ON THE TYPE SEQUENCES OF SOME NUMERICAL SEMIGROUPS WITH MULTIPLICITY P PRIME NUMBER

M. S. Alakus, S. Ilhan

Abstract

In this article, we will give the structure of the type sequences of the numerical semigroups which multiplicity is the prime number $p, p<10$ and the conductor is K.

2010 Mathematics Subject Classification: 20M14.
Keywords: maximal length, numerical semigroups, type sequences, conductor .

1. Introduction

Let $\mathbb{N}=\{a \in \mathbb{Z}: a \geq 0\}$ and \mathbb{Z} be integers set. $\phi \neq S \subseteq \mathbb{N}, S$ is called a numerical semigroup if it satisfied following conditions

- $0 \in S$,
- $a_{1}+a_{2} \in S$, for all $a_{1}, a_{2} \in S$,
- $\operatorname{Card}(\mathbb{N} \backslash S)<\infty$. (this condition equivalent to $\operatorname{gcd}(S)=1$ and $\operatorname{gcd}(S)=$ greatest common divisor the element of S).

We define the following integers for numerical semigroup S :
$F(S)=\max \{x \in \mathbb{Z}: x \notin S\}$ is the Frobenius number of S;
$m(S)=\min \{a \in S: a \neq 0\}$ is the multiplicity of S;
$n(S)=\operatorname{Card}(\{0,1,2, \ldots, F(S)\} \cap S)$ is determine number of $S([1,5,9])$.

The numerical semigroup S is symmetric if $f(S)-a \in S$ for all $a \in \mathbb{Z} \backslash \mathrm{~S}$. It is known that every numerical semigroup $S=<k_{1}, k_{2}>$ is symmetric, $f(S)=k_{1} k_{2}-k_{1}-k_{2}$ and $n(S)=\frac{f(S)+1}{2}([1,12])$.

If S is a numerical semigroup such that $S=<x_{1}, x_{2}, \ldots, x_{u}>$, then we observe that $S=<x_{1}, x_{2}, \ldots, x_{u}>=\left\{s_{0}=0, s_{1}, s_{2}, \ldots, s_{n-1}, s_{n}=F(S)+1, \rightarrow \ldots\right\}$ where $s_{i}<s_{i+1}, n=n(S)$, and the arrow means that every integer greater than $F(S)+1$ belongs to S, for $i=1,2, \ldots, n=n(S)$. Here, we say the number $K=K(S)=F(S)+1$ is conductor of S. Let $S=<x_{1}, x_{2}, \ldots, x_{u}>$ be a numerical semigroup. Then $e(S)=u$ is called embedding dimension of S. It is known that $e(S) \leq m(S)$. The numerical semigroup is maximal embedding dimension (MED) if $e(S)=m(S)([5,9])$.

We give following definitions for a numerical semigroup S

$$
\begin{aligned}
& S_{i}=\left\{s \in S: s \geq s_{i}\right\} \text { for } i \geq 0, s_{i} \in S \\
& S(i)=\left\{k \in \mathbb{N}: k+S_{i} \subseteq S\right\} .
\end{aligned}
$$

Here, every the set $S(i)$ is a numerical semigroup and we write the following chain:

$$
S_{n} \subset S_{n-1} \subset \ldots \subset S_{1} \subset S_{0}=S=S(0) \subset S(1) \subset \ldots \subset S(n-1) \subset S(n)=\mathbb{N}
$$

The number $t(S)=\operatorname{Card}(S(1) \backslash S)$ is called the type of S. Likewise, we put for $i=1,2, \ldots, n=n(S) ; t_{i}(S)=\operatorname{Card}(S(i) \backslash S(i-1))$. In this way, it is possible to associate with every numerical semigroup S a numerical sequence $\left\{t_{1}, t_{2}, \ldots, t_{n(S)}\right\}$ which is called the type sequence of S. It is known that, $1 \leq t_{i}(S) \leq t_{1}(S)$ and $t_{1}(S)=t(S)([7])$.

Let S a numerical semigroup then S has maximal length if $n(S)(t(S)+1)=$ $F(S)+1$. Also, S has almost maximal length if $n(S)(t(S)+1)=F(S)+2$ (for details see [6,11]).

