see $[1,4,5]$.

Definition 1. A trail is called a path if all its vertices are distinct. A closed trail whose origin and internal vertices are distinct is called a cycle.

Definition 2. A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_{n}.

Definition 3. A wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. It is denoted by W_{n} with n vertices $(n \geq 4)$.

Definition 4. The lexicographic product [7] $G[H]$ of graphs G and H is a graph such that the vertex set of $G \cdot H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in $G[H]$ if and only if either

- u is adjacent with x in G or
- $u=x$ and v is adjacent with y in H.

Definition 5. The lexicographic product $G[H]$ of disjoint graphs G and H is defined as follows:

$$
V(G[H])=V(G) \times V(H) .
$$

Definition 6. Let m and n are positive integer, We define the vertex set of complete graph K_{n}, wheel W_{n} and path P_{n}, as follows:

$$
\begin{aligned}
V\left(K_{m}\right) & =\left\{u_{i}: 1 \leq i \leq m\right\} \\
V\left(K_{n}\right) & =\left\{v_{j}: 1 \leq j \leq n\right\} \\
V\left(W_{n}\right) & =\left\{u_{1}\right\} \cup\left\{u_{j}: 2 \leq j \leq n\right\} \\
V\left(P_{m}\right) & =\left\{u_{i}: 1 \leq i \leq m\right\} \\
V\left(P_{n}\right) & =\left\{v_{j}: 1 \leq j \leq n\right\} .
\end{aligned}
$$

In the next section, we find the exact values of the star chromatic number of lexicographic product of complete graph with complete graph $K_{m}\left[K_{n}\right]$, complete graph with wheel graph $K_{m}\left[W_{n}\right]$, complete graph with path $K_{m}\left[P_{n}\right]$ and path with path $P_{m}\left[P_{n}\right]$.

2. Main Results

2.1. Star chromatic number of $K_{m}\left[K_{n}\right]$

Theorem 1. For any positive integers m and n, the star coloring of lexicographic product of $K_{m}\left[K_{n}\right]$ is $m n$.

Proof. Let

$$
V\left(K_{m}\left[K_{n}\right]\right)=\bigcup_{i=1}^{m}\left\{s_{i, j}: 1 \leq j \leq n\right\},
$$

where $s_{i, j}$ are the vertices of $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$.
Define a mapping,

$$
\sigma: V\left(K_{m}\left[K_{n}\right]\right) \rightarrow \mathbb{N}
$$

as follows:

$$
\begin{aligned}
& \sigma\left(s_{i, j}\right)=i, \text { for } 1 \leq i \leq m, \quad j=1 \\
& \sigma\left(s_{i, j}\right)=(j-1) m+i, \text { for } 1 \leq i \leq m, \quad 2 \leq j \leq n .
\end{aligned}
$$

Thus $\chi_{S}\left(K_{m}\left[K_{n}\right]\right)=m n$.
Suppose to the contrary, $\chi_{S}\left(K_{m}\left[K_{n}\right]\right)>m n$ say $m n+1$. But the $V\left(K_{m}\left[K_{n}\right]\right)$ are $m n$, which is a contradiction to the definition of the lexicographic product, therefore $\chi_{S}\left(K_{m}\left[K_{n}\right]\right) \leq m n$. If there exist cliques of order $m n$ in $V\left(K_{m}\left[K_{n}\right]\right)$. Thus $\chi_{S}\left(K_{m}\left[K_{n}\right]\right)=m n$.

2.2. Star chromatic number of $K_{m}\left[W_{n}\right]$

Theorem 2. For any positive integer m and n,

$$
\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=\left\{\begin{array}{lll}
m n, & \text { for } & m \geq 2 \text { and } n=4 \\
m n-1, & \text { for } & m \geq 2 \text { and } n=5 \\
m n-n+5, & \text { for } & m \geq 2 \text { and } n \geq 6
\end{array}\right.
$$

Proof. Let

$$
V\left(K_{m}\left[W_{n}\right]\right)=\bigcup_{i=1}^{m}\left\{w_{i, j}: 1 \leq j \leq n\right\}
$$

where $w_{i, j}$ are the vertices of $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$.
Case 1: When $m \geq 2$ and $n=4$
Let $\left\{c_{1}, \ldots, c_{m n}\right\}$ be the set of distinct colors. The vertices $\left(w_{i, j}\right)$ where $(1 \leq i \leq m, 1 \leq j \leq 4)$ can be colored with color $c_{1}, c_{2}, c_{3}, \ldots, c_{m n}$ respectively.
Suppose to the contrary, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n)$, say $(m n)+1$. But the $V\left(K_{m}\left[W_{n}\right]\right)$ are ($m n$), which is a contradiction to the definition of the lexicographic product. Thus $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n)$. If the result is less than $m n$, then it contradicts the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n)$, for $m \geq 2$ and $n=4$.

