
Acta Universitatis Apulensis
ISSN: 1582-5329
http://www.uab.ro/auajournal/

No. 71/2022
pp. 19-63

doi: 10.17114/j.aua.2022.71.03

NON-ALGORITHMIC PROCEDURES AND ALGORITHM
CREATION

J. E. Palomar Tarancón

Abstract. Algorithms work blindly, ignoring the meanings of involved symbols
and the aims of their actions. They are stated in a fixed language; hence, they are
language dependent. In this article, we introduce procedures identifying entities by
their attributes, as the scientific method requires, and term them eulerithms. They
are language-independent procedures being able to build algorithms.

2010 Mathematics Subject Classification: Primary 68T99, 68T30; Secondary
08A68, 08A70

Keywords: Non-algorithmic procedures, eulerithms, algorithm creation, hetero-
geneous categories.

1. Introduction

Languages being partial free-monoids generated by symbol-sets, can be extended
appending words and sentences. A language is extendable when the meaning of its
extensions are definable by some of their own sentences. A mathematical construc-
tion is finitely-definable when a finite symbol sequence in an extendable language
determines it. For example, the number π = 3.141592 . . . is finitely definable because
the finite English sentence

“π is the ratio of a circle’s circumference to its diameter” (1)
denotes it.

Every Gödel-like numbering function sends each finite symbol sequence into a
positive integer. Thus, if there is at least one non-countable set E, it must contain
some non-finitely definable members in spite of being E definable through some finite
expression [7]. As a consequence, if for every member x of any uncountable set X,
there is a language L and a finite symbol sequence in it denoting an algorithm
calculating x, then X is countable. Thus, every uncountable set contains non-
computable members [7].

19

http://www.uab.ro/auajournal/

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Since algorithms work blindly on symbol-sequences of some language, that is,
ignoring their meanings, for some problems, we need non-algorithmic procedures
having the capability of assigning meanings to phrases. This fact requires the help
of logical methods. For instance, consider the definition above for the number π. It
is not sufficient to understand the meaning of the phrase

P = the ratio of a circle’s circumference to its diameter.

If this ratio were not the same for all circles, expression (1) would define nothing.
Accordingly, it is not sufficient to understand P but to know some circle attributes.

Algorithms are written in a fixed symbolic vocabulary, governed by precise in-
structions, whose execution requires no cleverness, intuition, or intelligence. This
is why we introduce procedures working on attributes instead of symbol-sequences;
hence they are language independent. We term them eulerithms.

Since the word algorithm is a derivative of the Latinized name of the Persian
polymath Al-Khwarizmi, our choice is a derivative of Euler’s name, which proved
the well-known formula

eix = cos(x) + i · sin(x). (2)

The original proof of the Euler’s formula is based on the properties (attributes)
of Taylor series expansions of the functions ex, sin(x), and cos(x). The physicist
Richard Feynman called the equation above “our jewel” and “the most remarkable
formula in mathematics” [9].

In any proper scientific method, entities must be identified by their properties
(attributes) instead of words assigned by convention. We only consider as attributes
those predicates satisfying some conditions. They cannot contain unavoidable dis-
junctions and self-referential definitions.

Definition (1) contains a finite symbol sequence, but under the decimal number-
ing language, we denote π by the endless symbol sequence 3.141592 Finding the
most suitable language for each problem depends on the attributes of the involved
concepts [6]. To this end, eulerithms are adequate devices.

We consider as an attribute each predicate that some mathematical construction
satisfies. Nevertheless, we cannot consider as attributes those predicates containing
unavoidable disjunctions. For instance, the predicate p(x) = “x is a prime integer”
is an attribute of some members of N. Likewise, the predicate

q(x) = “x is a statement with truth-value 1”

denotes an attribute of every true statement. Both, the integer 5 and the sentence
“x2+x = 6 is a Diophantine equation,” satisfy their disjunction p(x)∨q(x); however,
only p(x) is an attribute of 5; hence, we cannot consider p(x)∨ q(x) as an attribute
of it.

20

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Mainly, we can find object-attributes from analogical representations instead of
symbol sequences. Some properties of the equation x2 − 4 = 0 are observable in
its formal expression. By contrast, from a phrase defining the triangle concept, it
is not possible to find out the existence of barycenter, orthocenter, etc. Even the
Pythagorean Theorem is easy to see in analogical representations as follows.

�
�
�
�
��

������

C2
1

C2
2

=

�
�
�
�
��

PPPPPP

PPPPPP

�
�
�
�
��

H2

C2
1 + C2

2 = H2.

By contrast, denoting this theorem in a formal expression, we cannot see the
equality c21 + c22 = h2. Finding a suitable language to perform a given procedure
is not a task that algorithms can do. They work with a fixed language. In the
last section, we state a procedure to build algorithms and suitable languages. This
paradigm is a consequence of Theorem 30.

Likewise, we show that eulerithms can build algorithms. By contrast, the proce-
dures building eulerithms must be able to find attributes; hence, they have to create
suitable formalisms. We cannot always consider such procedures as eulerithms. This
topic requires further research. Since we introduce a new procedure paradigm, ref-
erences are not essential.

2. Preliminaries

Almost every concept is the generic object of an equivalence class. For instance,
the word “polygon” denotes an object–class containing triangles, quadrangles, pen-
tagons, etc. Even each of these words denotes an infinite object-set. These classes
are homogeneous. Their members are characterized by some common properties.
Any property P can be stated by a predicate of the form

“x satisfies has the property P .”

To be homogeneous, not every predicate is suitable as a class definition. For instance,
some predicate disjunctions can define the union of heterogeneous classes. Thus, we
state the homogeneous class definition as follows.

Definition 1. We say that a class K is homogeneous when can be defined by a
disjunction-free predicate.

21

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

To avoid any paradox, the conglomerate H of all homogeneous classes cannot
belong to itself [1]. The predicate

Ω(x) = “x is a non-self-contained mathematical construction, that

can be defined by a disjunction-free predicate.” (3)

denotes each member of H; therefore,

Ω(O) ⇐⇒ (O ∈ H),

and Ω(x) defines H. Statement (3) leads to H /∈ H; hence, the conglomerate H is
homogeneous, but it is not a class. It is a proper conglomerate [1].

Although every homogeneous class is not self-contained, it can contain its generic
member. A predicate p(x) defining a class K, determines also its generic member.
To avoid any confusion, we write the superscript ⋎ to denote it. Thus, K⋎ denotes
the generic member of K and p(x)⋎ its definition. Likewise, the predicate Ω(x)⋎

defines the generic object H⋎ of H. The generic object of each singleton {O} is its
member {O}⋎ = O.

There are predicates containing disjunctions that are equivalent to others being
disjunction-free ones. For example, the class that (x = 0) ∨ (x = 1) defines is
homogeneous because it can be defined by (x ∈ N)∧ (x2−x = 0). Similar situations
can occur using universal quantifiers. For instance, if a disjunction-free predicate
p(x) defines a homogeneous classK, the statement ∀x ∈ K : q(x) un many situations
is equivalent to p(x) ∧ q(x). By contrast, as a consequence of Morgan’s Law, the
negation ¬p(x) of a predicate need not be disjunction-free in spite of so being p(x).

Example 1. Let K be the class

K =
{
2n | n ∈ N

}
∪
{
triangle, quadrangle, pentagon

}
The disjunction h(x) = p(x) ∨ q(x) of the predicates p(x) = “x ≡ 0 (mod 2)” and
q(x) = “x is a polygon of less than 6 angles” defines K:

h(x) = (p(x) ∨ q(x)) ⇐⇒
(
x ∈ K

)
Since h(x) contains one disjunction, K is not a homogeneous class. By contrast,
p(x) defines the homogeneous class P =

{
2n | n ∈ N

}
of even positive integers;

hence, P⋎ =
{
2n | n ∈ N

}⋎
denotes the even-integer concept.

Definition 2. We term attribute every finitely-definable disjunction-free predicate
defining a nonempty homogeneous class.

Lemma 1. Every attribute p(x) satisfies the relation p(x) =⇒ Ω(x).

22

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof. By Definition 2, the mathematical construction that p(x) defines satisfies
(3).

Lemma 2. The conjunction of a family of compatible attributes is again an attribute.

Proof. Since each attribute is a disjunction-free predicate, so is the conjunction of
every family A of them. If the members of A are compatible, p(x) =

∧
q(x)∈A q(x)

defines a nonempty class.

Notation 1. Let Attr be the class of all attributes and C≪ the thin category [1]
such that the object-class Ob(C≪) is Attr. For every pair of attributes (p(x), q(x)),

the homset homC≪ (p(x), q(x)) either is empty, or it is a singleton
{
p(x)

≪−−→ q(x)
}

whenever there exists an attribute h(x) satisfying the equivalence.

p(x) ⇐⇒ q(x) ∧ h(x). (4)

As a straightforward consequence of the C≪-morphism definition, the following
relation holds.

∀ (p(x), q(x)) ∈ Attr×Attr :
(
p(x)

≪−−→ q(x)
)
=⇒

(
p(x) ⇒ q(x)

)
. (5)

The converse implication need not hold. If (p(x) ⇒ q(x), the existence of the

morphism p(x)
≪−−→ q(x) requires that some attribute h(x) satisfies the relation

p(x) ⇐⇒ (q(x) ∧ h(x)).

Definition 3. A nonempty subclass B of an attribute class K is a basis for it, pro-
vided that any attribute p(x) ∈ K belongs to ∁KB if and only if it is the conjunction
of a subset of B of cardinality greater than 1.

