BETWEEN $\alpha - I -$ OPEN SETS AND $S.P^* - I -$ OPEN SETS

R.M. AQEEL, F.A. AHMED, R. GUBRAN

ABSTRACT. The purpose of this research is to introduce a class of strong $\alpha^* - I -$ open sets, which is strictly positioned between the class of all $\alpha - I -$ open and class all $S.P^* - I -$ open and $S.S^* - I -$ open subsets of X. Connections with other classes of sets are provided. Furthermore, we defined the strong $\alpha^* - I -$ interior and strong $\alpha^* - I -$ closure operators and demonstrated their different characteristics using the newly introduced idea.

2010 Mathematics Subject Classification: 54A05,54A010,18F05,54B99.

Keywords: local functions, ideal topological spaces, strong $\alpha^* - I$ open sets, strong $\alpha^* - I$ closed sets.

1. INTRODUCTION AND PRELIMINARIES

Kuratowski pioneered the study of ideal topological spaces [19]. Janković and Hamlett [16] conducted the research in a local and methodical manner, including some new findings, enhancements to previously published findings, and applications. Hatir and Noiri [13] introduced the idea of $\alpha - I -$ open, semi - I - open, and $\beta - I -$ open sets in ideal topological spaces. Ekici recently introduced the concepts of $\beta^* - I$ open and $pre^* - I -$ open sets [7]. Aqeel and Bin Kuddah (see [2],[3]) presented the concepts of $S.S^* - I -$ open sets and $S.P^* - I -$ open sets in 2019. In this work we define the concepts of strong $\alpha^* - I -$ open sets and strong $\alpha^* - I -$ closed sets. Several traits and qualities are investigated.

 (X, τ) (just X) is used throughout this research to represent a topological space on which no separation axiom is assumed unless clearly mentioned. The closure and interior of a subset A in a topological space X are given by cl(A) and int(A), respectively.

Definition 1. [19] An ideal I on X is defined as a nonempty collection of subsets of X satisfying the following two conditions:

1. If $A \in I$ and $B \subset A$, then $B \in I$,

2. If $A \in I$ and $B \in I$, then $A \cup B \in I$.

 (X, τ, I) denote of an ideal topological space which means a topological space (X, τ) with an ideal I on X.

Definition 2. [24] For a space (X, τ, I) and a subset A of X, $A^*(I, \tau) = \{x \in X : U \cap A \notin I, \text{ for each } U \in \tau(X)\}$ where $\tau(X) = \{U \in \tau : x \in U\}$ is called the local function of A with respect to I and τ . We simply write A^* instead of $A^*(I, \tau)$ in case there is no chance for confusion.

Definition 3. [16] $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for a topology τ^* (also denoted by τ^* when there is no chance for confusion finer than τ).

Among the results published in [17, 13, 2, 5, 7, 3, 21, 1, 14, 9, 12, 10, 18, 15, 11] we mention the following results in the form of definition 1.4.

Definition 4. A subset A of an ideal topological space (X, τ, I) is called:

- 1. I open, if $A \subset int(A^*)$,
- 2. semi I open, if $A \subset cl^*(int(A))$,
- 3. strong semi^{*} I open, if $A \subset cl^*(int^*(A))$,
- 4. pre -I- open, if $A \subset int(cl^*(A))$,
- 5. $pre^* I open$, if $A \subset int^*(cl(A))$,
- 6. strong $pre^* I open$, if $A \subset int^*(cl^*(A))$,
- 7. α open, if $A \subset int(cl(int(A)))$,
- 8. $\alpha I open$, if $A \subset int(cl^*(int(A)))$,
- 9. β open, if $A \subset cl(int(cl(A)))$,
- 10. $\beta I open$, if $A \subset cl(int(cl^*(A)))$,
- 11. $\beta^* I open$, if $A \subset cl(int^*(cl(A)))$,
- 12. strong $\beta I open$, if $A \subset cl^*(int(cl^*(A)))$,
- 13. b I open, if $A \subset cl^*(int(A)) \cup int(cl^*(A))$,
- 14. weakly semi -I- open, if $A \subset cl^*(int(cl(A)))$,

- 15. weakly pre -I- open, if $A \subset {}_{s}cl(int(cl^*(A))),$
- 16. f_I set, if $A \subset (int(A))^*$,
- 17. I_{β} set, if $int(A) = cl(int(cl^*(A)))$,
- 18. almost strong I- open, if $A \subset cl^*(int(A^*))$,
- 19. *- perfect, if $A = A^*$,
- 20. S I set, if $int(A) = cl^*(int(A))$,
- 21. strong $S_{\beta I}$ set, if $int(A) = cl^*(int(cl^*(A)))$.