A numerical semigroup S is Arf if $s_{1}+s_{2}-s_{3} \in S$, for all $s_{1}, s_{2}, s_{3} \in S$ such that $s_{1} \geq s_{2} \geq s_{3}$. It is well known that any Arf numerical semigroup is maximal embedding dimension (MED), but its inverse is not true. For example, the numerical semigroup $S=<3,10,14>$ is MED but it is not Arf. S is called saturated numerical semigroup if $s+n_{1} s_{1}+n_{2} s_{2}+\ldots+n_{k} s_{k} \in S$, where $s_{j} \in S$ and $n_{j} \in \mathbb{Z}$ such that $n_{1} s_{1}+n_{2} s_{2}+\ldots+n_{k} s_{k} \geq 0$ and $s_{j} \leq s$ for $j=1,2, \ldots, k$. Also, it is known that a saturated numerical semigroup is Arf. But, an Arf numerical semigroup need not be saturated. For example, the numerical semigroup $S=<4,14,17,19>$ is Arf but it is not saturated (for details see $[2,3,4]$). It is known that if $\left\{t_{1}, t_{2}, \ldots, t_{n(S)}\right\}$ the type
sequence of S Arf numerical semigroup, then $t_{i}=s_{i}-s_{i-1}-1$, for $i=1,2, \ldots, n(S)$ ([10]).

2. MAIN RESULTS

Theorem 1. ([4]) Let S be a numerical semigroup and $d_{S}(a)=\operatorname{gcd}\{x \in S: x \leq a\}$. Then the following conditions are equalities:
(1) S is saturated.
(2) $a+d_{S}(a) \in S$ for all $a \in S\{0\}$.
(3) $a+k \cdot d_{S}(a) \in S$ for all $\left.a \in S \backslash 0\right\}$ and $k \in \mathbb{N}$.

Theorem 2. ([8]) Let S be a numerical semigroup with $m(S)=2$ and conductor K such that $K \equiv 0(2)$. Then $S=<2,2 K+1>$ is saturated.

Theorem 3. ([8]) Let S be a numerical semigroup with $m(S)=3$ and conductor K. Then, S is saturated if S is one of following numerical semigroups:
(1) $S=<3, K+1, K+2>$ for $K \equiv 0(3)$;
(2) $S=<3, K, K+2>$ for $K \equiv 2(3)$.

Theorem 4. ([8]) Let S be a numerical semigroup with $m(S)=5$ and conductor K. Then, S is saturated if S is one of following numerical semigroups:
(1) $S=<5, K+1, K+2, K+3, K+4>$ for $K \equiv 0(5)$;
(2) $S=<5, K, K+1, K+2, K+4>$ for $K \equiv 2(5)$;
(3) $S=<5, K, K+1, K+3, K+4>$ for $K \equiv 3(5)$;
(4) $S=<5, K, K+2, K+3, K+4>$ for $K \equiv 4(5)$.

Theorem 5. ([8]) Let S be a numerical semigroup with $m(S)=7$ and conductor K. Then, S is saturated if S is one of following numerical semigroups:
(1) $S=\langle 7, K, K+1, K+2, K+3, K+4, K+5, K+6\rangle$ for $K \equiv 0(7)$;
(2) $S=\langle 7, K, K+1, K+2, K+3, K+4, K+6\rangle$ for $K \equiv 2(7)$;
(3) $S=\langle 7, K, K+1, K+2, K+3, K+5, K+6\rangle$ for $K \equiv 3(7)$;
(4) $S=\langle 7, K, K+1, K+2, K+4, K+5, K+6\rangle$ for $K \equiv 4(7)$;
(5) $S=\langle 7, K, K+1, K+3, K+4, K+5, K+6\rangle$ for $K \equiv 5(7)$;
(6) $S=\langle 7, K, K+2, K+3, K+4, K+5, K+6\rangle$ for $K \equiv 6(7)$.

Theorem 6. ([7]) If S is symmetric numerical semigroup then the type of S is $t(S)=1$.

Theorem 7. Let S be a saturated numerical semigroup with $p<10$ multiplicity be prime number and the conductor $K>p$. If

$$
K \equiv 0(p)
$$

then $t_{i}=p-1$ for $\forall i, 1 \leq i \leq n(S)$, where $\left\{t_{1}, t_{2}, \ldots, t_{n(S)}\right\}$ is the type sequence of S.