Definition 4. Let Ob(C⪯) be the class of all entities being definable by attributes.
For every O ∈ Ob(C⪯), let defO(x) denote some predicate defining it. The collection

Ob
(
C⪯) = {O ∈ H | defO(x) ∈ Attr

}
is the object-class of a thin category C⪯ such that, for every pair of objects (O1, O2),

there is the arrow O1
⪯−→ O2 if and only if defO1(x)

≪−−→ defO2(x).

Lemma 3. If for a pair of C⪯-objects (O1, O2) there is the arrow O1
⪯−→ O2, then

the relation defO1(x) ⇒ defO2(x) holds.

Proof. By the definition of C⪯-morphism, there is the arrow O1
⪯−→ O2 when

defO1(x)
≪−−→ defO2(x); hence, the lemma is a consequence of equation (5).

23

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Corollary 4. With the same assumptions as in Lemma 3,(
(O1

⪯−→ O2) ∧ (O2
⪯−→ O1)

)
=⇒

(
O1 = O2

)
. (6)

Proof. It is a straightforward consequence of Lemma 3.

Lemma 5. The attribute Ω(x) (3) and the generic object H⋎ are terminal in C≪

and C⪯, respectively.

Proof. By Lemma 1, every attribute p(x) satisfies the relation p(x) =⇒ Ω(x); there-
fore,

p(x) ⇐⇒ p(x) ∧ Ω(x)

and p(x)
≪−−→ Ω(x). As a consequence, for every C⪯-object O, if defO(x) is a defini-

tion for O, then
defO(x)

≪−−→ Ω(x) = defH⋎(x).

This equation leads to O
⪯−→ H⋎.

If C is either an abstract or a concrete category, each finitely definable member
of Ob(C) is a C⪯-object too. Thus, products and coproducts can be performed as
members of Ob(C⪯) or as C-objects. To avoid any confusion, we denote the first case
using the symbol ⪯ as a superscript in the operators

∏
and

∐
; therefore,

∏⪯ and∐⪯ denote the product and coproduct in the category C⪯. Likewise, the symbols∏≪ and
∐≪ denote the product and coproduct, respectively, of C≪-objects.

Definition 5. For every couple of attributes p1(x) and p2(x) that satisfy the relations

p1(x)
≪−−→ p2(x) and p1(x) ⇎ p2(x), we say that an attribute q(x) complements p2(x)

to p1(x) when it satisfies the following conditions.{
p1(x) ⇐⇒ (p2(x) ∧ q(x)) ,

p2(x) ⇏ q(x) and q(x) ⇏ p2(x)
(7)

Likewise, a C⪯-object C complements Q to O when an attribute defC(x) defining
it complements defQ(x) to defO(x).

Definition 6. A class K is discernible provided that it satisfies the following con-
ditions.

1. There is an attribute defK(x) defining K.

2. For every member O ∈ K, there is an object Q that complements K⋎ to O;
hence, a predicate defQ(x) defining it satisfies the relation below.

defO(x) ⇐⇒ (defK(x) ∧ defQ(x)) .

24

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

3. There is a finite subset G ⊆ K such that, for every superset D ⊇ G, if D ⊆ K,
then

≪∐
O∈D

defO(x) ⇐⇒ defK(x). (8)

We say that G is a determining subset of K.

Definition 7. Let K be a discernible class, and for every O ∈ K, let QO be an object
that complements K⋎ to O. With these assumptions we say that

{
QO | O ∈ K

}
is

a complementing class of K.

Example 2. Let K be the solution-set of the equation x2 − 4 = 0; hence, K ={
− 2, 2

}
. The predicate defK(x) = “x is a solution of x2 − 4 = 0” defines K. The

attribute conjunctions

def−2(x) = defK(x) ∧ “x is a negative number” ,

def2(x) = defK(x) ∧ “x is a positive number” ,

define −2 and 2, respectively. Denoting by Pos⋎ and Neg⋎ the generic concepts
of positive and negative numbers, respectively,

{
Pos⋎, Neg⋎

}
is the complementing

class of K.

Notation 2. If K is a discernible class, for every O ∈ K, the expression ∁⋎⪯OK
⋎,

denotes the object that complements K⋎ to O. Likewise, ∁⋎⪯KK⋎ is the comple-
menting class

∁⋎⪯KK⋎ =
{
∁⋎⪯OK

⋎
∣∣O ∈ K

}
. (9)

Lemma 6. If the members of an attribute set A =
{
pi(x) | i ∈ I

}
are compatible

and #(I) ≥ 2, their conjunction is their C≪-product.

Proof. By equation (5), for every j ∈ I,∧
i∈I

pi(x)
≪−−→ pj(x). (10)

If h(x) is an attribute such that there is a source
(
h(x)

≪−−→ pi(x)
)
i∈I

, by definition,

for each i ∈ i, there is an attribute ri(x) such that

∀i ∈ I : h(x) ⇐⇒ (pi(x) ∧ ri(x)) ; (11)

therefore, ∧
i∈I

(pi(x) ∧ ri(x)) ⇐⇒ h(x) =⇒
∧
i∈I

pi(x)

25

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

and h(x)
≪−−→

∧
i∈I pi(x). By Lemma 2, the conjunction

∧
i∈I pi(x) is an attribute,

and the following diagram commutes.∧
j∈I pj(x)

≪

%%
∀i ∈ I : pi(x)

h(x)

≪

OO

≪

99

The arrow uniqueness is a consequence of the thin nature of C≪; therefore,

≪∏
i∈I

pi(x) =
∧
i∈I

pi(x).

Lemma 7. Let K be a family of C⪯-objects of cardinality greater than 1. If for

every O ∈ K, defO(x) is an attribute defining it and there is the product

⪯∏
O∈K

O, the

following statement holds.
≪∏

O∈K
defO(x) = def(∏⪯

O∈K O
)(x). (12)

Proof. Let Q be the object that the product
≪∏

O∈K
defO(x) defines; hence,

defQ(x) =
≪∏

O∈K
defO(x).

As a straightforward consequence of Definition 4, for every source

S =
(
W

⪯−→ O
)
O∈K

, (13)

there is
(
defW (x)

≪−−→ defO(x)
)
O∈K

, and by Lemma 6, the following diagrams com-

26

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

mute.

defQ(x)

≫

yy
∀O ∈ K : defO(x)

defW (x)

≫

ee
≪

OO
Q

⪰

~~
and O

W
⪰

`` ⪯

OO

therefore, Q =

⪯∏
O∈K

O and equation (12) holds.

Corollary 8. For every source
(
O

⪯−→ Oi

)
i∈I

the following statement holds.

O
⪯−→

⪯∏
i∈I

Oi. (14)

Proof. By definition 4, there is the source
(
defO(x)

≪−−→ defOi

)
i∈I

. By equation (4),

for each i ∈ I, there is an attribute hi(x) such that

∀i ∈ I : defO(x) ⇐⇒ defOi(x) ∧ hi(x). (15)

As a consequence, for every i, the object O satisfies both attributes defOi(x) and
hi(x); therefore, both attribute sets are compatible and

defO(x) ⇐⇒

((∧
i∈I

defOi(x)

)
∧

(∧
i∈I

hi(x)

))
. (16)

By Lemma 2, both conjunctions are attributes; hence,

defO(x)
≪−−→
∧
i∈I

defOi(x). (17)

The equation above, together with Lemmata 6 and 7, leads to (14).

Corollary 9. For every C⪯-arrow O1
⪯−→ O2, an object Q complements O2 to O1

when the following relations hold.

O1 =
(
O2

∏
Q
)

(18)

homC⪯(O2, Q) = homC⪯(Q,O2) = ∅. (19)

27

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof. It is a straightforward consequence of Corollary 4, Definition 5, and Lemma 7.

Lemma 10. Let
{
pi(x) | i ∈ I

}
⊆ Ob(C≪) be an attribute set of cardinality greater

than 1. If P denotes the class

P =
⋂
i∈I

{
p(x) ∈ Ob(C≪) | pi(x)

≪−−→ p(x)
}
,

then the following statement holds.

≪∐
i∈I

pi(x) =
∧

p(x)∈P

p(x) =

≪∏
p(x)∈P

p(x). (20)

Proof. The set P is nonempty because, by Lemma 5, it contains Ω(x). It is a
straightforward consequence of the definition of P, together with equation (4), that
for each p(x) ∈ P and every i in I, there is an attribute hp,i(x) such that pi(x) ⇐⇒
(p(x) ∧ hp,i(x)); therefore,

∀p(x) ∈ P : pi(x) ⇐⇒ (p(x) ∧ hp,i(x)) . (21)

As a consequence, if for some i ∈ I an object O satisfies the attribute pi(x), then it
satisfies every member of P too. Thus, the members of P are compatible, and by
Lemma 2, their conjunction is again an attribute such that

∀i ∈ I : pi(x)
≪−−→

∧
p(x)∈P

p(x).

By the definition of P, if an attribute q(x) in Attr satisfies the relation

∀i ∈ I : pi(x)
≪−−→ q(x),

then it belongs to P. As a consequence, there is the unique morphism∧
p(x)∈P

p(x)
≪−−→ q(x)

such that, for every i in I, the following diagram commutes.

28

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

∧
p(x)∈P

p(x)

≪

��

pi(x)

≪ %%

≪

BB

q(x)

Accordingly,
∧

p(x)∈P

p(x) =

≪∐
i∈I

pi(x). This equation, together with Lemma 6, leads

to (20).

Theorem 11. Let
{
Oi | i ∈ I

}
⊆ Ob(C⪯) be an object-set of cardinality greater

than 1 and K the class

K =
⋂
i∈I

{
O ∈ Ob(C⪯) | Oi

⪯−→ O
}
.

With these assumptions the following statements hold.

1. There is the coproduct

⪯∐
i∈I

O and satisfies the relation below.

