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1. Introduction and Preliminaries

Probabilistic metric space (abbreviated, PM space) has been introduced and studied
in 1942 by Karl Menger in [10]. The idea of Menger was to use distribution functions
instead of nonnegative real numbers as values of the metric. The notion of a PM
space corresponds to the situation when we do not know exactly the distance between
two points, we know only probabilities of possible values of this distance. In fact
the study of such spaces received an impetus with the pioneering works of Schweizer
and Sklar [12] and [13]. Recently, the study of fixed point theorems in PM spaces
is also a topic of recent interest and forms an active direction of research. Sehgal et
al. [14] made the first ever effort in this direction. Since then, several authors have
already studied fixed point, common fixed point theorems and recently best proxim-
ity point in PM spaces. The contraction principle was probabilistically generalized
by Sehgal and Bharucha-Reid in [14]. This probabilistic generalization of the con-
traction inequality has come to be known as Sehgal’s contraction. Their result was
proved in the context of probabilistic metric spaces [12]. After that, the fixed point
theory in probabilistic metric spaces is developed immensely in different directions.
A comprehensive description of which also has been given in the book by Hadžić
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and Pap [4]. Some other recent references are noted in [5, 6, 9, 11, 15, 16, 17, 19].
In this paper, we introduce Ciric-type-generalized ϕ-probabilistic contraction in
probabilistic Menger spaces. We derive some results about existence and uniqueness
of a fixed point for this class of self mappings in probabilistic Menger spaces.
First we shall recall some well-known definitions and results in the theory of PM
spaces which are used later on in this paper. For more details, we refer the reader
to [4] and [12].

Throughout this paper, we denote R the set of all real numbers, and by R+ the
set of all nonnegative real numbers.

Definition 1. A distribution function is a function F : [−∞,∞] → [0, 1], that is
left continuous on R and nondecreasing moreover, F (−∞) = 0 and F (∞) = 1.

The set of all the distribution functions is denoted by ∆, and the set of those
distribution functions such that F (0) = 0 is denoted by ∆+. The set of all F ∈ ∆+

for which lim
t→∞

F (t) = 1 will be denoted by D+. The space ∆+ is partially ordered

by the usual pointwise ordering of functions, and has a maximal element ε0, defined
by

ε0(t) =

{
0 t ≤ 0,
1 t > 0.

Definition 2. A probabilistic metric space (abbreviated, PM space) is an ordered
pair (X,F ), where X is a nonempty set and F : X ×X → ∆+ (F (x, y) is denoted
by Fx,y) satisfies the following conditions:

(PM1) Fx,y = ε0, iff x = y,

(PM2) Fx,y = Fy,x,

(PM3) If Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t+ s) = 1,

for every x, y, z ∈ X and t, s ≥ 0.

Definition 3. A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(abbreviated, t-norm) if the following conditions are satisfied:

(i) ∆(a, b) = ∆(b, a),

(ii) ∆(a,∆(b, c)) = ∆(∆(a, b), c),

(iii) ∆(a, b) ≥ ∆(c, d) whenever a ≥ c and b ≥ d,

(iv) ∆(a, 1) = a,

for every a, b, c, d ∈ [0, 1].
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Two typical examples of continuous t-norm are ∆p(a, b) = ab and ∆m(a, b) =
min{a, b}. It is evident that, as regards the pointwise ordering, ∆ ≤ ∆m, for each
t-norm ∆.

An arbitrary t-norm can be extended (by (iii)) in a unique way to an n-ary
operation. For (a1, · · · , an) ∈ [0, 1]n (n ∈ N), the value ∆n(a1, · · · , an) is defined by
∆1(a1) = a1 and ∆n(a1, · · · , an) = ∆(∆n−1(a1, · · · , an−1), an). For each a ∈ [0, 1],
the sequence (∆n(a)) is defined by ∆n(a) = ∆n(a, · · · , a).

Definition 4. A t-norm ∆ is said to be of Hadžić type (abbreviated, H-type) if the
sequence of functions (∆n(a)) is equicontinuous at a = 1, that is

∀ ε ∈ (0, 1), ∃ δ ∈ (0, 1) : a > 1− δ ⇒ ∆n(a) > 1− ε, (n ∈ N).

The t-norm ∆m is a trivial example of a t-norm of H-type, but there are t-norms
∆ of H-type with ∆ 6= ∆m, see [4]. It is easy to see that if ∆ is of H-type, then ∆
satisfies supa∈(0,1) ∆(a, a) = 1.

Definition 5. A probabilistic Menger space is a triplet (X,F,∆), where (X,F ) is
PM space and ∆ is a t-norm such that for all x, y, z ∈ X and for all t, s ≥ 0,

Fx,z(t+ s) ≥ ∆(Fx,y(t), Fy,z(s)).