Proof. Let S be a saturated numerical semigroup with $p<10, p=2,3,5,7$ and conductor K.
(1) If $p=2$ for $K \equiv 0(2)$. Then we write $S=\langle 2,2 K+1\rangle=\{0,2,4,6, \ldots, 2 K, \rightarrow \ldots\}$. Let $\left\{t_{i}: \forall i, 1 \leq i \leq n(S)\right\}$ be the type sequence of positive integers number. Then, we get this $t_{i}=1$ for $\forall i, 1 \leq i \leq n(S)$ from S is symmetric.
(2) If $p=3$ for $K \equiv 0(3)$. Then we write
$S=\langle 3, K+1, K+2\rangle=\{0,3,6,9, \ldots, K-3, K, \rightarrow \ldots\}$. Let $\left\{t_{i}: \forall i, 1 \leq i \leq n(S)\right\}$
be the type sequence of positive integers number. Then

$$
\begin{aligned}
& S_{1}=\left\{s \in S: s \geq s_{1}=3\right\}=\{3,6,9, \ldots, K-3, K, \rightarrow \ldots\} \\
& S(1)=\left\{x \in \mathbb{N}: x+S_{1} \subseteq S\right\}=\{0,3,6,9, \ldots, K-6, K-3, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{1}(S)=t(S)=\operatorname{Card}(S(1) \backslash S)=\operatorname{Card}(\{K-2, K-1\})=2
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}=\left\{s \in S: s \geq s_{2}=6\right\}=\{6,9, \ldots, K-3, K, \rightarrow \ldots\}, \\
& S(2)=\left\{x \in \mathbb{N}: x+S_{2} \subseteq S\right\}=\{0,3,6,9, \ldots, K-6, K-5, K-4, K-3, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{2}(S)=\operatorname{Card}(S(2) \backslash S(1))=\operatorname{Card}(\{K-5, K-4\})=2 . \\
& S_{3}=\left\{s \in S: s \geq s_{3}=9\right\}=\{9, \ldots, K-6, K-3, K, \rightarrow \ldots\}, \\
& S(3)=\left\{x \in \mathbb{N}: x+S_{3} \subseteq S\right\}=\{0,3,6,9, \ldots, K-8, K-7, K-6, K-5, \ldots, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{3}(S)=\operatorname{Card}(S(3) \backslash S(2))=\operatorname{Card}(\{K-8, K-7\})=2 . \\
& \vdots \\
& \\
& t_{n}(S)=\operatorname{Card}(S(n) \backslash S(n-1))=\operatorname{Card}(\{K-(K-2), K-(K-1)\}) \\
& =\operatorname{Card}(\{2,1\})=2 .
\end{aligned}
$$

Thus, we obtain $t_{i}=2$ for $\forall i, 1 \leq i \leq n(S)$.
(3) If $p=5$ for $K \equiv 0(5)$. Then we write $S=\langle 5, K+1, K+2, K+3, K+4\rangle=$ $\{0,5,10,15, \ldots, K, \rightarrow \ldots\}$. Let $\left\{t_{i}: \forall i, 1 \leq i \leq n(S)\right\}$ be the type sequence of positive integers number. Then,

$$
\begin{aligned}
& S_{1}=\left\{s \in S: s \geq s_{1}=5\right\}=\{5,10,15, \ldots, K-5, K, \rightarrow \ldots\}, \\
& S(1)=\left\{x \in \mathbb{N}: x+S_{1} \subseteq S\right\}=\{0,5,10,15, \ldots, K-10, K-5, K-4, K-3, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{1}(S)=t(S)=\operatorname{Card}(S(1) \backslash S)=\operatorname{Card}(\{K-4, K-3, K-2, K-1\})=4 . \\
& S_{2}=\left\{s \in S: s \geq s_{2}=10\right\}=\{10,15, \ldots, K-5, K, \rightarrow \ldots\}, \\
& S(2)=\left\{x \in \mathbb{N}: x+S_{2} \subseteq S\right\}=\{0,5,10,15, \ldots, K-10, K-9, K-8, K-7, K-6, \ldots, K, \rightarrow \ldots\}, \\
& t_{2}(S)=\operatorname{Card}(S(2) \backslash S(1))=\operatorname{Card}(\{K-9, K-8, K-7, K-6\})=4 . \\
& \vdots
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}(S)=\operatorname{Card}(S(n) \backslash S(n-1))=\operatorname{Card}(\{K-(K-4), K-(K-3), K-(K-2), K-(K-1)\}) \\
& =\operatorname{Card}(\{4,3,2,1\})=4 \\
& \quad \text { Thus, we obtain } t_{i}=4 \text { for } \forall i, 1 \leq i \leq n(S) .
\end{aligned}
$$

