ON STAR COLORING OF LEXICOGRAPHIC PRODUCT OF GRAPHS

SIVAKAMI R, KALIRAJ K, VERNOLD VIVIN J

ABSTRACT. A star coloring of a graph G is a proper vertex coloring in which every path on four vertices in G is not bicolored. The star chromatic number $\chi_s(G)$ of G is the least number of colors needed to star color G. In this paper, we determine the star chromatic number of lexicographic product of complete graph with complete graph $K_m[K_n]$, complete graph with wheel graph $K_m[W_n]$, complete graph with path $K_m[P_n]$ and path with path $P_m[P_n]$.

2010 Mathematics Subject Classification: 05C15, 05C75.

Keywords: star coloring, lexicographic product, wheel graph.

1. INTRODUCTION

All graphs in this paper are finite, simple, connected and undirected graph and we follow [2, 3, 8] for terminology and notation that are not defined here. We denote the vertex set and the edge set of G by V(G) and E(G), respectively. Branko Grünbaum introduced the concept of star chromatic number in 1973. A star coloring [1, 5, 6] of a graph G is a proper vertex coloring in which every path on four vertices uses at least three distinct colors. The star chromatic number $\chi_s(G)$ of G is the least number of colors needed to star color G.

During the years star coloring of graphs has been studied extensively by several authors, for instance see [1, 4, 5].

Definition 1. A trail is called a path if all its vertices are distinct. A closed trail whose origin and internal vertices are distinct is called a cycle.

Definition 2. A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_n .

Definition 3. A wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. It is denoted by W_n with n vertices $(n \ge 4)$.

Definition 4. The lexicographic product [7] G[H] of graphs G and H is a graph such that the vertex set of $G \cdot H$ is the Cartesian product $V(G) \times V(H)$ and any two vertices (u, v) and (x, y) are adjacent in G[H] if and only if either

- u is adjacent with x in G or
- u = x and v is adjacent with y in H.

Definition 5. The lexicographic product G[H] of disjoint graphs G and H is defined as follows:

$$V(G[H]) = V(G) \times V(H).$$

Definition 6. Let m and n are positive integer, We define the vertex set of complete graph K_n , wheel W_n and path P_n , as follows:

$$V(K_m) = \{u_i : 1 \le i \le m\}$$

$$V(K_n) = \{v_j : 1 \le j \le n\}$$

$$V(W_n) = \{u_1\} \cup \{u_j : 2 \le j \le n\}$$

$$V(P_m) = \{u_i : 1 \le i \le m\}$$

$$V(P_n) = \{v_j : 1 \le j \le n\}.$$

In the next section, we find the exact values of the star chromatic number of lexicographic product of complete graph with complete graph $K_m[K_n]$, complete graph with wheel graph $K_m[W_n]$, complete graph with path $K_m[P_n]$ and path with path $P_m[P_n]$.

2. Main Results

2.1. Star chromatic number of $K_m[K_n]$

Theorem 1. For any positive integers m and n, the star coloring of lexicographic product of $K_m[K_n]$ is mn.

Proof. Let

$$V(K_m[K_n]) = \bigcup_{i=1}^{m} \{s_{i,j} : 1 \le j \le n\},\$$

where $s_{i,j}$ are the vertices of $u_i v_j$ $(1 \le i \le m, 1 \le j \le n)$. Define a mapping,

$$\sigma: V(K_m[K_n]) \to \mathbb{N}$$

as follows:

$$\begin{aligned} \sigma(s_{i,j}) &= i, \text{ for } 1 \leq i \leq m, \quad j = 1; \\ \sigma(s_{i,j}) &= (j-1)m + i, \text{ for } 1 \leq i \leq m, \quad 2 \leq j \leq n. \end{aligned}$$

Thus $\chi_S(K_m[K_n]) = mn$.

Suppose to the contrary, $\chi_S(K_m[K_n]) > mn$ say mn + 1. But the $V(K_m[K_n])$ are mn, which is a contradiction to the definition of the lexicographic product, therefore $\chi_S(K_m[K_n]) \leq mn$. If there exist cliques of order mn in $V(K_m[K_n])$. Thus $\chi_S(K_m[K_n]) = mn$.