Case 2: When $m \geq 2$ and $n=5$
Let $\left\{c_{1}, \ldots, c_{m n-1}\right\}$ be the set of distinct colors. The vertices $\left(w_{i, j}\right)$ where $(1 \leq i \leq m-1,1 \leq j \leq 5)$ are colored with color $\left\{c_{1}, \ldots, c_{m n-1}\right\}$ and the vertex $u_{m} v_{3}$ and $u_{m} v_{5}$ are given the same color that is $C_{m 3}$ color.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-1)$. But it contradicts, the definition
of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-1)$, for $m \geq 2$ and $n=5$.

Case 3: When $m \geq 2$ and $n \geq 6$
Subcase 1: When $m=2$ and $n \geq 6$
Let $\left\{c_{1}, \ldots, c_{m n-n+5}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with $c_{2 j-1}$ color where $1 \leq j \leq 5$, vertices $\left(w_{1, j}\right)$ are colored with c_{j+5} color where $7 \leq j \leq n$ and vertex $\left(w_{1,6}\right)$ are colored with c_{10} color. Similarly the vertex $w_{2,1}$ and $w_{2,2}$ are colored with c_{2} and c_{4} respectively. The vertices $\left(w_{2,2 j-1}\right)$ are colored with c_{6} color, where $2 \leq j \leq\left\lfloor\frac{n}{2}-1\right\rfloor$, the vertices $\left(w_{2,4 j}\right)$ are colored with c_{8} color where $1 \leq j \leq\left\lceil\frac{n}{4}\right\rceil$ and vertices $\left(w_{2,4 j+2}\right)$ are colored with c_{11} color where $1 \leq j \leq\left\lceil\frac{n}{4}\right\rceil$ respectively.

Subcase 2: When $m=3$ and $n \geq 6$
Let $\left\{c_{1}, \ldots, c_{m n-n+5}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $m=2$ and $n \geq 6$. The vertex $w_{3, j}$ is colored with the preceding vertex color $\left(w_{1, n}+1\right)^{\text {th }}$ color for $j=1$, when $j=2$ the vertex $w_{3, j}$ is colored with preceding vertex color $\left(w_{1, n+1}+1\right)^{\text {th }}$ color and so on.

Subcase 3: When $m \geq 4$ and $n \geq 6$
Let $\left\{c_{1}, \ldots, c_{m n-n+5}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \leq m \leq 3$ and $n \geq 6$. The preceding subcase is applied to the vertices $w_{i, j}$ where $2 \leq i \leq 3$. The vertices $w_{4, j}$ where $1 \leq j \leq n$ are colored with the preceding vertex color $\left(w_{3, n}+1\right)^{\text {th }}$ color and so on. As m increases the same pattern of colors are given as in $\left(w_{4, j}\right)^{t h}$ color.

Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-n+5)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-n+5)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-n+5)$, for $m \geq 2$ and $n \geq 6$.

2.3. \quad Star chromatic number of $K_{m}\left[P_{n}\right]$

Theorem 3. For any positive integer m and n,

$$
\chi_{s}\left(K_{m}\left[P_{n}\right]\right)= \begin{cases}m n, & \text { when } m \geq 2 \text { and } n=2 \\ m n-1, & \text { when } m \geq 2 \text { and } n=3 \\ (m-1) n+3, & \text { when } m \geq 2 \text { and } n \geq 4\end{cases}
$$

Proof. Let

$$
V\left(K_{m}\left[P_{n}\right]\right)=\bigcup_{i=1}^{m}\left\{w_{i, j}: 1 \leq j \leq n\right\},
$$

where $w_{i, j}$ are the vertices of $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$.
Case 1: For $m \geq 2$ and $n=2$
Let $\left\{c_{1}, \ldots, c_{m n}\right\}$ be the set of distinct colors. The vertices $\left(w_{i, j}\right)$ where $1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with the color $c_{1}, \ldots, c_{m n}$ respectively. Suppose to the contrary, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n)$ say $(m n)+1$. But the $V\left(K_{m}\left[W_{n}\right]\right)$ are ($m n$), which is a contradiction to the definition of the lexicographic product. $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n)$. If the result is less than $m n$, then it contradicts the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n)$ for $m \geq 2$ and $n=2$.