Definition 6. Let (X,F,∆) be a probabilistic Menger space. An open ball with
center x and radius λ (0 < λ < 1) in X is the set Ux(ε, λ) = {y ∈ X : Fx,y(ε) >
1−λ}, for all ε > 0. It is easy to see that U = {Ux(ε, λ) : x ∈ X, ε > 0, λ ∈ (0, 1)}
determines a Hausdorff topology for X [12, 12.1.2].

Definition 7. A sequence (xn) in a probabilistic Menger space (X,F,∆) is said to be
convergent to a point x ∈ X if and only if for every ε > 0 and λ ∈ (0, 1), there exists
n0(ε, λ) ∈ N such that Fxn,x(ε) > 1−λ for all n ≥ n0(ε, λ), or limn→∞ Fxn,x(t) = 1,
for all t > 0. In this case we say that limit of the sequence (xn) is x.

Definition 8. A sequence (xn) in a probabilistic Menger space (X,F,∆) is said
to be Cauchy sequence if and only if for every ε > 0 and λ ∈ (0, 1), there exists
n0(ε, λ) ∈ N such that Fxn+p,xn(ε) > 1− λ for all n ≥ n0(ε, λ) and every p ∈ N, or
limn→∞ Fxn+p,xn(t) = 1, for all t > 0 and p ∈ N.

Also, a probabilistic Menger space (X,F,∆) is said to be complete if and only if
every Cauchy sequence in X is convergent.

The concept of Cauchy sequence is inspired from that of G-Cauchy sequence (it
belongs to Grabiec [3]).
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Proof. The limit of a convergent sequence in a probabilistic Menger space (X,F,∆)
is unique.

Proof. It is obvious.

Proof. [1, 2.5.3] If (X,F,∆) is a probabilistic Menger space and ∆ is continuous,
then probabilistic distance function F is a low semi continuous function of points,
i.e. for every fixed point t > 0, if xn → x and yn → y, then

lim inf
n→∞

Fxn,yn(t) = Fx,y(t).

Proof. [21, Lemma 2. 2] Let n ∈ N, F ∈ ∆+ and g1, g2, . . . gn : R → [0, 1]. If
ϕ : R+ → R+ is a mapping such that ϕ(t) < t, lim

n→∞
ϕn(t) = 0 and

F (ϕ(t)) ≥ min{g1(t), g2(t), . . . gn(t), F (t)}, ∀t > 0.

Then F (ϕ(t)) ≥ min{g1(t), g2(t), . . . gn(t)} for all t > 0.

The following lemma has been proved by Jachymski in [8], for mappings gn :
(0,∞)→ (0,∞), but it is also valid for mappings gn : [0,∞)→ [0,∞).

Lemma 1. [8] Let n ∈ N, gn : [0,∞)→ [0,∞) and Fn, F : R→ [0, 1]. Assume that
sup{F (t) : t > 0} = 1 and for any t > 0, lim

n→∞
gn(t) = 0 and Fn(gn(t)) ≥ F (t). If

each Fn is nondecreasing, then lim
n→∞

Fn(t) = 1 for any t > 0.

Lemma 2. Let (X,F,∆) be a probabilistic Menger space and ϕ : R+ → R+ be
a mapping such that ϕ(0) = 0, ϕ(t) < t and lim

n→∞
ϕn(t) = 0. If x, y ∈ X and

Fx,y(ϕ(t)) ≥ Fx,y(t) for all t > 0. Then x = y.

Proof. By using the above lemma, the result follows.

The probabilistic version of the classical Banach contraction principle, was first
studied in 1972 by Sehgal and Bharucha-Reid [14].

Theorem 3. [14] Let (X,F,∆m) be a complete probabilistic Menger space. If T is
a contraction mapping of X into itself, that is there exists a constant 0 < c < 1 such
that

FTx,Ty(ct) ≥ Fx,y(t), ∀t > 0, x, y ∈ X.

Then there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover, (Tnx0) converges to
x∗ for each x0 ∈ X.
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Definition 9. [4, p. 98] Let (X,F ) be a PM space and T : X → X be a mapping.
For every x0 ∈ X, the orbit of the mapping T at x0 is O(x0, T ) = {Tnx0 : n ∈
N ∪ {0}}. Let DO(x0,T ) : R → [0, 1] be a diameter of O(x0, T ), i.e, DO(x0,T )(t) =
sups<t infx,y∈O(x0,T ) Fx,y(s). If supt∈RDO(x0,T )(t) = 1, then the orbit O(x0, T ) is a
probabilistic bounded subset of X. Hence O(x0, T ) is a probabilistic bounded set if
and only if DO(x0,T ) ∈ D+. Also, X is said to be T -orbitally complete if for all
x ∈ X, O(x, T ) is complete.