2.2. Star chromatic number of $K_m[W_n]$

Theorem 2. For any positive integer m and n,

$$\chi_s(K_m[W_n]) = \begin{cases} mn, & for \ m \ge 2 \text{ and } n = 4\\ mn - 1, & for \ m \ge 2 \text{ and } n = 5\\ mn - n + 5, & for \ m \ge 2 \text{ and } n \ge 6 \end{cases}$$

Proof. Let

$$V(K_m[W_n]) = \bigcup_{i=1}^{m} \{ w_{i,j} : 1 \le j \le n \},\$$

where $w_{i,j}$ are the vertices of $u_i v_j$ $(1 \le i \le m, 1 \le j \le n)$.

Case 1: When $m \ge 2$ and n = 4

Let $\{c_1, \ldots, c_{mn}\}$ be the set of distinct colors. The vertices $(w_{i,j})$ where $(1 \leq i \leq m, 1 \leq j \leq 4)$ can be colored with color $c_1, c_2, c_3, \ldots, c_{mn}$ respectively.

Suppose to the contrary, $\chi_s(K_m[W_n]) > (mn)$, say (mn)+1. But the $V(K_m[W_n])$ are (mn), which is a contradiction to the definition of the lexicographic product. Thus $\chi_s(K_m[W_n]) \le (mn)$. If the result is less than mn, then it contradicts the definition of star coloring that we need at least 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn)$, for $m \ge 2$ and n = 4.

Case 2: When $m \ge 2$ and n = 5

Let $\{c_1, \ldots, c_{mn-1}\}$ be the set of distinct colors. The vertices $(w_{i,j})$ where $(1 \leq i \leq m-1, 1 \leq j \leq 5)$ are colored with color $\{c_1, \ldots, c_{mn-1}\}$ and the vertex $u_m v_3$ and $u_m v_5$ are given the same color that is C_{m3} color.

Suppose $\chi_s(K_m[W_n]) > (mn-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (mn-1)$. But it contradicts, the definition

of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn-1)$, for $m \ge 2$ and n = 5.

Case 3: When $m \ge 2$ and $n \ge 6$

Subcase 1: When m = 2 and $n \ge 6$

Let $\{c_1, \ldots, c_{mn-n+5}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with c_{2j-1} color where $1 \leq j \leq 5$, vertices $(w_{1,j})$ are colored with c_{j+5} color where $7 \leq j \leq n$ and vertex $(w_{1,6})$ are colored with c_{10} color. Similarly the vertex $w_{2,1}$ and $w_{2,2}$ are colored with c_2 and c_4 respectively. The vertices $(w_{2,2j-1})$ are colored with c_6 color, where $2 \leq j \leq \lfloor \frac{n}{2} - 1 \rfloor$, the vertices $(w_{2,4j})$ are colored with c_8 color where $1 \leq j \leq \lceil \frac{n}{4} \rceil$ and vertices $(w_{2,4j+2})$ are colored with c_{11} color where $1 \leq j \leq \lceil \frac{n}{4} \rceil$ respectively.

Subcase 2: When m = 3 and $n \ge 6$

Let $\{c_1, \ldots, c_{mn-n+5}\}$ be the set of distinct colors. The same pattern of colors are followed till m = 2 and $n \ge 6$. The vertex $w_{3,j}$ is colored with the preceding vertex color $(w_{1,n}+1)^{th}$ color for j = 1, when j = 2 the vertex $w_{3,j}$ is colored with preceding vertex color $(w_{1,n+1}+1)^{th}$ color and so on.

Subcase 3: When $m \ge 4$ and $n \ge 6$

Let $\{c_1, \ldots, c_{mn-n+5}\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \le m \le 3$ and $n \ge 6$. The preceding subcase is applied to the vertices $w_{i,j}$ where $2 \le i \le 3$. The vertices $w_{4,j}$ where $1 \le j \le n$ are colored with the preceding vertex color $(w_{3,n} + 1)^{th}$ color and so on. As *m* increases the same pattern of colors are given as in $(w_{4,j})^{th}$ color.

Suppose $\chi_s(K_m[W_n]) > (mn - n + 5)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \le (mn - n + 5)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn - n + 5)$, for $m \ge 2$ and $n \ge 6$.

2.3. Star chromatic number of $K_m[P_n]$

Theorem 3. For any positive integer m and n,

$$\chi_s(K_m[P_n]) = \begin{cases} mn, & when \quad m \ge 2 \text{ and } n = 2\\ mn-1, & when \quad m \ge 2 \text{ and } n = 3\\ (m-1)n+3, & when \quad m \ge 2 \text{ and } n \ge 4 \end{cases}$$

Proof. Let

$$V(K_m[P_n]) = \bigcup_{i=1}^m \{w_{i,j} : 1 \le j \le n\},\$$

where $w_{i,j}$ are the vertices of $u_i v_j$ $(1 \le i \le m, 1 \le j \le n)$.