⪯∐
i∈I

O =

⪯∏
O∈K

O. (22)

2. The attribute-coproduct
≪∐
i∈I

defOi(x) defines

⪯∐
i∈I

Oi; hence,

≪∐
i∈I

defOi(x) ⇐⇒ def(∐⪯
i∈I Oi

)(x). (23)

Proof.

29

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

1. By the definition of K, for every i ∈ I, there is the source
(
Oi

⪯−→ O
)
O∈K

;

hence, by Corollary 8,

∀i ∈ I : Oi
⪯−→

⪯∏
O∈K

O. (24)

Thus, for every i ∈ I, the diagram below commutes.

⪯∏
O∈K

O

Oi

⪯ ??

⪯ ��
⪯∐
j∈I

Oi

⪯

OO

(25)

By the definition of C⪯-morphism, there is an attribute h(x) such that

def(∐⪯
i∈I Oi

)(x) ⇐⇒ def(
∏

O∈K O)(x) ∧ h(x). (26)

The relation above, (25), and Lemma 3 lead to

∀i ∈ I : defOi(x) =⇒ def(
∏

O∈K O)(x) ∧ h(x) =⇒ h(x).

If Q is the generic object of the class that h(x) defines, then the relation above
leads to

∀i ∈ I : defOi(x)
≪−−→ defQ(x) and Oi

⪯−→ Q;

therefore, Q ∈ K, and by (26),

def(∐⪯
i∈I Oi

)(x) ⇐⇒ def(
∏

O∈K O)(x);

therefore,

⪯∐
i∈I

Oi =

⪯∏
O∈K

O.

30

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

2. By the definition of K, the equation below holds.

P =
⋂
i∈I

{
defO(x) ∈ Ob(C≪) | defOi(x)

≪−−→ defO(x)
}
={

defO(x) | O ∈ K
}
. (27)

The equation above, together with Lemma 10, leads to

≪∐
i∈I

defOi(x) =

≪∏
O∈K

defO(x). (28)

Taking into account (22) and Lemma 7,

def(∐⪯
i∈I Oi

)(x) = def(∏⪯
O∈K O

)(x) = ≪∏
O∈K

defO(x) =

≪∐
i∈I

defOi(x)

and equation (23) holds.

Example 3. Let T and Q denote the sets of all triangles and quadrangles, respec-
tively. If we consider both sets as members of Ob(Set), the coproduct is T

∐
Q =

(T × {0})
⋃
(Q× {1}). However, as C⪯-objects, T

⪯∐
Q is the generic object of the

set of polygons with less than five sides. To see this fact, consider the following
attributes.

p(x) = “x is a polygon with less than five sides,”

q1(x) = “x is a shape with three angles,”

q2(x) = “x is a shape with four angles.”

The conjunctions p(x) ∧ q1(x) and p(x) ∧ q2(x) define T and Q, respectively. If
K ⊆ Attr is the attribute class

K =
{
q(x) ∈ Attr | (p(x) ∧ q1(x))

≪−−→ q(x)
}⋂

{
q(x) ∈ Attr | (p(x) ∧ q2(x))

≪−−→ q(x)
}
.

then, by Lemma 10,

(
p(x) ∧ q1(x)

) ≪∐(
p(x) ∧ q2(x)

)
=

∧
q(x)∈K

q(x) =⇒ p(x).

31

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

If h(x) =
∧

q(x)∈K q(x), then the equation above, together with Lemma 3, leads to

T

⪯∐
Q =

{
X ∈ Ob(C⪯)

∣∣h(X)
}⋎

.

Thus, the coproduct is the object with more common attributes with T and Q.

Notation 3. For every nonempty subsetM ofAttr, let FM,Ob : Ob(C⪯) −→ ℘(M)
be the map sending each O ∈ Ob(C⪯) into

FM,Ob(O) =
{
p(x) ∈ M

∣∣defO(x) ≪−−→ p(x)
}
. (29)

As a consequence of Lemma 5, if the class M contains the attribute Ω(x), so does
FM,Ob(O), for every Ob(C⪯)-object O.

Lemma 12. If a subset M of Attr contains an attribute defO(x) defining a C⪯-
object O, then the following relation holds.

defO(x) ∈ FM,Ob(O). (30)

Proof. Since defO(x)
≪−−→ defO(x), then equation (29) leads to (30).

Theorem 13. For every nonempty subset M of Attr, there is a faithful contravari-
ant functor

FM : Ob(C⪯) −→ Set

with the object-map FM,Ob.

Proof. Let O1
⪯−→ O2 a C⪯-morphism. By definition, this morphism leads to

defO1(x)
≪−−→ defO2(x). As a consequence of equation (29),

FM,Ob(O2) ⊆ FM,Ob(O1);

therefore, the inclusion map

m : FM,Ob(O2) −→ FM,Ob(O1)

is a Set-morphism. If O1 = O2, then the relation FM(O1) = FM(O2) holds and

FM

(
O1

⪯−→ O2

)
is the identity-map. Since C⪯ is a thin category, FM is faithful.

Remark 1. By equation (29), the image FM(O) of each member of Ob(C⪯) is
intrinsic because it consists of attributes of O.

32

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Corollary 14. With the same assumption as in Theorem 13, for every couple of
objects O1 and O2, if M contains their definitions, then the relation

FM(O1) ⊆ FM(O2)

leads to O2
⪯−→ O1.

Proof. It is a straightforward consequence of Lemma 3 and Theorem 13, together
with equation (29) (see Definition 4).

Theorem 15. If K be a subset of Ob(C≪)) of cardinality greater than 1, and M ⊆
Attr a nonempty attribute set, then the following statements hold.

1. If there is the product

⪯∏
O∈K

O, then

⋃
O∈K

FM(O) ⊆ FM

(⪯∏
O∈K

O

)
. (31)

2. The coproduct

⪯∐
O∈K

O satisfies the following equation.

FM

(⪯∐
O∈K

O

)
=
⋂
O∈K

FM(O). (32)

Proof.

1. It is a property of the product in C⪯, that

∀Q ∈ K :

⪯∏
O∈K

O
⪯−→ Q.

The equation above and Theorem 13 lead to (31).

2. By Lemma 10, there is always the coproduct; therefore,

∀O ∈ K : O
⪯−→

⪯∐
U∈K

U.

33

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

As a consequence of Theorem 13,

∀O ∈ K : FM

(⪯∐
U∈K

U

)
mO−−−→ FM(O)

where mO is the inclusion map; hence,

FM

(⪯∐
O∈K

O

)
⊆
⋂
O∈K

FM(O). (33)

Every object O ∈ K satisfies each member of H =
⋂

Q∈KFM(Q). As a

consequence, for every p(x) ∈ H, the class
{
O ∈ Ob(C⪯) | p(O)

}
that it

defines and its generic member

Q =
{
O ∈ Ob(C⪯) | p(O)

}⋎
the following relation holds.

∀O ∈ K : defO(x) ⇐⇒ p(x)⋎ ∧ defO(x) = defQ(x) ∧ defO(x) (34)

because p(x)⋎ defines Q. Thus, the equation above leads to

∀O ∈ K : O
⪯−→ Q.

As a consequence, the diagram below commutes.

⪯∐
O∈K

O

⪯

��

∀O ∈ K : O

⪯ @@

⪯ ""
Q;

hence, there is the arrow
⪯∐

O∈K
O

⪯−→ Q. (35)

This morphism, together with Lemma 12 and Theorem 13, leads to

p(x) ∈ FM(Q) ⊆ FM

(⪯∐
O∈M

O

)
;

34

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

therefore,

∀p(x) ∈
⋂
O∈K

FM(O) : p(x) ∈ FM

(⪯∐
O∈K

O

)
.

The equation above and (33) lead to (32).

Remark 2. Equation 32 (Theorem 15) means that the coproduct
∐⪯

O∈KO possesses
all attributes in M that are common to all members of K.

Lemma 16. Let O1, O2, and Q be three C⪯-objects. If there is the morphism

O1
⪯−→ O2, (36)

the following statements hold.

1.

(
O1

⪯∐
O2

)
= O2.

2.

(
O1

⪯∐
Q

)
⪯−→

(
O2

⪯∐
Q

)
.

3. If there are the products O1

⪯∏
Q and O2

⪯∏
Q, then(

O1

⪯∏
Q

)
⪯−→

(
O2

⪯∏
Q

)
.

4. If

(
O1

⪯∐
Q

)
= O1, then Q

⪯−→ O2.

Proof. 1. By equation (36), together with coproduct definition, the following di-
agram commutes.

O1

⪯∐
O2

⪯

��

O1

⪯ $$

⪯
<<

O2

⪰zz

⪰
bb

O2

35

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

By Definition 4, the diagram above leads to

def(O1
∐

O2)(x) ⇐⇒ defO2(x);

hence, O2 = (O1
∐

O2).

2. As a consequence of (36), the following diagram commutes

O1

⪯∐
Q

⪯

��

O1

⪯
��

⪯
==

Q

⪰
aa

⪰

��

O2

⪯ !!

O2

⪯∐
Q

Thus, there is the morphism

(
O1

⪯∐
Q

)
⪯−→

(
O2

⪯∐
Q

)
.

3. The proof for Statement (3) is the dual of preceding one.

4. The relation

(
O1

⪯∐
Q

)
= O1 leads to

Q
⪯−→

(
O1

⪯∐
Q

)
= O1

⪯−→ O2.

Theorem 17. Let M be a nonempty attribute class and K =
{
Oi | i ∈ I

}
a set of

C⪯-objects such that #(I) ≥ 2. For every attribute set{
pi(x) ∈ FM(Oi) | i ∈ I

}
,

the following statements hold.