Case 2: For $m \geq 2$ and $n=3$
Let $\left\{c_{1}, \ldots, c_{m n-1}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with $c_{2 j-1}$ color where $1 \leq j \leq 3$, vertices ($w_{2, j}$) are colored with c_{2} color where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$ and the vertex $\left(w_{2,2}\right)$ is colored with c_{4} color, the vertices $\left(w_{3, j}\right)$ are colored with the vertex color $\left(w_{1,3}+1\right)^{\text {th }}$ color. Similarly the vertices $\left(w_{4, j}\right)$ are colored with vertex color $\left(w_{3,3}+1\right)^{\text {th }}$ color and so on.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-1)$, for $m \geq 2$ and $n=3$.

Case 3: For $m \geq 2$ and $n \geq 4$

Subcase 1: When $m=2$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with $c_{2 j-1}$ color, where $1 \leq j \leq 3$, the vertices $\left(w_{1,4}\right)$ is colored with color c_{6}, the vertex $\left(w_{1, j}\right)$ are colored with the color c_{j+3} where $5 \leq j \leq n$, the vertices $\left(w_{2,2 j-1}\right)$ are colored with the color c_{2}, where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$, the vertices $\left(w_{2,4 j-2}\right)$ are colored with color c_{4} where $1 \leq j \leq\left\lceil\frac{n}{4}\right\rceil$, the vertices $\left(w_{2,4 j}\right)$ are colored with color c_{7} where $1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor$ respectively.

Subcase 2: When $m=3$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $m=2$ and $n \geq 4$. The vertices ($w_{3, j}$) are colored with the
preceding vertex color $\left(w_{1, n}+1\right)^{t h}$ color for $j=1$, when $j=2$, the vertex $\left(w_{3, j}\right)$ is colored with preceding vertex color $\left[\left(w_{1, n}+1\right)+1\right]^{\text {th }}$ color and so on..

Subcase 3: When $m \geq 4$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \leq m \leq 3$ and $n \geq 4$. The vertices $\left(w_{4, j}\right), 1 \leq j \leq n$ are colored with the preceding vertex color $\left(w_{3, n}+1\right)^{\text {th }}$ color and so on.. As ' m ' increases the same pattern of colors are given as in $\left(w_{4, j}\right)^{\text {th }}$ color.

Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-n+3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-n+3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-n+3)$, for $m \geq 2$ and $n \geq 4$.

2.4. Star chromatic number of $K_{m}\left[P_{n}\right]$

Theorem 4. For any positive integer m and n,

$$
\chi_{s}\left(K_{m}\left[P_{n}\right]\right)= \begin{cases}m n, & \text { when } m \geq 2 \text { and } n=2 \\ m n-1, & \text { when } m \geq 2 \text { and } n=3 \\ (m-1) n+3, & \text { when } m \geq 2 \text { and } n \geq 4\end{cases}
$$

Proof. Let

$$
V\left(K_{m}\left[P_{n}\right]\right)=\bigcup_{i=1}^{m}\left\{w_{i, j}: 1 \leq j \leq n\right\},
$$

where $w_{i, j}$ are the vertices of $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$.
Case 1: For $m \geq 2$ and $n=2$
Let $\left\{c_{1}, \ldots, c_{m n}\right\}$ be the set of distinct colors. The vertices $\left(w_{i, j}\right)$ where $1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with the color $c_{1}, \ldots, c_{m n}$ respectively. Suppose to the contrary, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n)$ say $(m n)+1$. But the $V\left(K_{m}\left[W_{n}\right]\right)$ are ($m n$), which is a contradiction to the definition of the lexicographic product. $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n)$. If the result is less than $m n$, then it contradicts the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n)$ for $m \geq 2$ and $n=2$.