In recent years, a number of generalizations of the Banach contraction principle
have appeared. Of all these, the following generalization of Ciric [2] stands at the
top.

Theorem 4. [2] Let (X,F,∆m) be a complete probabilistic Menger space. If T :
X → X is generalized contraction mapping on X, that is there exists a constant
0 < c < 1 such that for every x, y ∈ X

FTx,Ty(ct) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t), Fx,Ty(t), FTx,y(t)},

for all t > 0, and X is T -orbitally complete. Then there is a unique x∗ ∈ X such
that Tx∗ = x∗. Moreover, (Tnx0) converges to x∗ for each x0 ∈ X.

Theorem 5. [8] Let (X,F,∆) be a complete probabilistic Menger space under a
t-norm ∆ of H-type. If T : X → X is a generalized ϕ-probabilistic contraction, that
is,

FTx,Ty(ϕ(t)) ≥ Fx,y(t), ∀t > 0, ∀x, y ∈ X. (1)

where ϕ : R+ → R+ is a mapping such that, for any t > 0, 0 < ϕ(t) < t and
lim
n→∞

ϕn(t) = 0. Then, there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover,

(Tnx0) converges to x∗ for each x0 ∈ X.

Definition 10. Let (X,F,∆) be a probabilistic Menger space and T : X → X. We
say that T is Ciric-type-generalized ϕ-probabilistic contraction if for every x, y ∈ X
and t > 0,

FTx,Ty(ϕ(t)) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t), Fx,Ty(t), FTx,y(t)}, (2)

where ϕ : R+ → R+ is a mapping.

The following example due to Ume [20] shows that a Ciric-type-generalized ϕ-
probabilistic contraction need not be a generalized ϕ-probabilistic contraction.

Example 1. Let X = [0,∞), T : X → X be defined by Tx = x + 1, and let
ϕ : [0,∞)→ [0,∞) be defined by

ϕ(t) =

{
t

1+t , 0 ≤ t ≤ 1,

t− 1, 1 < t.
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For each x, y ∈ X, let Fx,y(t) = ε0(t− | x−y |) for all t ∈ R. Since max{| x−y−1 |, |
y−x−1 |} =| x−y | +1 for all x, y ∈ X, then FTx,Ty(ϕ(t)) ≥ min{Fx,Ty(t), FTx,y(t)}.
Thus,

FTx,Ty(ϕ(t)) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t), Fx,Ty(t), FTx,y(t)},

which satisfies (2). If t = 2, x = 0 and y = 3
2 , then FT0,T 3

2
(ϕ(2)) = 0 and F0, 3

2
(2) =

1. Thus, FT0,T 3
2
(ϕ(2)) < F0, 3

2
(2), which does not satisfy (1).

As the following example due to Ume [20] shows, there exists T that does not
satisfy (2) with ϕ(t) = kt, 0 < k < 1.

Example 2. Let X = [0,∞), T : X → X be defined by Tx = 2x, and let ϕ :
[0,∞) → [0,∞) be defined by ϕ(t) = kt, 0 < k < 1. For each x, y ∈ X, let
Fx,y(t) = ε0(t− | x − y |) for all t ∈ R. If x = 0, y = 1 and t = 2

k > 0, then for
simple calculations, FT0,T1(ϕ( 2k )) = 0 and

min

{
F0,1(

2

k
), F0,T0(

2

k
), F1,T1(

2

k
), F0,T1(

2

k
), FT0,1(

2

k
)

}
= 1.

Therefore, for x = 0, y = 1 and t = 2
k > 0, the mapping T does not satisfy (2). Thus,

we showed that there exists T that does not satisfy (2) with ϕ(t) = kt, 0 < k < 1.

2. Main results

We first state the following theorem, which appeared in [20], and then we prove that
theorem under general conditions.

Theorem 6. [20] Let (X,F,∆m) be a probabilistic Menger space and let T be a
Ciric-type-generalized ϕ-probabilistic contraction mapping such that

Fx,Tx((I − ϕ)(t)) ≤ inf{FTkx,T lx(t) : k, l ∈ Z+}, ∀t > 0,

for some x ∈ X where ϕ : R+ → R+ is a mapping such that

(i) ϕ(t) < t for all t > 0, lim
t→∞

(I − ϕ)(t) = ∞, where I : R+ → R+ is identity

mapping,

(ii) ϕ and I − ϕ are strictly increasing and onto mappings,

(iii) lim
n→∞

ϕ−n(t) =∞ for each t > 0, where ϕ−n is n-time repeated composition of

ϕ−1 with itself.
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If (X,F,∆m) is T orbitally complete, then T has a unique fixed point in X.