Case 1: For $m \ge 2$ and n = 2

Let $\{c_1, \ldots, c_{mn}\}$ be the set of distinct colors. The vertices $(w_{i,j})$ where $1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with the color c_1, \ldots, c_{mn} respectively. Suppose to the contrary, $\chi_s(K_m[W_n]) > (mn)$ say (mn)+1. But the $V(K_m[W_n])$ are (mn), which is a contradiction to the definition of the lexicographic product. $\chi_s(K_m[W_n]) \leq (mn)$. If the result is less than mn, then it contradicts the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn)$ for $m \geq 2$ and n = 2.

Case 2: For $m \ge 2$ and n = 3

Let $\{c_1, \ldots, c_{mn-1}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with c_{2j-1} color where $1 \leq j \leq 3$, vertices $(w_{2,j})$ are colored with c_2 color where $1 \leq j \leq \lceil \frac{n}{2} \rceil$ and the vertex $(w_{2,2})$ is colored with c_4 color, the vertices $(w_{3,j})$ are colored with the vertex color $(w_{1,3}+1)^{th}$ color. Similarly the vertices $(w_{4,j})$ are colored with vertex color $(w_{3,3}+1)^{th}$ color and so on.

Suppose $\chi_s(K_m[W_n]) > (mn-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (mn-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn-1)$, for $m \geq 2$ and n = 3.

Case 3: For $m \ge 2$ and $n \ge 4$

Subcase 1: When m = 2 and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with c_{2j-1} color, where $1 \leq j \leq 3$, the vertices $(w_{1,4})$ is colored with color c_6 , the vertex $(w_{1,j})$ are colored with the color c_{j+3} where $5 \leq j \leq n$, the vertices $(w_{2,2j-1})$ are colored with the color c_2 , where $1 \leq j \leq \lceil \frac{n}{2} \rceil$, the vertices $(w_{2,4j-2})$ are colored with color c_4 where $1 \leq j \leq \lceil \frac{n}{4} \rceil$, the vertices $(w_{2,4j})$ are colored with color c_7 where $1 \leq j \leq \lfloor \frac{n}{4} \rfloor$ respectively.

Subcase 2: When m = 3 and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The same pattern of colors are followed till m = 2 and $n \ge 4$. The vertices $(w_{3,j})$ are colored with the

preceding vertex color $(w_{1,n} + 1)^{th}$ color for j = 1, when j = 2, the vertex $(w_{3,j})$ is colored with preceding vertex color $[(w_{1,n} + 1) + 1]^{th}$ color and so on...

Subcase 3: When $m \ge 4$ and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \le m \le 3$ and $n \ge 4$. The vertices $(w_{4,j}), 1 \le j \le n$ are colored with the preceding vertex color $(w_{3,n} + 1)^{th}$ color and so on. As 'm' increases the same pattern of colors are given as in $(w_{4,j})^{th}$ color.

Suppose $\chi_s(K_m[W_n]) > (mn - n + 3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \le (mn - n + 3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn - n + 3)$, for $m \ge 2$ and $n \ge 4$.

2.4. Star chromatic number of $K_m[P_n]$

Theorem 4. For any positive integer m and n,

$$\chi_s(K_m[P_n]) = \begin{cases} mn, & when \quad m \ge 2 \text{ and } n = 2\\ mn - 1, & when \quad m \ge 2 \text{ and } n = 3\\ (m - 1)n + 3, & when \quad m \ge 2 \text{ and } n \ge 4 \end{cases}$$

Proof. Let

$$V(K_m[P_n]) = \bigcup_{i=1}^m \{w_{i,j} : 1 \le j \le n\},\$$

where $w_{i,j}$ are the vertices of $u_i v_j$ $(1 \le i \le m, 1 \le j \le n)$.

Case 1: For $m \ge 2$ and n = 2

Let $\{c_1, \ldots, c_{mn}\}$ be the set of distinct colors. The vertices $(w_{i,j})$ where $1 \leq i \leq m$ and $1 \leq j \leq 2$ can be colored with the color c_1, \ldots, c_{mn} respectively. Suppose to the contrary, $\chi_s(K_m[W_n]) > (mn)$ say (mn)+1. But the $V(K_m[W_n])$ are (mn), which is a contradiction to the definition of the lexicographic product. $\chi_s(K_m[W_n]) \leq (mn)$. If the result is less than mn, then it contradicts the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn)$ for $m \geq 2$ and n = 2.