(4) If $p=7$ for $K \equiv 0(7)$. Then we write $S=\langle 7, K+1, K+2, K+3, K+4, K+5, K+6\rangle=$ $\{0,7,14,21, \ldots, K, \rightarrow \ldots\}$. If we make some operations in above. We find that $t_{i}=6$, for $\forall i, 1 \leq i \leq n(S)$. Therefore, if $K \equiv 0(p)$ then we obtain that $t_{i}=p-1$, for $\forall i, 1 \leq i \leq n(S)$.

Theorem 8. Let S be a saturated numerical semigroup with $P<10$ multiplicity be prime number, $j=2,3, \ldots, p-1$ and the conductor $K>p+j$. If

$$
K \equiv j(p)
$$

then the type sequence of S is $\left\{t_{1}=p-1, t_{2}=p-1, \ldots, t_{n(S)-1}=p-1, t_{n(S)}=j-1\right\}$.
Proof. Let S be a saturated numerical semigroup with $p<10, p=2,3,5,7$ and conductor K.
(1) If $p=3$ and $j=2$. for $K \equiv j(p)$. Then we write $S=\langle 3, K, K+2\rangle=$ $\{0,3,6,9, \ldots, K-5, K-2, K, \rightarrow \ldots\}$. Let $\left\{t_{i}: \forall i, 1 \leq i \leq n(S)\right\}$ be the type sequence of positive integers number.

$$
\begin{aligned}
& S_{1}=\left\{s \in S: s \geq s_{1}=3\right\}=\{3,6,9, \ldots, K-2, K, \rightarrow \ldots\}, \\
& S(1)=\left\{x \in \mathbb{N}: x+S_{1} \subseteq S\right\}=\{0,3,6,9, \ldots, K-8, K-3, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{1}(S)=t(S)=\operatorname{Card}(S(1) \backslash S)=\operatorname{Card}(\{K-1, K-3\})=2 . \\
& S_{2}=\left\{s \in S: s \geq s_{2}=6\right\}=\{6,9, \ldots, K-5, K-2, K, \rightarrow \ldots\}, \\
& S(2)=\left\{x \in \mathbb{N}: x+S_{2} \subseteq S\right\}=\{0,3,6,9, \ldots, K-8, K-6, K-5, K-4, \ldots, K-2, K-1, K, \rightarrow \ldots\}, \\
& t_{2}(S)=\operatorname{Card}(S(2) \backslash S(1))=\operatorname{Card}(\{K-6, K-4\})=2 .
\end{aligned}
$$