Definition 5. [6] In an ideal topological space (X, τ, I) , I is said to be codence if $\tau \cap I = \phi$.

Lemma 1. [16] Let (X, τ, I) be an ideal space, where I is codence, then the following hold:

- 1. $cl(A) = cl^*(A)$, for every *- open set A,
- 2. $int(A) = int^*(A)$, for every *- closed set A.

We mention the results presented in [8, 4, 2, 23, 13] in the form of lemma 1.7.

Lemma 2. For a subset A of an ideal topological space (X, τ, I) , the following are hold:

- 1. $PIint(A) = A \cap int(cl^*(A)),$
- 2. $S.P^*Icl(A) = A \cup cl^*(int^*(A)),$
- 3. $S.P^*Iint(A) = A \cap int^*(cl^*(A)),$
- 4. $S.S^*Icl(A) = A \cup int^*(cl^*(A)),$
- 5. $S.S^*Iint(A) = A \cap cl^*(int^*(A)),$
- 6. $wsIint(A) = A \cap cl^*(int(cl(A))),$
- 7. $wsIcl(A) = A \cup int^*(cl(int(A))),$
- 8. $\beta Icl(A) = A \cup int(cl(int^*(A))).$

Lemma 3. [24] For two subsets, A and B of a space (X, τ, I) , the following are hold:

- 1. If $A \subset B$, then $A^* \subset B^*$,
- 2. If $U \in \tau$, then $U \cap A^* \subset (U \cap A)^*$.

Lemma 4. [22] Let (X, τ, I) be an ideal space and A be a * - dense in itself subset of X. Then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Corollary 5. [20] For each $A \subset (X, \tau, I)$ we have : $(\cup cl^*(A_\alpha) : \alpha \in \nabla) \subset cl^*(\cup A_\alpha : \alpha \in \nabla)).$

Theorem 6. [20] For two subsets, A and B of a space (X, τ, I) , the following properties are hold:

- 1. If $A \subseteq B$, then $cl^*(A) \subseteq cl^*(B)$,
- 2. $cl^*(cl^*(A)) \subseteq cl^*(A)$,
- 3. $cl^*(A \cap B) \subseteq cl^*(A) \cap cl^*(B)$,
- 4. $cl^*(A \cup B) = cl^*(A) \cup cl^*(B)$,
- 5. $A \subseteq cl^*(A) \subseteq cl(A)$.

Lemma 7. [25] Let A and B be subsets of (X, τ, I) and $int^*(A)$ denote the interior of A with respect to τ^* , the following properties are hold:

- 1. If $A \subseteq B$, then $int^*(A) \subseteq int^*(B)$,
- 2. If A is an open in (X, τ, I) , then A = int(A) and $A = int^*(A)$,
- 3. $int(A) \subseteq int^*(A) \subseteq A$,

.

- 4. $int^*(A \cap B) = int^*(A) \cap int^*(B)$,
- 5. $int^*(A) \cup int^*(B) \subset int^*(A \cup B)$.
 - 2. Strong $\alpha^* I \text{Open Sets}$ and Strong $\alpha^* I \text{Closed Sets}$

Motivated by the definition 4 of [3,6,8] we aim here at defining new type of sets are strong $\alpha^* - I$ - open set ,strong $\alpha^* - I$ - closed set and at investigating several of their properties and relationships to other sets.

Definition 6. Given a space (X, τ, I) and $A \subset X$, A is called strong $\alpha^* - I - open$ set (briefly $S.\alpha^* - I - open$) if $A \subset int^*(cl^*(int^*(A)))$. We denote by $S.\alpha^*IO(X) = \{A \subset X : A \subset int^*(cl^*(int^*(A)))\}$ **Definition 7.** A subset A of a space (X, τ, I) is said to be strong $\alpha^* - I - Cclosed$ set (briefly $S.\alpha^* - I - closed$) if its complement is a $S.\alpha^* - I - open$ set. We denote that all $S.\alpha^* - I - closed$ sets by $S.\alpha^*IC(X)$.

The following diagram holds for any subset A of a space (X, τ, I) .

$$\begin{array}{c} open(closed) \\ \downarrow \\ \alpha - I - open(closed) \\ \downarrow \\ S.\alpha^* - I - open(closed) \\ S.P^* - I - open(closed) \\ \end{array} \xrightarrow{\beta^* - I - open(closed)} \\ S.P^* - I - open(closed) \\ \end{array}$$

Figure 1: The implication between some generalizations of open(resp.closed) sets.

Remark 1. The convers of the implication in diagram 1 are not true in general as shown in the following examples.