Case 2: For $m \geq 2$ and $n=3$
Let $\left\{c_{1}, \ldots, c_{m n-1}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with $c_{2 j-1}$ color where $1 \leq j \leq 3$, vertices $\left(w_{2, j}\right)$ are colored with c_{2} color
where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$ and the vertex $\left(w_{2,2}\right)$ is colored with c_{4} color, the vertices $\left(w_{3, j}\right)$ are colored with the vertex color $\left(w_{1,3}+1\right)^{\text {th }}$ color. Similarly the vertices $\left(w_{4, j}\right)$ are colored with vertex color $\left(w_{3,3}+1\right)^{\text {th }}$ color and so on.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-1)$, for $m \geq 2$ and $n=3$.

Case 3: For $m \geq 2$ and $n \geq 4$
Subcase 1: When $m=2$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with $c_{2 j-1}$ color, where $1 \leq j \leq 3$, the vertices $\left(w_{1,4}\right)$ is colored with color c_{6}, the vertex $\left(w_{1, j}\right)$ are colored with the color c_{j+3} where $5 \leq j \leq n$, the vertices $\left(w_{2,2 j-1}\right)$ are colored with the color c_{2}, where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$, the vertices $\left(w_{2,4 j-2}\right)$ are colored with color c_{4} where $1 \leq j \leq\left\lceil\frac{n}{4}\right\rceil$, the vertices $\left(w_{2,4 j}\right)$ are colored with color c_{7} where $1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor$ respectively.

Subcase 2: When $m=3$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $m=2$ and $n \geq 4$. The vertices ($w_{3, j}$) are colored with the preceding vertex color $\left(w_{1, n}+1\right)^{t h}$ color for $j=1$, when $j=2$, the vertex $\left(w_{3, j}\right)$ is colored with preceding vertex color $\left[\left(w_{1, n}+1\right)+1\right]^{\text {th }}$ color and so on..

Subcase 3: When $m \geq 4$ and $n \geq 4$.
Let $\left\{c_{1}, \ldots, c_{m n-n+3}\right\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \leq m \leq 3$ and $n \geq 4$. The vertices $\left(w_{4, j}\right), 1 \leq j \leq n$ are colored with the preceding vertex color $\left(w_{3, n}+1\right)^{\text {th }}$ color and so on.. As ' m ' increases the same pattern of colors are given as in $\left(w_{4, j}\right)^{\text {th }}$ color.

Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m n-n+3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m n-n+3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m n-n+3)$, for $m \geq 2$ and $n \geq 4$.

2.5. Star chromatic number of $P_{m}\left[P_{n}\right]$

Theorem 5. For any positive integer m and n,

$$
\chi_{s}\left(P_{m}\left[P_{n}\right]\right)= \begin{cases}m+n, & \text { for } m=2 \text { and } n=2,3 \\ m+n-1, & \text { for } m=3 \text { and } n=2,3 \\ m+n, & \text { for } m=3 \text { and } n \geq 4 \\ m+n+1, & \text { for } m=2 \text { and } n \geq 4 \\ 2 n+2, & \text { for } m \geq 4 \text { and } n=2,3 \\ 2 n+3, & \text { for } m, n \geq 4\end{cases}
$$

Proof. Let

$$
V\left(P_{m}\left[P_{n}\right]\right)=\bigcup_{i=1}^{m}\left\{w_{i, j}: 1 \leq j \leq n\right\}
$$

where $w_{i, j}$ are the vertices of $u_{i} v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$.
Case 1: When $m=2$ and $2 \leq n \leq 3$
Let $\left\{c_{1}, \ldots, c_{m+n}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ where $(1 \leq j \leq 3)$ can be colored with color $c_{2 j-1}$, the vertices $\left(w_{2, j}\right)$ are colored with color c_{2} where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$ and the vertex $\left(w_{2,2}\right)$ is colored with c_{4} color. Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m+n)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m+n)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m+n)$, for $m=2$ and $2 \leq n \leq 3$.

Case 2: When $m=3$ and $2 \leq n \leq 3$
Let $\left\{c_{1}, \ldots, c_{m+n-1}\right\}$ be the set of distinct colors. The vertices $\left(w_{2 i-1,2 j-1}\right)$ are colored with color c_{1}, where $1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil \& 1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$, the vertices $\left(w_{2 i-1,2}\right)$ are colored with color c_{3} where $1 \leq i \leq\left\lceil\frac{m}{2}\right\rceil$, the vertex $\left(w_{2,2}\right)$ is colored with color c_{4} and the vertices $\left(w_{2,2 j-1}\right)$ are colored with color c_{2} where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m+n-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m+n-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m+n-1)$, for $m=3$ and $2 \leq n \leq 3$.