for $i=n(S)-1$
$S_{n(S)-1}=\left\{s \in S: s \geq s_{n(S)-1}=K-2\right\}=\{K-2, K, \rightarrow \ldots\}$,
$S(n(S)-1)=\left\{x \in \mathbb{N}: x+S_{n(S)-1} \subseteq S\right\}=\{0,2,3,4, \ldots, K-2, K, \rightarrow \ldots\}$,
$S_{n(S)-2}=\left\{s \in S: s \geq s_{n(S)-2}=K-5\right\}=\{K-5, K-2, K, \rightarrow \ldots\}$,
$S(n(S)-2)=\left\{x \in \mathbb{N}: x+S_{n(S)-2} \subseteq S\right\}=\{0,3,5,6,7, \ldots, K-5, K-2, K, \rightarrow \ldots\}$,
$t_{n(S)-1}=\operatorname{Card}(S(n(S)-1) \backslash S(n(S)-2))=\operatorname{Card}(\{2,4\})=2$.
Thus, we obtain $t_{i}=2$ for $\forall i, 1 \leq i \leq n(S)-1$.
Finally, for $i=n(S)$,
$S_{n(S)}=\left\{s \in S: s \geq s_{n(S)}=K\right\}=\{K, \rightarrow \ldots\}$ and
$S(n(S))=\left\{x \in \mathbb{N}: x+S_{n(S)} \subseteq S\right\}=\{0,1,2, \ldots\}=\mathbb{N}$. So, we find that $t_{n(S)}=$ $\operatorname{Card}(S(n(S)) \backslash S(n(S)-1)=\operatorname{Card}(\{1\})=1$.
(2) i) If $p=5$ and $j=2$ for $K \equiv j(p)$. Then we write $S=\langle 5, K, K+1, K+2, K+4\rangle=$ $\{0,5,10,15, \ldots, K-2, K, \rightarrow \ldots\} . S$ is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. In this case, we have $t_{i}=s_{i}-s_{i-1}-1=4=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=$ $K-(K-2)-1=1=j-1$.
ii) If $p=5$ and $j=3$ for $K \equiv j(p)$. Then we write $S=\langle 5, K, K+1, K+3, K+4\rangle=$ $\{0,5,10,15, \ldots, K-3, K, \rightarrow \ldots\}$. So, S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. In this case, we have $t_{i}=s_{i}-s_{i-1}-1=4=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=$ $K-(K-3)-1=2=j-1$.
iii) If $p=5$ and $j=4$ for $K \equiv j(p)$. Then we write $S=\langle 5, K, K+2, K+3, K+4\rangle=$ $\{0,5,10,15, \ldots, K-4, K, \rightarrow \ldots\}$. So, S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. In this case, we have $t_{i}=s_{i}-s_{i-1}-1=4=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=$ $K-(K-4)-1=3=j-1$.
(3) i) If $p=7$ and $j=2$ for $K \equiv j(p)$. Then we write
$S=\langle 7, K, K+1, K+2, K+3, K+4, K+6\rangle=\{0,7,14,21, \ldots, K-2, K, \rightarrow \ldots\}$. So, S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. So, we have $t_{i}=s_{i}-s_{i-1}-1=6=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=K-(K-2)-1=1=j-1$.
ii) If $p=7$ and $j=3$ for $K \equiv j(p)$. Then we write
$S=\langle 7, K, K+1, K+2, K+3, K+5, K+6\rangle=\{0,7,14,21, \ldots, K-3, K, \rightarrow \ldots\}$. So, S is Arf since S is saturated. In this case, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. Thus, we have $t_{i}=s_{i}-s_{i-1}-1=6=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=K-(K-3)-1=2=j-1$.
iii) If $p=7$ and $j=4$ for $K \equiv j(p)$. Then we write
$S=\langle 7, K, K+1, K+2, K+4, K+5, K+6\rangle=\{0,7,14,21, \ldots, K-4, K, \rightarrow \ldots\}$. S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq$ $n(S)$ from S is Arf. We have $t_{i}=s_{i}-s_{i-1}-1=6=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=K-(K-4)-1=3=j-1$.
iv) If $p=7$ and $j=5$ for $K \equiv j(p)$. Then we write
$S=\langle 7, K, K+1, K+3, K+4, K+5, K+6\rangle=\{0,7,14,21, \ldots, K-5, K, \rightarrow \ldots\}$. In this case, S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. So, we have $t_{i}=s_{i}-s_{i-1}-1=6=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=K-(K-5)-1=4=j-1$.
v) If $p=7$ and $j=6$ for $K \equiv j(p)$. Then we write
$S=\langle 7, K, K+2, K+3, K+4, K+5, K+6\rangle=\{0,7,14,21, \ldots, K-6, K, \rightarrow \ldots\}$. In this case, S is Arf since S is saturated. Thus, we write that $t_{i}=s_{i}-s_{i-1}-1$, for $\forall i, 1 \leq i \leq n(S)$ from S is Arf. We have $t_{i}=s_{i}-s_{i-1}-1=6=p-1$; for $\forall i, 1 \leq i \leq n(S)$, and $t_{n(S)}=s_{n(S)}-s_{n(S)-1}-1=K-(K-6)-1=5=j-1$.