Example 1. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $I = \{\phi, \{a\}, \{c\}, \{a, c\}\}$. Then if we take

- 1. $A = \{c\}$ is a $\beta^* I open set$, but $A = \{c\} \notin S.\alpha^* IO(X)$,
- 2. $A = \{b\} \in S.\alpha^* IO(X), but A = \{b\} \notin \tau.$

Example 2. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$ and $I = \{\phi, \{c\}, \{d\}, \{c, d\}\}$. we notice that $A = \{a, b\} \in S.\alpha^* IO(X)$, but A is not $\alpha - I$ open set.

Example 3. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\phi, \{a\}, \{d\}, \{a, d\}\}$. Then $A = \{c, d\} \in SP^*IO(X)$, but $A = \{c, d\} \notin S.\alpha^*IO(X)$.

Example 4. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ and $I = \{\phi, \{b\}\}$. Then $A = \{a, b\} \in SS^*IO(X)$, but $A = \{a, b\} \notin S.\alpha^*IO(X)$.

Remark 2. The strong $\alpha^* - I - open$ sets and I - open sets are independent notions, we show that from the next example.

Example 5. From example 3 we obtain

- 1. $A = \{a\} \in S.\alpha^* IO(X)$ while $A \notin IO(X)$,
- 2. $A = \{c\} \in IO(X)$, but $A \notin S.\alpha^* IO(X)$.

Remark 3. The strong $\alpha^* - I - closed$ sets and pre- closed sets are independent notions, we show that from the next example.

Example 6. From example 3 we obtain

- 1. $A = \{b\} \in PC(X)$ while $A \notin S.\alpha^* IC(X)$,
- 2. $A = \{a\} \notin PC(X)$, but $A \in S.\alpha^* IC(X)$.

Theorem 8. Let (X, τ, I) be a space, then B is a $S.\alpha^* - I$ - open set if and only if there exists a $S.\alpha^* - I$ - open set A such that $A \subset B \subset int^*(cl^*(A))$.

Proof. Let B be a $S.\alpha^* - I-$ open, then $B \subset int^*(cl^*(int^*(B)))$, we put $A = int^*(B)$ which is *- open hence A is a $S.\alpha^* - I-$ open and

$$\begin{array}{rcl} A &=& int^*(B) \\ &\subset & B \\ &\subset & int^*(cl^*(int^*(B))) \\ &=& int^*(cl^*(A)). \end{array}$$

conversely, if A is a $S.\alpha^* - I-$ open set such that $A \subset B \subset int^*(cl^*(A))$, then $A \subset int^*(cl^*(int^*(A)))$ and $int^*(A) \subset int^*(B)$. Hence

$$\begin{array}{rcl} B & \subset & int^*(cl^*(A)) \\ & \subset & int^*(cl^*(int^*(cl^*(int^*(A))))) \\ & \subset & int^*(cl^*(cl^*(int^*(A)))) \\ & \subset & int^*(cl^*(int^*(A))) \\ & \subset & int^*(cl^*(int^*(B))). \end{array}$$

which shows that B is a $S.\alpha^* - I-$ open set.

Corollary 9. A subset B of a space (X, τ, I) is a $S.\alpha^* - I-$ open set if and only if there exists a *- open set A such that $A \subset B \subset cl^*(int^*(A))$.

Proof. Comes directly from theorem 8.

Theorem 10. Let (X, τ, I) be a space then, A is a $S.\alpha^* - I-$ open set if and only if A is both $S.P^* - I-$ open and $S.S^* - I-$ open set.

Proof. Necessity, this is obvious. Sufficiency, Let A be a $S.P^* - I$ - open set and $S.S^* - I$ - open set, then we have

$$\begin{array}{rcl} A & \subset & int^*(cl^*(A)) \\ & \subset & int^*(cl^*(cl^*(int^*(A)))) \\ & \subset & int^*(cl^*(int^*(A))). \end{array}$$

Hence A is a $S \cdot \alpha^* - I -$ open set.

Theorem 11. A subset A of a space (X, τ, I) is said to be a $S.\alpha^* - I - closed$ set if and only if $cl^*(int^*(cl^*(A))) \subset A$.

Proof. Let A be a $S.\alpha^* - I$ - closed set of (X, τ, I) , then (X - A) is a $S.\alpha^* - I$ - open set and hence $(X - A) \subset int^*(cl^*(int^*(X - A))) = X - cl^*(int^*(cl^*(A)))$. Therefore, we obtain $cl^*(int^*(cl^*(A)) \subset A$. Conversely, let $cl^*(int^*(cl^*(A))) \subset A$, then $(X - A) \subset int^*(cl^*(int^*(X - A)))$ and hence

Conversely, let $cl^*(int^*(cl^*(A))) \subset A$, then $(X - A) \subset int^*(cl^*(int^*(X - A)))$ and hence (X - A) is a $S.\alpha^* - I$ - open set. Therefore, A is a $S.\alpha^* - I$ - closed.