Case 2: For $m \ge 2$ and n = 3

Let $\{c_1, \ldots, c_{mn-1}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with c_{2j-1} color where $1 \le j \le 3$, vertices $(w_{2,j})$ are colored with c_2 color

where $1 \leq j \leq \lceil \frac{n}{2} \rceil$ and the vertex $(w_{2,2})$ is colored with c_4 color, the vertices $(w_{3,j})$ are colored with the vertex color $(w_{1,3}+1)^{th}$ color. Similarly the vertices $(w_{4,j})$ are colored with vertex color $(w_{3,3}+1)^{th}$ color and so on.

Suppose $\chi_s(K_m[W_n]) > (mn-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (mn-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn-1)$, for $m \geq 2$ and n = 3.

Case 3: For $m \ge 2$ and $n \ge 4$

Subcase 1: When m = 2 and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with c_{2j-1} color, where $1 \leq j \leq 3$, the vertices $(w_{1,4})$ is colored with color c_6 , the vertex $(w_{1,j})$ are colored with the color c_{j+3} where $5 \leq j \leq n$, the vertices $(w_{2,2j-1})$ are colored with the color c_2 , where $1 \leq j \leq \lceil \frac{n}{2} \rceil$, the vertices $(w_{2,4j-2})$ are colored with color c_4 where $1 \leq j \leq \lceil \frac{n}{4} \rceil$, the vertices $(w_{2,4j})$ are colored with color c_7 where $1 \leq j \leq \lfloor \frac{n}{4} \rfloor$ respectively.

Subcase 2: When m = 3 and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The same pattern of colors are followed till m = 2 and $n \ge 4$. The vertices $(w_{3,j})$ are colored with the preceding vertex color $(w_{1,n} + 1)^{th}$ color for j = 1, when j = 2, the vertex $(w_{3,j})$ is colored with preceding vertex color $[(w_{1,n} + 1) + 1]^{th}$ color and so on..

Subcase 3: When $m \ge 4$ and $n \ge 4$.

Let $\{c_1, \ldots, c_{mn-n+3}\}$ be the set of distinct colors. The same pattern of colors are followed till $2 \leq m \leq 3$ and $n \geq 4$. The vertices $(w_{4,j}), 1 \leq j \leq n$ are colored with the preceding vertex color $(w_{3,n}+1)^{th}$ color and so on. As 'm' increases the same pattern of colors are given as in $(w_{4,j})^{th}$ color.

Suppose $\chi_s(K_m[W_n]) > (mn - n + 3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \le (mn - n + 3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (mn - n + 3)$, for $m \ge 2$ and $n \ge 4$.

2.5. Star chromatic number of $P_m[P_n]$

Theorem 5. For any positive integer m and n,

$$\chi_s(P_m[P_n]) = \begin{cases} m+n, & \text{for} \quad m=2 \text{ and } n=2,3\\ m+n-1, & \text{for} \quad m=3 \text{ and } n=2,3\\ m+n, & \text{for} \quad m=3 \text{ and } n\geq4\\ m+n+1, & \text{for} \quad m=2 \text{ and } n\geq4\\ 2n+2, & \text{for} \quad m\geq4 \text{ and } n=2,3\\ 2n+3, & \text{for} \quad m,n\geq4 \end{cases}$$

Proof. Let

$$V(P_m[P_n]) = \bigcup_{i=1}^{m} \{ w_{i,j} : 1 \le j \le n \},\$$

where $w_{i,j}$ are the vertices of $u_i v_j$ $(1 \le i \le m, 1 \le j \le n)$.

Case 1: When m = 2 and $2 \le n \le 3$

Let $\{c_1, \ldots, c_{m+n}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ where $(1 \leq j \leq 3)$ can be colored with color c_{2j-1} , the vertices $(w_{2,j})$ are colored with color c_2 where $1 \leq j \leq \lceil \frac{n}{2} \rceil$ and the vertex $(w_{2,2})$ is colored with c_4 color. Suppose $\chi_s(K_m[W_n]) > (m+n)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (m+n)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (m+n)$, for m = 2 and $2 \leq n \leq 3$.