Theorem 7. Let (X,F,∆) be a complete probabilistic Menger space under a contin-
uous t-norm ∆ and let T : X → X be a Ciric-type-generalized ϕ-probabilistic con-
traction mapping where ϕ : R+ → R+ is a bijective mapping such that 0 < ϕ(t) < t
and lim

n→∞
ϕn(t) = 0 for each t > 0. If there exists x0 ∈ X with the bounded orbit,

then there is a unique x∗ ∈ X such that Tx∗ = x∗. Moreover, (Tnx0) converges to
x∗.

Proof. Let un = Tnx0, if there exists n ∈ N, such that un+1 = un, then there is a
x∗ ∈ X such that Tx∗ = x∗ and (Tnx0) converges to x∗. So we can assume that
un+1 6= un for all n ∈ N.

Now by the condition (2), we have

Fun,un+1(ϕ(t)) ≥ min{Fun−1,un(t), Fun−1,un(t), Fun,un+1(t),

Fun−1,un+1(t), Fun,un(t)},

for all t ≥ 0, so

Fun,un+1(ϕ(t)) ≥ min{Fun−1,un(t), Fun,un+1(t), Fun−1,un+1(t)}, (∀t ≥ 0). (3)

By Proposition 1 we have

Fun,un+1(ϕ(t)) ≥ min{Fun−1,un(t), Fun−1,un+1(t)}, (∀t ≥ 0). (4)

In the following we show by induction that for each n ∈ N and for each t ≥ 0, there
exists 1 ≤ m ≤ n+ 1 such that

Fun,un+1(ϕn(t)) ≥ Fu0,um(t). (5)

If n = 1, then by (4), we have

Fu1,u2(ϕ(t)) ≥ min{Fu0,u1(t), Fu0,u2(t)}
= Fu0,um(t),

for some 1 ≤ m ≤ 2 and for all t ≥ 0. Thus (5) holds for n = 1. Assume towards a
contradiction that (5) is not true and take n0 > 1, be the least natural number such
that (5) does not hold. So there exists t0 > 0, such that for all 1 ≤ m ≤ n0 + 1, we
have

Fun0 ,un0+1(t0) < Fu0,um(ϕ−n0(t0)). (6)
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If min{Fun0−1,un0
(ϕ−1(t0)), Fun0−1,un0+1(ϕ−1(t0))} = Fun0−1,un0

(ϕ−1(t0)), then by
the hypothesis we have

Fun0 ,un0+1(t0) ≥ Fun0−1,un0
(ϕ−1(t0)) ≥ Fu0,um(ϕ−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. Thus

min{Fun0−1,un0
(ϕ−1(t0)), Fun0−1,un0+1(ϕ−1(t0))} = Fun0−1,un0+1(ϕ−1(t0)).

Also form (4), we have

Fun0 ,un0+1(t0) ≥ Fun0−1,un0+1(ϕ−1(t0)). (7)

By the condition (2), we get

Fun0−1,un0+1(ϕ−1(t)) ≥ min{Fun0−2,un0
(ϕ−2(t)), Fun0−2,un0−1(ϕ−2(t)),

Fun0 ,un0+1(ϕ−2(t)), Fun0−2,un0+1(ϕ−2(t)),

Fun0 ,un0−1(ϕ−2(t))},
(8)

for all t ≥ 0. If

min{Fun0−2,un0
(ϕ−2(t0)), Fun0−2,un0−1(ϕ−2(t0)), Fun0−2,un0+1(ϕ−2(t0)),

Fun0 ,un0+1(ϕ−2(t0)), Fun0 ,un0−1(ϕ−2(t0))}
=Fun0 ,un0−1(ϕ−2(t0)),

then from (7) and the above, we have

Fun0 ,un0+1(t0) ≥Fun0−1,un0+1(ϕ−1(t0))

≥Fun0 ,un0−1(ϕ−2(t0)) = Fun0−1,un0
(ϕ−2(t0))

≥Fun0 ,um(ϕ−(n0+1)(t0))

≥Fun0 ,um(ϕ−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction.
If

min{Fun0−2,un0
(ϕ−2(t0)), Fun0−2,un0−1(ϕ−2(t0)), Fun0 ,un0+1(ϕ−2(t0)),

Fun0−2,un0+1(ϕ−2(t0))} = Fun0 ,un0+1(ϕ−2(t0)),

then form (7), (8) and the above, we have

Fun0 ,un0+1(t0) ≥ Fun0 ,un0+1(ϕ−2(t0)),
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since ϕ−2(t0) > t0, then Fun0 ,un0+1(t0) = Fun0 ,un0+1(ϕ−2(t0)). By (4),

Fun0 ,un0+1(ϕ−2(t0)) ≥ min{Fun0−1,un0
(ϕ−3(t0)), Fun0−1,un0+1(ϕ−3(t0))}.