Case 3: When $m=2$ and $n \geq 4$
Let $\left\{c_{1}, \ldots, c_{m+n+1}\right\}$ be the set of distinct colors. The vertices $\left(w_{1, j}\right)$ are colored with color $c_{2 j-1}$, where $1 \leq j \leq 3$, the vertex $\left(w_{1,4}\right)$ is colored with color
c_{6}, the vertices $\left(w_{1, j}\right)$ are colored with color c_{j+3} where $5 \leq j \leq n$, the vertices $\left(w_{2,2 j-1}\right)$ are colored with color c_{2} where $1 \leq j \leq\left\lceil\frac{n}{2}\right\rceil$, the vertices $\left(w_{2,4 j-2}\right)$ are colored with color c_{4} where $1 \leq j \leq\left\lceil\frac{n}{4}\right\rceil$ and the vertices $\left(w_{2,4 j}\right)$ are colored with color c_{7} where $1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor$.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m+n+1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m+n+1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m+n+1)$, for $m=2$ and $n \geq 4$.

Case 4: When $m=3$ and $n \geq 4$
Let $\left\{c_{1}, \ldots, c_{m+n}\right\}$ be the set of distinct colors. The vertices $\left(w_{i, 4 j-3}\right)$ are colored with color c_{1}, where $1 \leq i \leq 3,1 \leq j \leq\left\lfloor\frac{n+3}{4}\right\rfloor$, also the vertices ($w_{i, 4 j-1}$) are colored with color c_{1}, where $1 \leq i \leq 3,1 \leq j \leq\left\lfloor\frac{n+1}{4}\right\rfloor$. The vertices $\left(w_{i, 4 j-2}\right)$ are colored with color c_{3}, where $1 \leq i \leq 3,1 \leq j \leq\left\lfloor\frac{n+2}{4}\right\rfloor$. The vertices $\left(w_{i, 4 j}\right)$ are colored with color c_{6} where $1 \leq i \leq 3,1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor$. The vertex $\left(w_{2,1}\right)$ is colored with color c_{2}, the vertex $\left(w_{2,2}\right)$ is colored with color c_{4}, the vertex $\left(w_{2,3}\right)$ is colored with color c_{5}. The vertices $\left(w_{2, j}\right)$ are colored with color c_{j+3} where $4 \leq j \leq n$.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(m+n)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(m+n)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(m+n)$, for $m=3$ and $n \geq 4$.

Case 5: When $m \geq 4$ and $n=2,3$
Subcase 1: When $m \geq 4$ and $n=2$
Let $\left\{c_{1}, \ldots, c_{2 n+2}\right\}$ be the set of distinct colors. The vertices $\left(w_{4 i-3,1}\right)$ and $\left(w_{4 i-1,1}\right)$ are colored with color c_{1}, where $1 \leq i \leq\left\lfloor\frac{m+3}{4}\right\rfloor$ and $1 \leq i \leq\left\lceil\frac{m+1}{4}\right\rceil$. The vertex $\left(w_{4 i-2,1}\right)$ is colored with color c_{2}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$. The vertex $\left(w_{4 i, 1}\right)$ is colored with color c_{5}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$. The vertices $\left(w_{4 i-3,2}\right)$ and $\left(w_{4 i-1,2}\right)$ are colored with color c_{3}, where $1 \leq i \leq\left\lfloor\frac{m+3}{4}\right\rfloor$ and $1 \leq i \leq\left\lfloor\frac{m+1}{4}\right\rfloor$. The vertices $\left(w_{4 i-2,2}\right)$ are colored with color c_{4}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$ and the vertex $\left(w_{4 i, 1}\right)$ is colored with color c_{6} where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$.

Subcase 2: When $m \geq 4$ and $n=3$
Let $\left\{c_{1}, \ldots, c_{2 n+2}\right\}$ be the set of distinct colors. The preceding color pattern is applied till $m \geq 4$ and $1 \leq n \leq 2$. The remaining colors are given in such a way that the vertices $\left(w_{4 i-3,3}\right)$ and $\left(w_{4 i-1,3}\right)$ are colored with color c_{1}, where $1 \leq i \leq\left\lfloor\frac{m+3}{4}\right\rfloor$ and $1 \leq i \leq\left\lceil\frac{m+1}{4}\right\rceil$. The vertex $\left(w_{4 i-2,3}\right)$ is colored with color
c_{7}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$ and the vertex $\left(w_{4 i, 1}\right)$ is colored with color c_{8}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(2 n+2)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(2 n+2)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(2 n+2)$, for $m \geq 4$ and $n=2,3$.