36

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

1. If there are the products

⪯∏
i∈I

Oi and

≪∏
i∈I

pi(x), then the relation

≪∏
i∈I

pi(x) ∈ M

leads to
≪∏
i∈I

pi(x) ∈ FM

(⪯∏
i∈I

Oi

)
(37)

2. If
≪∐
i∈I

pi(x) ∈ M, then
≪∐
i∈I

pi(x) ∈ FM

(⪯∐
i∈I

Oi

)
(38)

Proof.

1. By equation (29), the statement ∀i ∈ I : pi(x) ∈ FM(Oi) leads to

∀i ∈ I : defOi(x)
≪−−→ pi(x); (39)

therefore, ∧
i∈I

defOi(x)
≪−−→
∧
i∈I

pi(x).

By Lemma 6, the morphism above leads to

≪∏
i∈I

defOi(x)
≪−−→

≪∏
i∈I

pi(x).

This morphism, together with equation (29) and Lemma 7, leads to statement
(1).

2. As in the proof of Statement (1), by (39), the diagram below commutes.

≪∐
j∈I

pj(x)

∀i ∈ I : defOi(x)

≪
::

≪ $$
≪∐
j∈I

defOj (x)

≪

OO

37

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Thus,

≪∐
i∈I

defOi(x)
≪−−→

≪∐
i∈I

pi(x). This arrow, together with equation (29),

leads to (38).

3. Morphisms among heterogeneous structures

Let S1, S2, and S3 be three systems evaluating the map

∀n ∈ N : f(n) = n2, (40)

and working at each n ∈ N as follows.

1. The first one, S1, consists of an infinite table

n n2

1 1

2 4

3 9

.

Table 1.

together with an algorithm searching each positive integer n in the first column,
and returning n2 lying in the same row, but in the second column.

2. The second system, S2, consists of an algorithm calculating the square of each
positive integer n and returning n× n = n2.

3. The last system, S3, from a finite sub-table of Table 1, can find the law n 7→ n2

and then works as S2.

The three systems evaluate the map f(n). Nevertheless, S2 is more efficient than
S1, and S3 is cleaver than S2. This system extends f from a sample of its values. To
this end, it finds out the underlying law defining it. The law is a common attribute
of all pairs (n, n2) in f ; hence, a predicate that we can denote as follows.

p(x) = “x is a pair (n,m) of positive integers such that m = n2.” (41)

38

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

By Theorem 15, if M contains p(x), then

∀(n,m) ∈ N× N : p(x) ∈ FM

(
(n, n2)

⪯∐
(m,m2)

)
.

Thus, unlike algorithms, S3 handles attributes instead of symbol sequences. As in
(41), we can obtain the existence of common attributes through coproducts in the
category C⪯.

By definition, the class Ob(C⪯) contains every finitely-definable entity. Never-
theless, there are sets in Ob(C⪯) such that not every member is a C⪯-object. For
example, consider the real number set R. It is finitely-definable, but it contains some
members that are not [7]. If for every α ∈ R there is a finite symbol sequence defin-
ing it, any Gödel-like numbering function sends R into N and R would be countable
[7].

As a consequence, Ob(C⪯) contains every finitely-definable category together
with its objects and morphisms. Unlike classical universal categories [8], if C is a
finitely-definable category, C-morphisms are C⪯-objects.

Notation 4. To simplify expressions, we denote by

⋆∏
and

⋆∐
the operators defined

as follows. For every subset K of Ob(C⪯),

#(K) ≥ 2 :



⋆∏
O∈K

O =

⪯∏
O∈K

O

⋆∐
O∈K

O =

⪯∐
O∈K

O

(42)

#(K) = 1 :



⋆∏
O∈K

O = O

⋆∐
O∈K

O = O

(43)

K = ∅ :

⋆∏
O∈K

O =

⋆∐
O∈K

O = ∅. (44)

Again to simplify expressions, for every subset K of Ob(C≪), we write the fol-

39

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

lowing notations.

#(K) ≥ 2 :



♢∏
O∈K

O =
≪∏

O∈K
O

♢∐
O∈K

O =

≪∐
O∈K

O

(45)

#(K) = 1 :



♢∏
O∈K

O = O

♢∐
O∈K

O = O

(46)

K = ∅ :
♢∏

O∈K
O =

♢∐
O∈K

O = ∅. (47)

When there is no confusion, we denote products and coproducts by the generic

superscript ⊙. Thus,

⊙∏
O∈K

O, denotes either the product

♢∏
O∈K

O when K ⊂ Ob(C≪),

or

⪯∏
O∈K

O when K ⊆ Ob(C⪯).

Notation 5. By the expression Ob (Ω[DCat]) we denote the collection of all sub-
classes of Ob(C≪) ∪Ob(C⪯).

Notation 6. The symbol ℘F , denotes the map sending each set into the class of
its finite subsets; hence,

∀K ∈ Ob(Set) : ℘F (K) =
{
X ⊆ K | #(X) < ∞

}
.

Definition 8. For every member O of Ob(Ω[DCat]), we say that a subset KO of
℘F (Ob (Ω[DCat])) is a generator for O when the following equation holds.

O =

⊙∏
D∈KO

 ⊙∐
Q∈D

Q

 . (48)

From now on, we denote by Gens(O) the family of all generators for O.

Lemma 18. If A ∈ Ob(Ω[DCat]) is nonempty, for every O ∈ A there is at least
one generator.

40

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof. The set
{
{O}

}
⊆ ℘F (A) satisfies the equation

O =

⊙∏
D∈
{
{O}
}
 ⊙∐

Q∈D
Q

 =

⊙∐
Q∈{O}

Q = O

because both
{
{O}

}
and {O} are singletons. See (43) and (46).

Definition 9. The class Ob (Ω[DCat]) is the object one of a category Ω[DCat]
such that, for every pair of objects (A1, A2), the homset hom(A1, A2) consists of
every map f : A1 −→ A2 that satisfies the following conditions.

(1) ∃KO ∈ Gens(O) : Kf(O) =
{
f [D] | D ∈ KO

}
∈ Gens(f(O)),

(2) f

 ⊙∏
D∈KO

 ⊙∐
Q∈D

Q

 =
⊙∏

D∈KO

f

 ⊙∐
Q∈D

Q

 =

⊙∏
D∈KO

 ⊙∐
Q∈D

f(Q)

 =
⊙∏

D∈KO

 ⊙∐
Q∈f [D]

Q

 =

⊙∏
D∈Kf(O)

 ⊙∐
Q∈D

Q

 .

For every object O, the O-identity satisfies the definition above. Likewise,
morphism-composition and its associativity are a straightforward consequence of
it. We say that the underlying generator in each morphism is one associated with
it.

In ordinary categories, morphism domains and codomains are objects with sim-
ilar structures. By contrast, we can define Ω[DCat]-morphisms between objects
of different categories; hence, they can be heterogeneous. Although Ω[DCat]-
morphisms are maps, this heterogeneous category includes C⪯ objects and mor-
phisms. These are posets closely related with Ω-categories [4]. This is why we use
the prefix Ω in our notation.

Lemma 19. The value of an Ω[DCat]-morphism f : A1 → A2 at each member
O of its domain is uniquely determined by its values in any associated generator
KO ∈ Gens(O).

Proof. Let f : A1 −→ A2 and g : A1 −→ A2 be two morphisms and KO a generator
for O ∈ A1 such that

∀D ∈ KO,∀Q ∈ D : f(Q) = g(Q).

41

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

By assumption,

f(O) = f

 ⊙∏
D∈KO

 ⊙∐
Q∈D

Q

 =
⊙∏

D∈KO

 ⊙∐
Q∈D

f(Q)

 =

⊙∏
D∈KO

 ⊙∐
Q∈D

g(Q)

 = g

 ⊙∏
D∈KO

 ⊙∐
Q∈D

Q

 = g(O). (49)

Theorem 20. Let A ∈ Ob (Ω[DCat]) be a nonempty attribute class and D the sub-
class of Ob (Ω[DCat]) of all objects defined by members of A. The map f : A −→ D,
sending each attribute p(x) ∈ A into the object that it defines, is an Ω[DCat]-
morphism.

Proof. Let p(x) be a member of A and Kp(x) a generator of it; hence,

p(x) =
≪∏

D∈Kp(x)

 ≪∐
q(x)∈D

q(x)

 .

By Lemma 7, the equation above leads to

f (p(x)) = f

 ≪∏
D∈Kp(x)

 ≪∐
q(x)∈D

q(x)

 =

⪯∏
D∈Kp(x)

f

 ≪∐
q(x)∈D

q(x)


and by Theorem 11 this equation leads to

f

 ≪∏
D∈Kp(x)

 ≪∐
q(x)∈D

q(x)

 =

⪯∏
D∈Kp(x)

 ⪯∐
q(x)∈D

f (q(x))

 ;

therefore,

f

 ⊙∏
D∈Kp(x)

 ⊙∐
q(x)∈D

q(x)

 =
⊙∏

D∈Kp(x)

 ⊙∐
q(x)∈D

f (q(x))

 .

42

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

3.1. Morphism extensions

Information extension is a substantial intelligent system capability. Extending maps
from samples of their values is a powerful skill. We consider heterogeneous extensions
arisen from Ω[DCat]-morphisms.

The map being easier to extend is the identity one and the like. Since different
objects can have common attributes, maps between definitions can be easier to
extend.

Definition 10. Let f : A1 −→ A2 be an Ω[DCat]-morphism and O a member of
A1 such that the associated generator KO contains a singleton

{
Q
}
. Assume that

there is an Ω[DCat]-morphism g : B1 −→ B2 such that HQ ∈ Gens(Q) and

f(Q) = g

 ⪯∏
W∈HQ

(⪯∐
V ∈W

V

) =

⪯∏
W∈HQ

(⪯∐
V ∈W

g(V)

)
. (50)

With these assumptions, we term Q-sub-extension the result of substituting {Q}
with HQ in KO, {f(Q)} with f [HQ] in f [KO], and extending f with g according to
equation (50). Likewise, we term g-sub-extension the result of all Q-sub-extensions
for every Q ∈ dom(g).