If min{Fun0−1,un0
(ϕ−3(t0)), Fun0−1,un0+1(ϕ−3(t0))} = Fun0−1,un0

(ϕ−3(t0)), then by
the hypothesis we have

Fun0 ,un0+1(t0) ≥ Fun0−1,un0
(ϕ−3(t0)) ≥ Fu0,um(ϕ−(n0+2)(t0)) ≥ Fu0,um(ϕ−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. Thus

min{Fun0−1,un0
(ϕ−3(t0)), Fun0−1,un0+1(ϕ−3(t0))} = Fun0−1,un0+1(ϕ−3(t0)).

Also form (4), we have

Fun0 ,un0+1(t0) = Fun0 ,un0+1(ϕ−2(t0)) ≥ Fun0−1,un0+1(ϕ−3(t0)). (9)

By the condition (2), we get

Fun0−1,un0+1(ϕ−3(t0)) ≥ min{Fun0−2,un0
(ϕ−4(t0)), Fun0−2,un0−1(ϕ−4(t0)),

Fun0 ,un0+1(ϕ−4(t0)), Fun0−2,un0+1(ϕ−4(t0)),

Fun0 ,un0−1(ϕ−4(t0))}.

If

min{Fun0−2,un0
(ϕ−4(t0)), Fun0−2,un0−1(ϕ−4(t0)), Fun0 ,un0+1(ϕ−4(t0)),

Fun0−2,un0+1(ϕ−4(t0)), Fun0 ,un0−1(ϕ−4(t0))} = Fun0 ,un0−1(ϕ−4(t0)),

then from (9) and the above, we obtain

Fun0 ,un0+1(t0) ≥Fun0−1,un0+1(ϕ−3(t0)) ≥ Fun0−1,un0
(ϕ−4(t0))

≥Fu0,um(ϕ−(n0+3)(t0)) ≥ Fu0,um(ϕ−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. If

min{Fun0−2,un0
(ϕ−4(t0)), Fun0−2,un0−1(ϕ−4(t0)), Fun0 ,un0+1(ϕ−4(t0)),

Fun0−2,un0+1(ϕ−4(t0)), Fun0 ,un0−1(ϕ−4(t0))} = Fun0 ,un0+1(ϕ−4(t0)),

then from (9) and the above, we have

Fun0 ,un0+1(t0) = Fun0 ,un0+1(ϕ−4(t0)).
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Again by (4), we have

Fun0 ,un0+1(ϕ−4(t0)) ≥ min{Fun0−1,un0
(ϕ−5(t0)), Fun0−1,un0+1(ϕ−5(t0))}.

Therefore by continuing this process, we see that if

min{Fun0−2,un0
(ϕ−k(t0)), Fun0−2,un0−1(ϕ−k(t0)), Fun0 ,un0+1(ϕ−k(t0)),

Fun0−2,un0+1(ϕ−k(t0)), Fun0 ,un0−1(ϕ−k(t0))} = Fun0 ,un0−1(ϕ−k(t0)),

for some k ≥ 2, then

Fun0 ,un0+1(t0) ≥ Fu0,um(ϕ−(n0+k−1)(t0)) ≥ Fu0,um(ϕ−n0(t0)),

for some 1 ≤ m ≤ n0, a contradiction. If

min{Fun0−2,un0
(ϕ−k(t0)), Fun0−2,un0−1(ϕ−k(t0)), Fun0 ,un0+1(ϕ−k(t0)),

Fun0−2,un0+1(ϕ−k(t0)), Fun0 ,un0−1(ϕ−k(t0))} = Fun0 ,un0+1(ϕ−k(t0)),

for all k ≥ 2, then Fun0 ,un0+1(t0) = Fun0 ,un0+1(ϕ−k(t0)). Now letting k → ∞, then
Fun0 ,un0+1(t0) = 1, which is contradiction with (6). Otherwise, if there exists k ≥ 2,

since t < ϕ−1(t) < ϕ−2(t) < · · · , then we have

min{Fun0−2,un0
(ϕ−k(t0)), Fun0−2,un0−1(ϕ−k(t0)), Fun0 ,un0+1(ϕ−k(t0)),

Fun0−2,un0+1(ϕ−k(t0)), Fun0 ,un0−1(ϕ−k(t0))} ≥
min{Fun0−2,un0

(ϕ−2(t0)), Fun0−2,un0−1(ϕ−2(t0)), Fun0−2,un0+1(ϕ−2(t0))}.