Case 6: When m and $n \geq 4$
Let $\left\{c_{1}, \ldots, c_{2 n+3}\right\}$ be the set of distinct colors. The vertices $\left(w_{2 i-1,2 j-1}\right)$ are colored with the color c_{1}, where $1 \leq i \leq\left\lfloor\frac{m+1}{2}\right\rfloor$ and $1 \leq j \leq\left\lfloor\frac{n+1}{2}\right\rfloor$, the vertices $\left(w_{2 i-1,4 j-2}\right)$ are colored with the color c_{3}, where $1 \leq i \leq\left\lfloor\frac{m+1}{2}\right\rfloor$ and $1 \leq j \leq$ $\left\lfloor\frac{n+2}{4}\right\rfloor$, the vertices $\left(w_{2 i-1,4 j}\right)$ are colored with the color c_{9}, where $1 \leq i \leq$ $\left\lfloor\frac{m+1}{2}\right\rfloor$ and $1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor$, the vertices $\left(w_{4 i-2,1}\right)$ are colored with the color c_{2}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$. The vertices $\left(w_{4 i-2,2}\right)$ are colored with the color c_{4}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$. The vertices $\left(w_{4 i-2,3}\right)$ are colored with the color c_{7}, where $1 \leq i \leq\left\lfloor\frac{m^{+2}}{4}\right\rfloor$. The vertices $\left(w_{4 i-2,4}\right)$ are colored with the color c_{10}, where $1 \leq i \leq\left\lfloor\frac{m+2}{4}\right\rfloor$. The vertices $\left(w_{4 i, 1}\right)$ are colored with the color c_{5}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$. The vertices $\left(w_{4 i, 2}\right)$ are colored with the color c_{6}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$. The vertices $\left(w_{4 i, 3}\right)$ are colored with the color c_{8}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$. The vertices $\left(w_{4 i, 4}\right)$ are colored with the color c_{11}, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$. The vertices $\left(w_{4 i-2, j}\right)$ are colored with the color $c_{2 j-2}$, where $1 \leq i \leq\left\lfloor\frac{n+2}{4}\right\rfloor, 5 \leq j \leq n$. The vertices $\left(w_{4 i, j}\right)$ are colored with the color $c_{2 j+3}$, where $1 \leq i \leq\left\lfloor\frac{m}{4}\right\rfloor$ and $5 \leq j \leq n$.
Suppose $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)>(2 n+3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_{s}\left(K_{m}\left[W_{n}\right]\right) \leq(2 n+3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_{s}\left(K_{m}\left[W_{n}\right]\right)=(2 n+3)$, for m and $n \geq 4$.

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, R. Ramamurthi, Coloring with no 2-colored P_{4} 's, The Electronic Journal of Combinatorics, 11, (2004), Paper \# R26.
[2] J.A. Bondy, U.S.R. Murty, Graph theory with Applications, London, MacMillan 1976.
[3] J. Clark, D. A. Holton, A first look at graph theory, World Scientific 1991.
[4] T.F. Coleman, J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243-270.
[5] G. Fertin, A. Raspaud, B. Reed, On Star coloring of graphs, Journal of Graph Theory, 47(3) (2004), 163-182.
[6] B. Grünbaum, Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390-408.
[7] D. Geller, S, Stahl, The chromatic number and other functions of the lexicographic product, Journal of Combinatorial Theory, Series B, 19(1) (1975), 87-95.
[8] F. Harary, Graph Theory, Narosa Publishing home, New Delhi 1969.

Sivakami Ramasamy
Department of Mathematics,
RVS College of Engineering and Technology,
Coimbatore-641 402,
Tamil Nadu, India
and,
Part-Time Research Scholar (Category-B),
Research \& Development Centre,
Bharathiar University,
Coimbatore-641 046,
Tamil Nadu, India
email: sivakawin@gmail.com
Kaliraj Kalimuthu
Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai-600 005, Tamil Nadu, India
email: kalirajriasm@gmail.com
Vernold Vivin Joseph
Department of Mathematics,
University College of Engineering Nagercoil,
Anna University Constituent College,
Nagercoil-629 004,
Tamil Nadu, India
email: vernoldvivin@yahoo.in