Theorem 21. Let A and B be two discernible classes with determining subsets
DA and DB, respectively. Let f : DA → B be a map that satisfies the following
conditions.

C1: There is an Ω[DCat]-morphism g : ∁⋎⪯AA
⋎ −→ ∁⋎⪯BB

⋎ that, for every O ∈ DA,
sends QO = ∁⋎⪯OA

⋎ into Qf(O) = ∁⋎⪯f(O)B
⋎.

C2: DB ⊆ f [DA].

With these assumptions,there is an extension f∗ : A −→ B of f to A being an
Ω[DCat]-morphism that can be sub-extended with g.

Proof. By hypothesis, the coproducts
⊙∐

P∈DA

defP (x) and
⊙∐

P∈DB

defP (x) define A and

B, respectively. These equations, together with Theorem 11, lead to

A⋎ =
⊙∐

P∈DA

P and B⋎ =
⊙∐

P∈DB

P.

By definition 5,

∀O ∈ A : O =

 ⊙∐
P∈DA

P

 ⊙∏
∁⋎⪯OA

⋎.

43

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Thus, taking into account C2, if for every O ∈ A \DA,

f∗(O) =

 ⊙∐
P∈DA

f(P)

 ⊙∏
g
(
∁⋎⪯OA

⋎) ; (51)

then
∀O ∈ A : f∗ (∁⋎⪯OA

⋎) = ∁⋎⪯f∗(O)B
⋎; (52)

hence,

f∗(O) = f∗

 ⊙∐
P∈DA

P

 ⊙∏(
∁⋎⪯OA

⋎) =

 ⊙∐
P∈f [DA]

P

 ⊙∏(
∁⋎⪯f∗(O)B

⋎
)
. (53)

If for each O ∈ A, QO = ∁⋎⪯OA
⋎ and KO =

{
DA, {QO}

}
, the equation above leads

to

f∗(O) =
⊙∏

D∈KO

(⊙∐
P∈D

f∗(P)

)
=

⊙∏
D∈KO

 ⊙∐
P∈f∗[D]

P

 ; (54)

hence, f∗ is an Ω[DCat]-morphism. Since, for each O ∈ A, KO contains the sin-
gleton {QO}, there is the g-sub-extension of f∗. To this end, the suitable generator
is K′

O =
{
DA,HO

}
, for each O ∈ A. This is the result of replacing the singleton

{QO} with HO in each generator KO.

4. Non-algorithmic procedures

In this section, we are concerned with non-algorithmic procedures. To this end, we
need an algorithm concept definition [3]. The following ones are the most generally
accepted.

D1 An algorithm is an effective procedure to solve a problem.

D2 Algorithms are computational processes defined by Turing machines [5].

D3 An algorithm is a set of rules transforming a symbol-sequence denoting a prob-
lem into another that denotes its solution.

D4 An algorithm is a finite procedure, written in a fixed symbolic vocabulary,
governed by precise instructions, moving in discrete steps, whose execution
requires no insight, cleverness, intuition, intelligence, or perspicuity, and that
sooner or later comes to an end [2].

44

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

D5 As a consequence of D4, an algorithm is a finite procedure created by an intel-
ligent system that knows its aim and understands each of its steps.

Definition D1 is ambiguous and does not indicate who can handle the procedure.
By contrast, definition D2 states that it is a Turing machine process. In D3, actions
work through symbol sequences of a language. In definition D4, the procedure is
performed blindly, ignoring its goal and the meaning of the involved actions.

Asking for the solution of a problem, to somebody that knows how to solve it,
fits into definition D1. It is a statement too ambiguous. The second definition
is restricted to Turing machines. An infinite set of rules fits into definition D3.
By condition D5, we can know no algorithm until it is created. However, the
algorithm construction can be the result of observing properties of the Real World.
For example, after observing that appending two objects to some collection of five,
we obtain seven, we can build the algorithm consisting of the substitution of the
symbols 5 + 2 with 7. According to D4, we assume each algorithm to satisfy the
following conditions.

C1 Algorithms can be denoted by finite symbol sequences in a fixed language gen-
erated by a symbolic vocabulary.

C2 Algorithms work blindly, handling symbol sequences and ignoring their mean-
ings and aims.

C3 Every algorithm, from an initial symbol sequence (input), obtains a final one
(output), denoting an entity that satisfies some required properties.

The conditions above give rise to the following algorithm attributes.

Cnd1(x) = “x is a procedure that can be denoted by finite symbol sequences

in a fixed language generated by a symbolic vocabulary.”

Cnd2(x) = “x is a procedure that works blindly, handling symbol sequences

and ignoring their meanings and aims. It must be created by

a system that understands its structure.”

Cnd3(x) = “x is a procedure that, from an initial symbol sequence (input),

obtains a final one (output), denoting an entity that satisfies

some required properties.”

45

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

As a consequence, if M contains the attributes Cnd1(x), Cnd2(x), and Cnd3(x),
for every algorithm A, the relation below holds.{

Cnd1(x), Cnd2(x), Cnd3(x)
}
⊆ FM(A). (55)

We do not consider a procedure as an algorithm when it is language independent
and its image under FM does not satisfy condition (55). Unlike algorithms, non-
algorithmic procedures need not be successful. They work frequently as the scientific
method consisting of test, error, correction. Thus, we can define the non-algorithmic-
procedure concept as follows.

Definition 11. A procedure P is non-algorithmic whenever it depends on the at-
tributes of the entities that it involves, and it is language independent.

Notation 7. We denote the input-output classes of any procedure P by a function-
like notation. Thus, dom(P) is the class of all objects that we can apply P and
img(P) the corresponding objects that P builds.

Definition 12. We term eulerithm each non-algorithmic procedure P satisfying the
conditions below.

1. From each object O in its domain, P can find the corresponding output P(O) ∈
img(P) in a finite step-sequence.

2. If O1, O2 . . . Ok is the object sequence that P constructs starting from O1 up to
Ok ∈ img(P), for every index n < k, P determines On+1 from the attributes
of both objects On and On+1.

Example 4. Let v⃗ be a vector such that |v⃗| > 0. For each n ∈ N, let v⃗ n be the
power defined as follows.

v⃗ n =

{
|v⃗|n if n is even,

|v⃗| (n−1) · v⃗ if n is odd.

This power definition has some common properties with the powers of i. The result of
every even power is of different nature from odd ones. From these common properties
we can generalize equation (2) as follows.

ei·v⃗ = cos(|v⃗|) + sin(|v⃗|) iv⃗
|v⃗|

.

Remark 3. It is a consequence of Theorem 15, those procedures based on ⪯-products
and ⪯-coproducts can be stated as eulerithms. For instance, consider a procedure P

46

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

solving a problem class K. To consider P as one procedure instead of a collection
of them, it can only accept problems lying in a homogeneous class Input(K). If P1

and P2 are members of Input(K), they must have a similar structure characterized
by some common attribute set Q; hence, for every suitable attribute class M, Q ⊆

FM

(
P1

⊙∐
P2

)
.

Remark 4. Since algorithms work blindly, ignoring the meaning of the symbol se-
quences that they handle, at least from a remote instance, they must be constructed by
a non-algorithmic procedure. Thus, every algorithm is the result of a finite sequence
of procedures starting from a non-algorithmic method.

The situation is similar using patterns. These are procedures containing variable
occurrences to be substituted by objects or some symbols denoting them. Neverthe-
less, patterns only can accept occurrences of those objects satisfying some required
properties. Thus, procedures based on patterns depend on property knowledge too.
At least, the procedure creator must know them.

In those sets enriched with topologies, map extensions require the underlying
functions to be continuous. Since Ω[DCat]-morphisms are maps, we need some
kind of continuity to state extensions properly.

Definition 13. We say that a procedure P is continuous in a pair (O1, O2) ∈
dom(P)× dom(P) when it satisfies the following conditions.

A: There is the morphism O1
⪯−→ O2.

B: For every O ∈ dom(P) the relation(
O

⪯∐
O1

)
⪯−→

(
O1

⪯∐
O2

)
,

leads to

1.

(
P(O)

⪯∐
P(O1)

)
⪯−→

(
P(O1)

⪯∐
P(O2)

)
.

2. There are the following complements (definition 5).

∁⋎
⪯O

(
O1

⪯∐
O2

)
and ∁⋎

⪯P(O)

(
P(O1)

⪯∐
P(O2)

)
.

47

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Theorem 22. Let P be a continuous procedure between O1 and O2. Let K and H
be the classes

K =
{
O ∈ Ob (Ω[DCat])

∣∣ O ⪯−→ O1

⋎∐
O2

}
(56)

H =
{
O ∈ Ob (Ω[DCat])

∣∣ O ⪯−→ P(O1)
⋎∐

P(O2)
}
. (57)

If the map g that sends
(
∁⋎⪯OK

⋎
)
into ∁⋎⪯P(O)H

⋎ is an Ω[DCat]-morphism, the
following statements hold.

1. The determining sets for K and H are
{
O1, O2

}
and

{
P(O1),P(O2)

}
, respec-

tively.

2. There is an extension f∗ of the map f that sends O1 and O2 into P(O1) and
P(O2), respectively, and it is an Ω[DCat]-morphism.

3. The map f∗ can be sub-extended with g.

Proof. 1. Statement (1) is a straightforward consequence of equations (56) and
(57).

2. By definition, f sends the determining set {O1, O2} of K into the subset{
P(O1),P(O2)

}
of H. Thus, taking into account definition 13, both maps

f and g satisfy the conditions of Theorem 21; hence, there is the extension f∗

of f .