Therefore

Fun0−1,un0+1(ϕ−1(t0)) ≥ min{Fun0−2,un0
(ϕ−2(t0)), Fun0−2,un0−1(ϕ−2(t0)),

Fun0−2,un0+1(ϕ−2(t0))}.

From (7) and the above, we get

Fun0 ,un0+1(t0) ≥Fun0−1,un0+1(ϕ−1(t0))

≥min{Fun0−2,un0
(ϕ−2(t0)), Fun0−2,un0−1(ϕ−2(t0)),

Fun0−2,un0+1(ϕ−2(t0))}
=Fun0−2,um(ϕ−2(t0)),

(10)

for some 1 ≤ m ≤ n0 + 1. Therefore by continuing this process, we see that for each
1 ≤ k ≤ n0, there exists 1 ≤ m ≤ n0 + 1 such that

Fun0 ,un0+1(t0) ≥ Fun0−k,um(ϕ−k(t0)). (11)
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If k = n0 in (11), then this is a contradiction by (6). So (5) holds for all n ∈ N.
Then from (5) we get

Fun,un+1(t) ≥ Fun,un+1(ϕn(t)) ≥ Fu0,um(t) ≥ DO(x0,T )(t).

Let ε > 0 and λ ∈ (0, 1) be given, since DO(x0,T )(t)→ 1 as t→∞, then there exists
t1 > 0 such that

DO(x0,T )(t1) > 1− λ.
Since ϕn(t1) → 0 as n → ∞, then there is N ∈ N such that ϕn(t1) < ε whenever
n ≥ N . So

Fun,un+1(ε) ≥ Fun,un+1(ϕn(t1))

≥ DO(x0,T )(t1)

> 1− λ.

Thus we proved that for each ε > 0 and for each λ ∈ (0, 1), there exists a positive
integer N such that

Fun,un+1(ε) > 1− λ, ∀n ≥ N.
This means that lim

n→∞
Fun,un+1(t) = 1 for all t > 0. On the other hand

Fun,un+p(t) ≥ ∆

(
Fun,un+1(

t

p
), Fun+1,un+2(

t

p
), . . . , Fun+p−1,un+p(

t

p
)

)
, (∀p ≥ 1),

now taking the limits as n→∞, by the hypothesis we get

lim
n→∞

Fun,un+p(t) = 1.

Hence (un) is a Cauchy sequence and by the hypothesis there exists an element
x∗ ∈ X such that lim

n→∞
un = x∗. Again by (2) we have

FTun,Tx∗(ϕ(t)) ≥ min{Fun,x∗(t), Fun,Tun(t), Fx∗,Tx∗(t), Fun,Tx∗(t), Fx∗,Tun(t)}.

Since lim
n→∞

Tun = lim
n→∞

un+1 = x∗, then by Proposition 1 we get

Fx∗,Tx∗(ϕ(t)) ≥ Fx∗,Tx∗(t),

for all t ≥ 0 now by Lemma 2, Tx∗ = x∗. Let y∗ ∈ X such that Ty∗ = y∗ then from
(2) we have

FTx∗,T y∗(ϕ(t)) ≥min{Fx∗,y∗(t), FTx∗,x∗(t), FTy∗,y∗(t), FTx∗,y∗(t), Fx∗,T y∗(t)}
=Fx∗,y∗(t),

then Fx∗,y∗(ϕ(t)) ≥ Fx∗,y∗(t), now by Lemma 2, x∗ = y∗, so the desired result is
obtained.
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As the following example due to Sherwood [18] shows, the condition-hypothesis
that there exists x0 ∈ X such that O(x0, T ) is bounded of above theorem, it is
necessary condition.

Example 3. Let G be the distribution function defined by

G(t) =

{
0, t ≤ 4,

1− 1
n , 2n < t ≤ 2n+1, (n > 1).

Consider the set X = {1, 2, . . . , n, . . .} and define F on X ×X as follows

Fn,n+m(t) =

{
0, t ≤ 0,

∆m
L

(
G(2nt), G(2n+1t), . . . , G(2n+mt)

)
, t > 0.

Where ∆L(a, b) = max{a+b−1, 0} for all a, b ∈ [0, 1], then (X,F,∆L) is a complete
probabilistic Menger space and the mapping Tx = x+1 is generalized ϕ-probabilistic
contraction with ϕ(t) = t

2 . But T is fixed point free mapping. Since there does not
exist x in X, such that O(x, T ) is bounded.