Corollary 9. If S is a saturated numerical semigroup in the Theorem 7 and the conductor of S is $K=p n(S)$ then S has a maximal length.

Proof. Let S be as in Theorem 7 and $K=p n(S)$. Then, $t(S)=p-1$ and, we write that $t(S) n(S)=(p-1) n(S)=p n(S)-n(S)=K-n(S)=F(S)+1-n(S)$. Thus, S has maximal length.

Corollary 10. Let S be as in Theorem 8. If the conductor of S is $K=p n(S)-1$ then S has almost maximal length.

Proof. Let S be as in Theorem 8. and $K=p n(S)-1$. Then, $t(S)=p-1$ and we obtain that $n(S)(t(S)+1)=n(S)(p-1+1)=p n(S)=K+1=F(S)+2$. Therefore, S has almost maximal length.

Example 1. Let's take $j=0, K=10$ and $p=5$ for $K \equiv j(p)$. Then we write $S=\langle 5,11,12,13,14\rangle=\{0,5,10, \rightarrow \ldots\}$ saturated numerical semigroup from Theorem $4(1)$. In this case, we obtain $m(S)=5, f(S)=9, n(S)=2$ and $K=p n(S)=$ $5.2=10$. Also, $t(S)=p-1=5-1=4$ from Theorem 7 . Thus, S has maximal length, since $n(S)(t(S)+1)=2(4+1)=10=K=F(S)+1$.

Example 2. If we put $j=6, p=7$ and $K=K(S)=27$ in Theorem 5(6). Then we write $S=\langle 7,27,29,30,31,32,33\rangle=\{0,7,14,21,27, \rightarrow \ldots\}$. Thus we find that $m(S)=7, f(S)=26, n(S)=4, t(S)=6$ and $K=27=7.4-1=p n(S)-1$. Therefore, S has almost maximal length since $n(S)(t(S)+1)=4 .(6+1)=28=$ $26+2=F(S)+2$.

References

[1] R. Froberg, C. Gotlieb and R. Haggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), 63-68.
[2] S. İlhan and H. İ. Karakaş, Arf numerical semigroups, Turkish Journal of Mathematics, 41 (2017), 1448-1457
[3] S. İlhan, and M. Süer, On the saturated numerical semigroups, Open Math. 14 (2016), 827-831.
[4] J. C. Rosales, P.A. Garcia-Sanchez, J.I. Garcia-Garcia and M.B. Branco, Saturated numerical semigroups, Houston J. Math., 30(2), (2004), 321-330.
[5] J.C. Rosales and P.A. Garcia-Sanchez, Numerical semigroups, New York: Springer (2009), 181.
[6] S. İlhan and M. Süer, Conditions of numerical semigroups having maximal or almost maximal length, International Journal of Physical Sciences, 7 (2012), 25492553.
[7] M. D'anna, Type Sequences of numerical semigroups, Semigroup Forum, 56 (1998), 1-31.
[8] S. İlhan and A. Çelik, L-sequences of saturated numerical semigroups with multiplicity ≤ 7, Journal of Semigroup Theory and Applications, ID 6 (2017).
[9] J.C. Rosales, On numerical semigroups, Semigroup Forum, 52 (1996), 307-318.
[10] V. Barucci, D.E. Dobbs and M. Fontana, Maximality properties in numerical semigroups, with applications to one-dimensional analytically irreducible local
domains, Procedings of the Conference "Commutative Ring Theory" Fés, Lecture Notes Pure Appl. Math., vol. 153, M. Dekker (1993).
[11] C.W. Brown and F. Curtis, Numerical semigroups of maximal and almost maximal length, Semigroup Forum, 42 (1991), 219-235.
[12] A. Çelik, An approach to symmetric numerical semigoups, Acta Universitatis Apulensis, 69 (2022), 43-48.

Mehmet Sait Alakus
Department of Mathematics, Faculty of Science, University of Dicle,
21280, Diyarbakır, Turkey
email: msaitalakus@hotmail.com
Sedat İlhan
Department of Mathematics, Faculty of Science, University of Dicle, 21280, Diyarbakır, Turkey
email: sedati@dicle.edu.tr