3. It is a consequence of the statement above.

Remark 5. Continuous procedures satisfying the conditions of the theorem above
are eulerithms because their underlying maps are Ω[DCat]-morphisms consisting of
products and coproducts in the category C⪯; hence, they are based on attributes. The
example below illustrates this topic.

Example 5. Consider the equation-classes P =
{
K(x) = c | c ∈ R

}
and S =

{
x =

K−1(c) | c ∈ R}, where K : X ⊆ R −→ R is a bijective function. Assume that M
contains every attribute in this example. Consider the attributes below.

48

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

p1(x) = “x is an equation with one unknown z,”

p2(x) = “the left-hand of x consists of a bijection with unknown argument,”

p3(x) = “the right-hand of x consists of an occurrence of a real number

explicitly stated,”

q1(x) = “the left-hand of x consists of only one occurrence of z ,”

q2(x) = “the right-hand of x consists of a real number as the argument of

the inverse of a bijection g : X ⊆ R → R,”
h1(x) = “the known real number in the expression x is 9,”

h2(x) = “the known real number in the expression x is 3,”

h3(x) = “the known real number in the expression x is 2,”

r1(x) = “the bijection that x involves is g(z) =
1

z − 1
and its inverse is

g−1(z) =
1

z
+ 1,”

r2(x) = “the bijection that x involves is g(z) =
4

z
and its inverse is

g−1(z) =
4

z
,”

r3(x) = “the bijection that x involves is g(z) = 5z and its inverse is

g−1(z) =
z

5
.”

Let Q⋎ denote the generic object of the class Q that (h1(x) ∧ r1(x)) defines. The
conjunction P (x) = p1(x)∧p2(x)∧p3(x)∧h1(x)∧r1(x) defines the equation 1

z−1 = 9.

The conjunction S(x) = q1(x) ∧ q2(x) ∧ h1(x) ∧ r1(x) defines its solution z = 1
9 + 1.

An eulerithm can consist of a procedure sending P (x) into S(x). By Theorem 22 we
can extend a sample as Ω[DCat]-morphisms do. For instance, consider the sample
below of the map f : P ∪Q −→ S ∪Q sending each equation E ∈ P into its solution
f(E) ∈ S such that its restriction to Q is the identity.

f
(
4
z = 3

)
=
(
z = 4

3

)
,

f (5z = 2) =
(
z = 2

5

)
,

∀Q ∈ Q : f(Q) = Q

Since the restriction f |Q of f to Q is the identity, it is an Ω[DCat]-morphism. By
Theorem 15, the following relations hold.

49

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

(p1(x) ∧ p2(x) ∧ p3(x)) ∈ FM

((
4

z
= 3

) ≪∐
(5z = 2)

)
, (58)

(q1(x) ∧ q2(x)) ∈ FM

((
z =

4

3

) ≪∐(
z =

2

5

))
, (59)

∀Q ∈ Q : (h1(x) ∧ r1(x)) ∈ FM (Q) . (60)

The involved classes K and H are

K =

{
O ∈ Ob (Ω[DCat]) |O ⪯−→

(
4

z
= 3

) ≪∐
(5z = 2)

}
,

H =

{
O ∈ Ob (Ω[DCat]) |O ⪯−→

(
z =

4

3

) ≪∐(
z =

2

5

)}
.

The equations above lead to the extension f∗ of f such that

f∗
(

1

z − 1
= 9

)
= f

(((
4

z
= 3

) ⪯∐
(5z = 2)

) ⪯∏
Q⋎

)
=(

f

(
4

z
= 3

) ⪯∐
f (5z = 2)

) ⪯∏
f
(
Q⋎) =((

z =
4

3

) ⪯∐ (
z =

5

2

)) ⪯∏
Q⋎ =

(
z =

1

9
+ 1

)
(61)

because, as a consequence of (60),

p1(x) ∧ p2(x) ∧ p3(x) ∧ h1(x) ∧ r1(x) ∈ FM

(((
z =

4

3

) ⪯∐ (
z =

5

2

)) ⪯∏
Q⋎

)
,

and, if P1 =
(

1
z−1 = 9

)
and P2 =

(
z = 1

9 + 1
)
, the relations below hold.

Q⋎ = ∁⋎⪯P1
K⋎ = ∁⋎⪯P2

H⋎.

In equation (61), we extend f as an Ω[DCat]-morphism (Theorem 21). The
procedure is an eulerithm because, like Ω[DCat]-morphism extensions, it handles
attributes instead of symbol sequences. As a consequence of Theorem 22, we can
obtain the same result with attributes defining each equation instead of the equations
themselves.

50

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Procedures based on attributes build pairs equation 7→ solution, algorithm
input 7→ output, theorem 7→ proof , eulerithm input 7→ output, etc. Procedure clas-
sification depends on common attributes of the members of domains and codomains.
We cannot consider as the same procedure a rule set to solve an equation class and
an integration method. As a consequence, we require both classes dom(P) and
img(P), of every for every intrinsic procedure P, to be discernible (definition 6).

Every procedure P that preserves ⪯-products and ⪯-coproducts is equivalent
to an Ω[DCat]-morphism because, for every K ⊆ ℘F (dom(P)), the relation below
holds when the involved products and coproducts exist.

P

(⪯∏
D∈K

(⪯∐
O∈D

O

))
=

⪯∏
D∈K

(⪯∐
O∈D

P(O)

)
.

5. Algorithm creation

A proper method for eulerithm research is the creation of algorithms. Information
extension is the main aim of researching and learning. When we learn a language,
knowing a finite set D of sentence-meaning pairs, we can understand and build
sentences lying in a superset D∗ of D. This is possible because D∗ is not a random
extension of D. By contrast, each sentence-meaning pair in D∗ \D preserves some
logic structure of members of D. This is why we are concerned with eulerithms and
algorithms to build information extensions.

Although Ω[DCat]-object structures need not be the same, their logical bases
consist of attributes; hence, they are predicate sets. Thus, universal methods must
be based on attributes.

Remark 6. Let A be a finite symbol-set (alphabet), A∗ the free-monoid that it
generates, and A∗∗ the one generated by A∗. As C⪯-objects, the products and co-
products of the members of A∗ and A∗∗ depend on the symbol-sequence attributes
instead of monoid structure. For example, consider the sequences S1 = ABCxyz
and S2 = xyz55. Both have the subsequence xyz; hence, the attribute

p(x) = “x is a symbol-sequence containing the subsequence xyz.”

Thus, by Theorem 15, for every attribute set M containing p(x),

p(x) ∈ FM

(
S1

⋆∐
S2

)
.

Under some restricting conditions, the relation above leads to S1

⋆∐
S2 = xyz.

51

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

As usual, we term symbol each member of A, we denote word every member of
A∗ and phrase each sequence in A∗∗.

Definition 14. For each alphabet A, we term A-vocabulary each pair (A∗,≼) such
that A∗ is the free-monoid generated by A equipped with a total order relation ≼. An
A-vocabulary is syntactic or partial when not every member of A∗ belongs to it.

Definition 15. We term (A∗,≼)-phrase every ≼-ordered finite subset of A∗ having
no duplicate occurrence of any word.

Since each (A∗,≼)-phrase W is an ordered finite-set, we can consider it as a finite
sequence; however, W can contain, at most, one occurrence of any word.

Notation 8. For each A-vocabulary (A∗,≼), we denote by Σ(A∗,≼) the category
of all (A∗,≼)-phrases and C⪯-morphisms among them.

The attributes defining members of Ob (Σ(A∗,≼)) are expressions denoting each
of their words. For every word w ∈ A∗, by p(x,w) we denote the attribute

p(x,w) = “x is a phrase containing a unique occurrence of the word w”

Likewise,

p⊘(x) = “x is a void phrase,”

p≼(x) = “x is word sequence ordered by ≼,”

p∗(x) = “x is a member of Ob (Σ(A∗,≼)).”

By the attributes above, the conjunction

defW (x) = p∗(x) ∧ p≼(x) ∧ p(x,w1) ∧ p(x,w2) ∧ · · · ∧ p(x,wk). (62)

defines the (A∗,≼)-phrase W = w1w2 · · ·wk when i ≤ j leads to wi ≼ wj .
By the infix symbol △ we denote the binary composition law

△: Σ(A∗,≼)× Σ(A∗,≼) → Σ(A∗,≼)

defined as follows. For every sequence W = w1w2 . . . wn in Σ(A∗,≼) and each one-
word phrase v,

W △ v =



W if v = ⊘,

v if p⊘(W),

W if v ∈ {w1, w2 . . . wn},
w1w2 wn v, if wn ≼ v,

v w1w2 wn, if v ≼ w1,

w1w2 . . . wj v wj+1 . . . wn, if wj ≼ v ≼ wj+1,

(63)

52

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Analogously, we define the composition of two sequences W = w1w2 . . . wn and
V = v1v2 . . . vm of Σ(A∗,≼) iterating the procedure above; hence,

W1 = W △ v1,

W2 = W1 △ v2,

W3 = W2 △ v3,

.

W △ V = Wm−1 △ vm.

Since the Σ(A∗,≼)-objects are ordered finite sets, the composition

W1 △ W2 △ · · ·Wj

of a set of them K =
{
W1,W2 . . .Wj

}
is order-independent (63). Thus, for every

bijection σ :
{
1, 2, . . . j

}
−→

{
1, 2, . . . j

}
, the equation below holds.

W1 △ W2 △ · · ·Wj = Wσ(1) △ Wσ(2) · · ·Wσ(j).

From now on, the expression △
V ∈K

V denotes the △-composition of a family K of

Σ(A∗,≼)-objects. Thus, if K =
{
Wi | i ∈ I = {1, 2 . . . j}

}
,

△
i∈I

Wi = W1 △ W2 △ · · ·Wj .