Example 4. Consider X = [−1, 1] and define Fx,y(t) = ε0(t − d(x, y)) for all
x, y ∈ X, where d is Euclidean metric. Then (X,F,∆m) is a complete probabilistic
Menger space. Define self mapping T on X as follows:

Tx =


0 ; −1 ≤ x < 0,

x
16(1+x) ; 0 ≤ x < 4

5 or 7
8 < x ≤ 1,

x
16 ; 4

5 ≤ x ≤
7
8 ,

(∀ x ∈ [0, 1]).

To verify T is generalized ϕ-probabilistic contraction with ϕ(t) = 1
8 t, we need to

consider several possible cases.
Case 1. Let x, y ∈ [−1, 0). Then

d(Tx, Ty) =| Tx− Ty |= 0 ≤ 1

8
| x− y |= 1

8
d(x, y).

Case 2. Let x ∈ [−1, 0) and y ∈ [0, 45) ∪ (78 , 1]. Then

d(Tx, Ty) =| Tx− Ty |= y

16(1 + y)
≤ 1

8
| y − 0 |= 1

8
d(y, Tx).

Case 3. Let x ∈ [−1, 0) and y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) =| Tx− Ty |= y

16
≤ 1

8
| y − 0 |= 1

8
d(y, Tx).
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Case 4. Let x, y ∈ [0, 45) ∪ (78 , 1]. Then

d(Tx, Ty) =| Tx− Ty |=| x

16(1 + x)
− y

16(1 + y)
|≤ 1

8
| x− y |= 1

8
d(x, y).

Case 5. Let x ∈ [0, 45) ∪ (78 , 1] and y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) =| Tx− Ty |=| x

16(1 + x)
− y

16
|≤ 1

16
(

x

1 + x
+ y) ≤ 1

16
(
1

2
+

7

8
) ≤ 11

128
,

and
123

160
=

4

5
− 1

16

1

2
≤ y − x

16(1 + x)
≤| y − x

16(1 + x)
|= d(y, Tx).

Thus

d(Tx, Ty) ≤ 11

128
≤ 123

1280
=

1

8
× 123

160
≤ 1

8
d(y, Tx).

Case 6. Let x, y ∈ [45 ,
7
8 ]. Then

d(Tx, Ty) =| Tx− Ty |=| x
16
− y

16
|≤ 1

8
| x− y |= 1

8
d(x, y).

Hence, we obtain

d(Tx, Ty) ≤ 1

8
max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (x, y ∈ [−1, 1]),

or in other words

FTx,Ty(
1

8
t) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t), Fx,Ty(t), Fy,Tx(t)},

for every x, y ∈ X and t ≥ 0. Also, 0 ∈ X has the bounded orbit, so T has a unique
fixed point 0 in X, by Theorem 7.

The following example due to Ume [20].

Example 5. Let X = [−1, 1], T : X → X and ϕ : [0,∞) → [0,∞) be mappings
defined as follows:

T (x) =


0, −1 ≤ x < 0,

x
1+x , 0 ≤ x < 4

5 or 7
8 < x ≤ 1,

−1
16 x,

4
5 ≤ x ≤

7
8 ,

ϕ(t) =

t−
t2

8 , 0 ≤ t ≤ 1,

7
8 t, 1 < t.

Let Fx,y(t) = ε0(t− | x − y |) for all t ∈ R and x, y ∈ X. Then (X,F,∆m) is a
complete probabilistic Menger space. It is easy to see that all of the assumptions of
Theorem 7 are satisfied, and so T has a unique fixed point (x = 0 is a unique fixed
point of T ). On the other hand, we can show that T does not satisfy (1).
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Lemma 8. [7] Let X be a nonempty set and f : X → X a mapping. Then there
exists a subset E ⊆ X such that f(E) = f(X) and f : E → X is one-to-one.

Theorem 9. Let (X,F,∆) be a complete Menger space under a continuous t-norm
∆ and let self mappings T and S satisfy the following condition:

FTx,Ty(ϕ(t)) ≥ min{FSx,Sy(t), FSx,Tx(t), FSy,Ty(t), FSx,Ty(t), FTx,Sy(t)},

for all x, y ∈ X, where ϕ : R+ → R+ is a mapping the same as in Theorem 7.
If TX ⊆ SX and SX is a complete subset of X, then T and S have a unique
coincidence point in X. Moreover, if T and S are weakly compatible (i.e, they
commut at their coincidence points), then T and S have a unique common fixed
point.

Proof. By Lemma 8, there exists E ⊆ X such that SE = SX and S : E → X is
one-to-one. Now, define a mapping U : SE → SE by U(Sx) = Tx. Since S is one
to one on E, U is well defined. Also we have

FU(Sx),U(Sy)(ϕ(t)) = FTx,Ty(ϕ(t))

≥ min{FSx,Sy(t), FSx,Tx(t), FSy,Ty(t), FSx,Ty(t), FTx,Sy(t)},

for all Sx, Sy ∈ SE. Since SE = SX is complete, by using Theorem 7, there
exists x∗ ∈ X such that U(Sx∗) = Sx∗. Then Tx∗ = Sx∗, and so T and S have a
coincidence point, which is also unique.