Case 2: When m = 3 and $2 \le n \le 3$

Let $\{c_1, \ldots, c_{m+n-1}\}$ be the set of distinct colors. The vertices $(w_{2i-1,2j-1})$ are colored with color c_1 , where $1 \leq i \leq \lceil \frac{m}{2} \rceil$ & $1 \leq j \leq \lceil \frac{n}{2} \rceil$, the vertices $(w_{2i-1,2})$ are colored with color c_3 where $1 \leq i \leq \lceil \frac{m}{2} \rceil$, the vertex $(w_{2,2})$ is colored with color c_4 and the vertices $(w_{2,2j-1})$ are colored with color c_2 where $1 \leq j \leq \lceil \frac{n}{2} \rceil$.

Suppose $\chi_s(K_m[W_n]) > (m+n-1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (m+n-1)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (m+n-1)$, for m = 3 and $2 \leq n \leq 3$.

Case 3: When m = 2 and $n \ge 4$

Let $\{c_1, \ldots, c_{m+n+1}\}$ be the set of distinct colors. The vertices $(w_{1,j})$ are colored with color c_{2j-1} , where $1 \le j \le 3$, the vertex $(w_{1,4})$ is colored with color

 c_6 , the vertices $(w_{1,j})$ are colored with color c_{j+3} where $5 \leq j \leq n$, the vertices $(w_{2,2j-1})$ are colored with color c_2 where $1 \leq j \leq \lceil \frac{n}{2} \rceil$, the vertices $(w_{2,4j-2})$ are colored with color c_4 where $1 \leq j \leq \lceil \frac{n}{4} \rceil$ and the vertices $(w_{2,4j})$ are colored with color c_7 where $1 \leq j \leq \lfloor \frac{n}{4} \rfloor$.

Suppose $\chi_s(K_m[W_n]) > (m+n+1)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (m+n+1)$. But it contradicts, the definition of star coloring that we need at least 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (m+n+1)$, for m = 2 and $n \geq 4$.

Case 4: When m = 3 and $n \ge 4$

Let $\{c_1, \ldots, c_{m+n}\}$ be the set of distinct colors. The vertices $(w_{i,4j-3})$ are colored with color c_1 , where $1 \leq i \leq 3, 1 \leq j \leq \lfloor \frac{n+3}{4} \rfloor$, also the vertices $(w_{i,4j-1})$ are colored with color c_1 , where $1 \leq i \leq 3, 1 \leq j \leq \lfloor \frac{n+1}{4} \rfloor$. The vertices $(w_{i,4j-2})$ are colored with color c_3 , where $1 \leq i \leq 3, 1 \leq j \leq \lfloor \frac{n+2}{4} \rfloor$. The vertices $(w_{i,4j})$ are colored with color c_6 where $1 \leq i \leq 3, 1 \leq j \leq \lfloor \frac{n}{4} \rfloor$. The vertex $(w_{2,1})$ is colored with color c_2 , the vertex $(w_{2,2})$ is colored with color c_4 , the vertex $(w_{2,3})$ is colored with color c_5 . The vertices $(w_{2,j})$ are colored with color c_5 .

Suppose $\chi_s(K_m[W_n]) > (m+n)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (m+n)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (m+n)$, for m = 3 and $n \geq 4$.

Case 5: When $m \ge 4$ and n = 2, 3

Subcase 1: When $m \ge 4$ and n = 2

Let $\{c_1, \ldots, c_{2n+2}\}$ be the set of distinct colors. The vertices $(w_{4i-3,1})$ and $(w_{4i-1,1})$ are colored with color c_1 , where $1 \le i \le \lfloor \frac{m+3}{4} \rfloor$ and $1 \le i \le \lceil \frac{m+1}{4} \rceil$. The vertex $(w_{4i-2,1})$ is colored with color c_2 , where $1 \le i \le \lfloor \frac{m+2}{4} \rfloor$. The vertex $(w_{4i,1})$ is colored with color c_5 , where $1 \le i \le \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i-3,2})$ and $(w_{4i-1,2})$ are colored with color c_3 , where $1 \le i \le \lfloor \frac{m+3}{4} \rfloor$ and $1 \le i \le \lfloor \frac{m+1}{4} \rfloor$. The vertices $(w_{4i-2,2})$ are colored with color c_4 , where $1 \le i \le \lfloor \frac{m+2}{4} \rfloor$ and the vertex $(w_{4i,1})$ is colored with color c_6 where $1 \le i \le \lfloor \frac{m}{4} \rfloor$.

Subcase 2: When $m \ge 4$ and n = 3

Let $\{c_1, \ldots, c_{2n+2}\}$ be the set of distinct colors. The preceding color pattern is applied till $m \ge 4$ and $1 \le n \le 2$. The remaining colors are given in such a way that the vertices $(w_{4i-3,3})$ and $(w_{4i-1,3})$ are colored with color c_1 , where $1 \le i \le \lfloor \frac{m+3}{4} \rfloor$ and $1 \le i \le \lceil \frac{m+1}{4} \rceil$. The vertex $(w_{4i-2,3})$ is colored with color c_7 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$ and the vertex $(w_{4i,1})$ is colored with color c_8 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$.