When #(I) = 1
△
i∈I

Wi = W1,

and △
i∈I

Wi = ∅ when K is empty.

As in equation (62), we can define every Σ(A∗,≼)-object W by the conjunction
of p∗(x) ∧ p≼(x) and a subset of

P(A∗,≼) =
{
p(x,w) | w ∈ A∗} (64)

Lemma 23. For every couple of Σ(A∗,≼)-objects, W and V , there is the morphism

W
⪯−→ V if and only if V is a subsequence of W .

Proof. Suppose that there is the arrow W
⪯−→ V . For some attribute p(x) = defU (x)

the following equivalence holds.

defW (x) ⇐⇒ defV (x) ∧ defU (x). (65)

53

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

If W is a void phrase, so must be V and U . In this case, the lemma is obvious.
Assume that W = w1w2 . . . wj with j > 0. Thus, there is an attribute defU (x) such
that

defW (x) = p∗(x) ∧ p≼(x) ∧ p(x,w1) ∧ . . . p(x,wj) = defV (x) ∧ defU (x); (66)

hence, if I =
{
1, 2 . . . j

}
and j ≥ 2, there is a partition of I

I1 ∪ I2 = I and I1 ∩ I2 = ∅,

such that the following equations hold.

defV (x) = p∗(x) ∧ p≼(x) ∧

∧
i∈I1

p (x,wi)

 , (67)

defU (x) = p∗(x) ∧ p≼(x) ∧

∧
i∈I2

p (x,wi)

 . (68)

By the equations above, together with (65), V is a subsequence of W .
Assuming that V is a word subsequence of W , let I2 be the subset of I of all

indices of the members of W that V does not contain, and I1 = I \ I2. If I2 = ∅,
then W = V and the lemma is obvious. Assume that #(I2) > 0 and let U be the
word-sequence defined in (68). Thus, V is the Σ(A∗,≼)-object defined in (67) and

defW (x) ⇐⇒ defV (x) ∧ defU (x);

hence, defW (x)
≪−−→ defV (x), and W

⪯−→ V .

Lemma 24. Let I be a nonempty subset of N. Let I1 and I2 be a partition of it such
that

defW (x) = p∗(x) ∧ p≼(x) ∧

∧
i∈I1

p (x,wi)


and

defV (x) = p∗(x) ∧ p≼(x) ∧

∧
i∈I2

p (x,wi)


define two Σ(A∗,≼)-objects W and V , respectively. With these assumptions, the
conjunction

defW (x) ∧ defV (x) = p∗(x) ∧ p≼(x) ∧

 ∧
i∈(I1∪I2)

p (x,wi)


defines the Σ(A∗,≼)-object W △ V .

54

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof. By Definition 15, both objects W and V are finite word-sets ordered by ≼,
and by construction, W △ V is the ≼-ordered sequence of the members of

{
wi | i ∈

(I1 ∪ I2)
}
.

Lemma 25. For every Σ(A∗,≼)-object pair (W,V), there is the morphism W
⪯−→ V

if and only if, for some U ∈ Σ(A∗,≼), the following statement holds.

W = V △ U. (69)

Proof. Assume that W
⪯−→ V . By Lemma 23, V is a word subsequence of W =

w1w2 . . . wn. If J =
{
k1, k2 . . . km

}
is the subset of N consisting of indices of those

elements in W that are not in V , then

defW (x) = defV (x) ∧

(∧
k∈J

p(x,wk)

)
;

hence, the phrase U defined by the conjunction

p∗(x) ∧ p≼(x) ∧

(∧
k∈J

p(x,wk)

)
= defU (x)

satisfies the relation
defW (x) = defV (x) ∧ defU (x). (70)

The equation above, together with Lemma 24, leads to (69).
Suppose that equation (69) holds. Since {wk | k ∈ J} is the set of all words in

W that are not in V , then

defW (x) = defV (x) ∧ defU (x);

therefore, by definition 4, there is the arrow W
⪯−→ V .

Theorem 26. For every set K =
{
Wi | i ∈ I

}
of Σ(A∗,≼)-objects such that

#(I) ≥ 2, the following statements hold.

1.

⪯∏
i∈I

Wi =△
i∈I

Wi.

2. If K =
⋂
i∈I

{
U ∈ Ob (Σ(A∗,≼)) | Wi

⪯−→ U
}
, then

⪯∐
i∈I

Wi = △
U∈K

U =

⪯∏
U∈K

U. (71)

55

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof.

1. It is a straightforward consequence of definition of the law △ that

△
i∈I

Wi =

△
i∈I
i ̸=j

Wi

 △ Wj ;

therefore, by Lemma 25,

∀j ∈ I : △
i∈I

Wi
⪯−→ Wj . (72)

Thus, by the definition of product,

△
i∈I

Wi
⪯−→

⪯∏
i∈I

Wi. (73)

and by Lemma 23,

⪯∏
i∈I

Wi is a subsequence of △
i∈I

Wi. Now, suppose that there

is a word w ∈ △
i∈I

Wi that does not belong to

⪯∏
i∈I

Wi. For some k ∈ I, w ∈ Wk.

Since

⪯∏
i∈I

Wi
⪯−→ Wk, by Lemma 23, Wk ∋ w is a subsequence of

⪯∏
i∈I

Wi, which

contradicts our assumption w /∈
⪯∏
i∈I

Wi, and Statement (1) holds.

2. The set K is nonempty because, at least, it contains the void sequence ⊘. By
Lemma 23, every U ∈ K is a subsequence of each Wi, for every i in I. As a
consequence of the definition of K, together with Lemma 6 and Theorem 11,

the conjunction
∧
U∈K

defU (x) defines
∐⪯

i∈IWi; therefore,

∀U ∈ K :

⪯∐
i∈I

Wi
⪯−→ U. (74)

Thus, by Lemma 23, every U in K is a subsequence of
∐⪯

i∈IWi; therefore, so is
their composition △

U∈K
U . Likewise, there is a word-sequence T ∈ Ob (Σ(A∗,≼))

56

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

such that,
⪯∐
i∈I

Wi = U △ T ; (75)

hence, T is a subsequence of
∐⪯

i∈KWi. The relation above, together with
Lemma 23, leads to

⪯∐
i∈I

Wi
⪯−→ T ;

therefore, T ∈ K and Statement (2) holds.

Remark 7. The similarity between (71) and equation (32) states a relation between
coproduct and the generalized operator △. To avoid any ambiguity in (71), we denote
by ▽ the operator corresponding with the coproduct. Accordingly,

⪯∐
i∈I

Wi = △
U∈K

U =▽
i∈i

Wi. (76)

To simplify expressions, when K = {W} is a singleton,

▽
V ∈K

V = △
V ∈K

V = W.

Analogously, if K = ∅, then

▽
V ∈K

V = △
V ∈K

V = ⊘.

Corollary 27. The category Σ(A∗,≼) has products and coproducts.

Proof. It is a straightforward consequence of Theorem 26 and equation (63).

Corollary 28. If the map f : A1 ⊆ Ob (Ω[DCat]) −→ A2 ⊆ Ob (Σ(A∗,≼)) is an
Ω[DCat]-morphism and KO is a generator for O ∈ A1, then

f(O) = f

 ⊙∏
D∈KO

 ⊙∐
Q∈D

Q

 =

⊙∏
D∈KO

 ⊙∐
Q∈D

f(Q)

 = △
D∈KO

(
▽
Q∈D

f(Q)

)
(77)

57

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

Proof. By Corollary 27, Σ(A∗,≼) has products and coproducts. Thus, equation (77)
is a straightforward consequence of definition 9 and Theorem 26.

Definition 16. A subclass K of Ob (Σ(A∗,⪯)) is Σ-definable, when there is a finite
(A∗,≼)-phrase W such that

K =
{
V ∈ Ob (Σ(A∗,≼))

∣∣V ⪯−→ W
}
. (78)

Lemma 29. Every Σ-definable subclass of Ob (Σ(A∗,≼)) is discernible.

Proof. Let W be the Σ(A∗,≼)-object defining K: hence,

K =
{
V ∈ Ob (Σ(A∗,≼))

∣∣V ⪯−→ W
}
. (79)

Since W is finitely definable, by Lemma 25, the predicate

defK(x) = “W is a sub-phrase of x”

defines K. Likewise, for every V ∈ K, there is U ∈ Ob (Σ(A∗,⪯)) such that V =
W △ U ; therefore, U complements W to V .

If U1 and U2 are two members of ∁Ob(Σ(A∗,⪯))K that have no common word,
then, by Theorem 26,

(W △ U1)

⪯∐
(W △ U2) = W ;

consequently, defW (x) = def(W△U1)(x)
≪∐

def(W△U2)(x) and the lemma holds.

Theorem 30. Let C be a subcategory of C≪ such that Ob(C) is stable under con-
junctions and disjunctions, and M a basis of Ob(C) (definition 3). Let K be a full
subcategory of Ω[DCat] each of its objects is definable by an attribute in Ob(C).
With these assumptions there is a functor CM from K into Σ(A∗,≼).

Proof. Let O∗ be the set of all one-word phrases in A∗ and D : M −→ O∗ an injective
map. Let D∗:Ob(C)→Ob (Σ(A∗,≼)) be the extension of D defined as follows. By
hypothesis, M is a basis of Ob(C); hence, for every q(x) ∈ Ob(C) \ M, there is a

subset P of M such that q(x) =
∧

p(x)∈P

p(x). Thus, we define an extension D∗ of D

as follows.

D∗ (q(x)) = D∗

 ∧
p(x)∈P

p(x)

 = △
p(x)∈P

D (p(x)) . (80)

58

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

By assumption, for every O ∈ K, there is an attribute defO(x) in Ob(C) defining
it. We can define the object-map of CM as follows.