If T and S are weakly compatible, since Tx∗ = Sx∗, then we have

T (Tx∗) = TSx∗ = STx∗ = S(Sx∗).

Thus, Tx∗ = Sx∗ is also a confidence point of T and S. By uniqueness of coincidence
point of T and S, we get Tx∗ = Sx∗ = x∗.

Theorem 10. Let (X,F,∆) be a complete probabilistic Menger space under a con-
tinuous t-norm ∆. Suppose that T : X → X is a mapping satisfy the following con-
dition:

FTx,Ty(α(t)t) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t), Fx,Ty(t), FTx,y(t)}, (12)

for all t > 0 and x, y ∈ X, where α : (0,∞) → [0, 1) is strictly decreasing function.
If there exists x0 ∈ X with the bounded orbit, then there is a unique x∗ ∈ X such
that Tx∗ = x∗. Moreover, (Tnx0) converges to x∗.
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Proof. Set ϕ(t) = α(t)t, it is sufficient to prove that ϕ satisfying the hypothesis of
Theorem 7. In fact, since α(t) < 1, then ϕ(t) < t, for all t > 0. On the other hand,
for all n ∈ Z+, we see that 0 ≤ ϕn+1(r) = ϕ(ϕn(r)) < ϕn(r), thus the sequence
{ϕn(r)} is convergent for each r > 0. Let lim

n→∞
ϕn(r) = a ≥ 0, then lim

t→a+
ϕ(t) = a.

Suppose that a > 0, then by the monotony of α, we have

a = lim
t→a+

ϕ(t) = lim
t→a+

α(t)t ≤ lim
t→a+

α
(a

2

)
t = α

(a
2

)
a < a.

This is a contradiction. Thus lim
n→∞

ϕn(r) = 0. Then by Theorem 7, the result

follows.

Example 6. Consider X = [0, 3] and define Fx,y(t) = ε0(t− | x − y |) for all
x, y ∈ X. Then (X,F,∆m) is a complete probabilistic Menger space. Let ϕ(t) = t

2 ,
define continuous self mappings S and T on X as

Tx =
1

6
x+ 1, Sx =

1

3
(x+

12

5
), (x ∈ X).

Thus we have

FTx,Ty(ϕ(t)) = ε0

(
t

2
− 1

6
| x− y |

)
= ε0

(
t− 1

3
| x− y |

)
= FSx,Sy(t).

It is easy to see that TX ⊆ SX, T and S are weakly compatible. Hence, we conclude
that all the conditions of Theorem 9 hold, so T and S have a unique common fixed
point 6

5 in X.

Example 7. Let X = [0,∞) and

Fx,y(t) =

{
t

t+|x−y| , t ≤| x− y |,
1, t >| x− y | .

Then (X,F,∆m) is a complete probabilistic Menger space. Define Tx = x
1+x and

α(t) = 1
1+t . By definition of T we have

| Tx− Ty |= | x− y |
1+ | x− y | +2 min{x, y}+ xy

≤ | x− y |
1+ | x− y |

.

Clearly, if α(t)t >| Tx−Ty |, then (12) holds. Suppose now that α(t)t ≤| Tx−Ty |.
Then we have

t

1 + t
≤| Tx− Ty |≤ | x− y |

1+ | x− y |
,
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so t ≤| x− y | and by definition of F we get

FTx,Ty(α(t)t) =
α(t)t

α(t)t+ | Tx− Ty |

=
t

t+ (1 + t) | Tx− Ty |

≥ t

t+ (1 + t) |x−y|1+|x−y|

≥ t

t+ (1+ | x− y |) |x−y|1+|x−y|

=
t

t+ | x− y |
= Fx,y(t).

Thus we proved that T satisfies (12). Therefore, we showed that the mapping T
satisfies all hypotheses of Theorem 10 and has a unique fixed point 0.

Acknowledgements. The authors would like to express their sincere appreci-
ation to the Shahrekord university and the center of excellence for mathematics for
financial supports.

References

[1] S. S. Chang, Y. J. Cho, S. M. Kang, Nonlinear operator theory in probabilistic
metric spaces, Nova Science Publishers Inc., New York, (2001).

[2] Lj. B. Ciric, On fixed points of generalized contractions on probabilistic metric
spaces, Publ. Inst. Math., 18 (32) (1975), 71-78.

[3] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 125 (1989),
385-389.
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