Suppose $\chi_s(K_m[W_n]) > (2n+2)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (2n+2)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (2n+2)$, for $m \geq 4$ and n = 2, 3.

Case 6: When m and $n \ge 4$

Let $\{c_1, \ldots, c_{2n+3}\}$ be the set of distinct colors. The vertices $(w_{2i-1,2j-1})$ are colored with the color c_1 , where $1 \leq i \leq \lfloor \frac{m+1}{2} \rfloor$ and $1 \leq j \leq \lfloor \frac{n+1}{2} \rfloor$, the vertices $(w_{2i-1,4j-2})$ are colored with the color c_3 , where $1 \leq i \leq \lfloor \frac{m+1}{2} \rfloor$ and $1 \leq j \leq \lfloor \frac{n+2}{4} \rfloor$, the vertices $(w_{2i-1,4j})$ are colored with the color c_9 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$ and $1 \leq j \leq \lfloor \frac{n}{4} \rfloor$, the vertices $(w_{4i-2,1})$ are colored with the color c_2 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$. The vertices $(w_{4i-2,3})$ are colored with the color c_4 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$. The vertices $(w_{4i-2,4})$ are colored with the color c_7 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$. The vertices $(w_{4i,2,3})$ are colored with the color c_6 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$. The vertices $(w_{4i,2,3})$ are colored with the color c_5 , where $1 \leq i \leq \lfloor \frac{m+2}{4} \rfloor$. The vertices $(w_{4i,2})$ are colored with the color c_5 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,2})$ are colored with the color c_6 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,3})$ are colored with the color c_7 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,4})$ are colored with the color c_7 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,2})$ are colored with the color c_7 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,3})$ are colored with the color c_7 , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$. The vertices $(w_{4i,4})$ are colored with the color c_{2j-2} , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$, $5 \leq j \leq n$. The vertices $(w_{4i,j})$ are colored with the color c_{2j-2} , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$, $5 \leq j \leq n$. The vertices $(w_{4i,j})$ are colored with the color c_{2j-2} , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$, $5 \leq j \leq n$. The vertices $(w_{4i,j})$ are colored with the color c_{2j-3} , where $1 \leq i \leq \lfloor \frac{m}{4} \rfloor$ and $5 \leq j \leq n$.

Suppose $\chi_s(K_m[W_n]) > (2n+3)$. Then it contradicts, the chromatic number of star coloring. So $\chi_s(K_m[W_n]) \leq (2n+3)$. But it contradicts, the definition of star coloring that we need atleast 3 colors for any path on four vertices. So, $\chi_s(K_m[W_n]) = (2n+3)$, for m and $n \geq 4$.

References

[1] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, R. Ramamurthi, *Coloring with no 2-colored* P_4 's, The Electronic Journal of Combinatorics, 11, (2004), Paper # R26.

[2] J.A. Bondy, U.S.R. Murty, Graph theory with Applications, London, MacMillan 1976.

[3] J. Clark, D. A. Holton, A first look at graph theory, World Scientific 1991.

[4] T.F. Coleman, J. Moré, Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming, 28(3) (1984), 243–270. [5] G. Fertin, A. Raspaud, B. Reed, On Star coloring of graphs, Journal of Graph Theory, 47(3) (2004), 163–182.

[6] B. Grünbaum, Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14 (1973), 390–408.

[7] D. Geller, S. Stahl, The chromatic number and other functions of the lexicographic product, Journal of Combinatorial Theory, Series B, 19(1) (1975), 87–95.

[8] F. Harary, Graph Theory, Narosa Publishing home, New Delhi 1969.

Sivakami Ramasamy Department of Mathematics, RVS College of Engineering and Technology, Coimbatore-641 402, Tamil Nadu, India and, Part-Time Research Scholar (Category-B), Research & Development Centre, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India email: sivakawin@gmail.com

Kaliraj Kalimuthu Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chepauk, Chennai-600 005, Tamil Nadu, India email: kalirajriasm@gmail.com

Vernold Vivin Joseph Department of Mathematics, University College of Engineering Nagercoil, Anna University Constituent College, Nagercoil-629 004, Tamil Nadu, India email: vernoldvivin@yahoo.in