∀O ∈ Ob(K) : CM(O) = D∗(defO(x)). (81)

We show that CM preserves products and coproducts in both categories C≪ and C⪯.
Let Q be a K-object set of cardinality greater than 1. By the definition of D∗,

D∗

 ∧
O∈Q

defO(x)

 = △
O∈Q

D∗ (defO(x)) . (82)

By Lemma 7, Corollary 27, and Theorem 26, together with equation (81), the
equation above leads to

CM

 ⪯∏
O∈Q

O

 = D∗
(
def(

∏≪
O∈Q)

(x)
)
= D∗

 ≪∏
O∈Q

defO(x)

 =

D∗

 ∧
O∈Q

defO(x)

 = △
O∈Q

D∗ (defO(x)) =

⪯∏
O∈Q

D∗ (defO(x)) =

⪯∏
O∈Q

CM(O); (83)

therefore, CM preserves products.
To show that CM preserves coproducts, we show that, for every couple of objects

(O,Q), if O
⪯−→ Q, then D∗(O)

⪯−→ D∗(Q). By definition, the arrow Q
⪯−→ Q leads

to defO(x)
≪−−→ defQ(x). Again, by definition, there is an attribute h(x) such that

defO(x) = defQ(x) ∧ h(x). Thus, D∗(defO(x)) = D∗(defQ(x)) △ D∗(h(x)).

By Lemma 25, this relation leads to D∗ (defO(x))
≪−−→ D∗ (defQ(x)); hence,

CM(O)
⪯−→ CM(Q). As a consequence, from Lemma 10, equation (20), and The-

orem 20, the coproduct of an object set
{
Wi | i ∈ I

}
coincides with the product of

the members of
K =

⋂
i∈I

{
U ∈ Ob (Σ(A∗,≼)) | Wi

⪯−→ U
}
.

Thus, since CM preserves products, so does it with coproducts. Consequently, for
every K-morphism

f

(⪯∏
H∈W

(⪯∐
U∈H

U

))
=

⪯∏
H∈W

(⪯∐
U∈H

f(U)

)

59

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

the following equation holds.

CM

(
f

(⪯∏
H∈W

(⪯∐
U∈H

U

)))
=

⪯∏
H∈W

(⪯∐
U∈H

CM (f(U))

)
. (84)

For every f ∈ Mor (K), let f ♭ : CM(dom(f)) → Ob (Σ(A∗,⋞)) be the map such that,
for every U ∈ dom(f), sends CM(U) into CM (f(U)). Thus, if CM(f) = f ♭, equation
(84) leads to

CM (f)

(⪯∏
H∈W

(⪯∐
U∈H

CM(U)

))
=

⪯∏
H∈W

(⪯∐
U∈H

CM(f) (CM(U))

)
.

Consequently, CM(f) is a Σ(A∗. ⋞)-morphism. It is a straightforward consequence of
the equation above that CM preserves identities and morphism-composition; hence,
CM is a functor.

The theorem above defines a functor that sends definable mathematical con-
structions into word-sequences. Since functors preserve morphisms, the association
is not arbitrary but based on logic. Thus, it generates suitable languages to build
algorithms.

By Theorem 21, Ω[DCat]-morphism and eulerithm extensions are the result of
a combination of C⪯-products and C⪯-coproducts. By contrast, Σ(A∗,⋞)-morphism
extensions are the result of combinations of △ and ▽ working on word sequences;
hence, they are algorithms defined in extendable languages. Thus, the functor CM
constructs algorithms from eulerithms.

Example 6. We apply the theorem above in example 5. Using the Latin alphabet,
let M be the attribute set containing the subset{

p1(x), p2(x), p3(x), q1(x), q2(x), h1(x), h2(x), h3(x), r1(x), r2(x), r3(x)
}

and D the map defined as follows.

D(p1(x)) = pon,

D(p2(x)) = ptw,

D(p3(x)) = pth,

D(q1(x)) = qon,

D(q2(x)) = qtw,

60

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

D(h1(x)) = hon,

D(h2(x)) = htw,

D(h3(x)) = hth,

D(r1(x)) = ron,

D(r2(x)) = rtw,

D(r3(x)) = rth.

For short, the symbols W , V , U , U1, and U2 denote the word sequences

W = pon ptw pth,

V = qon qtw,

U1 =hon ron,

U2 =htw rtw,

U3 =hth rth.

With these notations, 

CM
(

1
x−1 = 9

)
= W △ U1

CM
(
4
x = 3

)
= W △ U2

CM (5x = 2) = W △ U3

CM
(
x = 1

9 + 1
)
= V △ U1

CM
(
x = 4

3

)
= V △ U2

CM
(
x = 5

2

)
= V △ U3

Let f be the map such that 
f(U1) = U1,

f(U2) = U2,

f(U3) = U3,

f(W) = V.

With these relations, we can write example 5 as follows.

f(W △ U1) = f ((W △ U2)▽ (W △ U3))△ f(U1)) =

(f(W △ U2)▽ f(W △ U3))△ f(U1) =

((f(W)△ f(U2))▽ (f(W)△ f(U3)))△ f(U1) =

((V △ U2)▽ (V △ U3))△ U1. (85)

61

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

By Theorem 26, ((V)△ U2)▽ (V △ U3)) = V ; therefore,

f(W △ U1) = V △ U1 = hon pon pth ptw ron

and CM
(
x = 1

9 + 1
)
= V △U1 is the solution of 1

x−1 = 9 because the meaning of the
phrase hon pon pth ptw ron is the attribute

P (x) = h1(x) ∧ p1(x) ∧ p2(x) ∧ p3(x) ∧ r1(x)

defining the expression
(
x = 1

9 + 1
)
. By Theorem 20, the map that sends each at-

tribute into the object that it defines is an Ω[DCat]-morphism too.

As in the example above, the operators △ and ▽ work transforming symbol
sequences blindly. Their actions fit into the algorithm concept. To this end, Theo-
rem 30 builds a suitable language, the extensions of which we obtain by Theorem 21.

6. Conclusions

Noticeable scientific research methods consist of finding, from a behavior-sample, the
laws ruling each procedure, to extend it to larger scenarios. Theorem 21 shows that
those procedures that we can state as Ω[DCat]-morphisms we can extend them from
behavior-samples involving discernible classes. They consist of eulerithms because
they are based on attributes through combinations of products⊙ and coproducts⊙.
Theorem 30 states a procedure to build suitable languages and algorithms to perform
them. Since eulerithms depend on attributes, a deeper research would consist of
methods to classify and find attributes.

Thus, we can discern three procedure–levels. By the first one, we find attributes
to construct eulerithms. The second level consists of eulerithms building algorithms.
The last level consists of algorithms solving problems.

Summarizing: Theorem 22 shows that when the involved classes are discernible,
problem–solution maps are Ω[DCat]-morphisms; therefore, they are eulerithms. By
Theorem 21, we can obtain them by extending samples of their behavior. Finally,
by Theorem 30, we can assign languages and build algorithms evaluating Ω[DCat]-
morphisms.

References

[1] J. Adámek, H. Herrlich, G. E. Strecker Abstract and concrete categories: the
joy of cats, 17, Reprint of the 1990 original [Wiley, New York; MR1051419], 2006,
pp. 1–507.

62

J. E. Palomar Tarancón – Non-Algorithmic Procedures . . .

[2] D. Berlinski. The advent of the algorithm, The idea that rules the world, Har-
court, Inc., New York, 2000, pp. xxii+345, isbn: 0-15-100338-6.

[3] A. Blass, Y. Gurevich. Algorithms: a quest for absolute definitions, in: Church’s
thesis after 70 years, vol. 1, Ontos Math. Log. Ontos Verlag, Heusenstamm, 2006,
pp. 24–57.

[4] E. E. Edeghagba. Ω-Algebraic Structures, Thesis (Ph.D.)–University of Novi
Sad (Serbia), ProQuest LLC, Ann Arbor, MI, 2017, p. 146, isbn: 978-1392-43254-9,
url: http://gateway.proquest.com/openurl?url ver=Z39.88- 2004&rft val fmt=info:
ofi/fmt:kev:mtx:dissertation&res dat=xri:pqm&rft dat=xri:pqdiss:27801296.

[5] Y. Gurevich. Sequential abstract-state machines capture sequential algo-
rithms, ACM Trans. Comput. Log. 1.1 (2000), pp. 77–111, issn: 1529-3785, doi:
10.1145/343369.343384, url: https://doi.org/10.1145/343369.343384.

[6] J. E. Palomar Tarancón. Algebraically coherent languages for efficient algo-
rithm construc- tion. Universal languages and optimal principle, Int. J. Open Probl.
Comput. Sci. Math. 4.2 (2011), pp. 11–37, issn: 1998-6262.

[7] J. E. Palomar Tarancón. Non-computable, indiscernible and uncountable math-
ematical constructions. Sub-cardinals and related paradoxes, Theory Appl. Math.
Comput. Sci. 7.2 (2017), pp. 63–80, issn: 2067-2764.

[8] V. Trnková. Universal categories, Comment. Math. Univ. Carolinae 7 (1966),
pp. 143–206, issn: 0010-2628.

[9] R. Wilson. The Most Beautiful Theorem in Mathematics, Oxford University
Press, 2018.

Juan-Esteban Palomar Tarancón
Department of Mathematics, Institut. Jaume I,
C/. Fco. Garćıa Lorca, 16-1A,
12530-Burriana-(Castellón, Spain)
email: jepalomar.tarancon@gmail.com

63

	Introduction
	Preliminaries
	Morphisms among heterogeneous structures
	Morphism extensions

	Non-algorithmic procedures
	Algorithm creation
	Conclusions