Theorem 12. Let (X, τ, I) be a space where I be codense, then A is a $S.\alpha^* - I - closed$ if and only if $cl^*(int(cl^*(A))) \subset A$.

Proof. Let A be a $S.\alpha^* - I-$ closed set of X, then $A \supset cl^*(int^*(cl^*(A))) = cl^*(int(cl^*(A))).$ Conversely, let A be any subset of X such that $A \supset cl^*(int(cl^*(A))).$ This implies that $A = cl^*(int^*(cl^*(A)))$, i.e., A is a $S.\alpha^* - I-$ closed set.

Theorem 13. A subset A of a space (X, τ, I) is a $S.\alpha^* - I - closed$ if and only if there exists a $S.\alpha^* - I - closed$ set B such that $B \supset A \supset cl^*(int^*(B))$.

Proof. Let A be a $S.\alpha^* - I$ - closed set of a space (X, τ, I) , then $A \supset cl^*(int^*(cl^*(A)))$. We put $B = cl^*(A)$ be a *- closed set. i.e., B is a $S.\alpha^* - I$ - closed and

$$B = cl^*(A)$$

$$\supset A$$

$$\supset cl^*(int^*(cl^*(A)))$$

$$\supset cl^*(int^*(B)).$$

Conversely, if B is a $S.\alpha^* - I-$ closed set such that $B \supset A \supset cl^*(int^*(B))$, then $B \supset cl^*(int^*(cl^*(B)))$ and $cl^*(B) \supset cl^*(A)$. Since

$$\begin{array}{rcl} B \supset A & \supset & cl^{*}(int^{*}(B)) \\ & \supset & cl^{*}(int^{*}(cl^{*}(int^{*}(cl^{*}(B))))) \\ & \supset & cl^{*}(int^{*}(int^{*}(cl^{*}(B)))) \\ & = & cl^{*}(int^{*}(cl^{*}(B))) \\ & \supset & cl^{*}(int^{*}(cl^{*}(A))). \end{array}$$

Hence A is a $S.\alpha^* - I$ - closed set.

Corollary 14. a subset A of a space (X, τ, I) is a $S.\alpha^* - I - closed$ set if and only if there exists a *- closed set B such that $B \supset A \supset cl^*(int^*(B))$.

Proof. Comes directly from theorem 13.

The following Theorems, Corollaries and remarks introduce properties of $S.\alpha^* - I-$ open set and $S.\alpha^* - I-$ closed set and their relation with some other sets.

Remark 4. The strong $\alpha^* - I$ open sets and b - I open sets are independent notions, we show that from the next examples.

Example 7. From example 4 if we take $A = \{a, b\}$, then we get A is a b - I - open, but it is not $S \cdot \alpha^* - I - open$.

Example 8. From example 1 if we take $A = \{b\}$, then we get A is not b - I - open, but it is a $S \cdot \alpha^* - I - open$.

Corollary 15. Let (X, τ, I) be a space. If A is a $S.\alpha^* - I-$ open set, then $cl^*(A)$ is a $S.S^* - I-$ open set.

Proof. Let A be a $S.\alpha^* - I$ open. Then $A \subset int^*(cl^*(int^*(A)))$ and

$cl^*(A)$	\subset	$cl^*(int^*(cl^*(int^*(A))))$
	\subset	$cl^*(cl^*(int^*(cl^*(A))))$
	\subset	$cl^*(int^*(cl^*(A))).$

This implies that $cl^*(A)$ is a $S.S^* - I$ open.

Corollary 16. Let (X, τ, I) be a space. If A is a $S \cdot \alpha^* - I - open$, then $int^*(A)$ is a $S \cdot P^* - I - open$ set.

Proof. Let A be a $S.\alpha^* - I-$ open, then $A \subset int^*(cl^*(int^*(A)))$ and $int^*(A) \subset int^*(int^*(cl^*(int^*(A)))) \subset int^*(cl^*(int^*(A)))$. This implies that $int^*(A)$ is a $S.P^* - I-$ open.

The following theorem shows that the union of $S.\alpha^* - I$ open sets gives a $S.\alpha^* - I$ open set, while the intersection of a $S.\alpha^* - I$ open set and an open set gives a $S.\alpha^* - I$ open set.

Theorem 17. Let (X, τ, I) be a space, A and B are subsets of X. the following are hold:

- 1. If $U \in S.\alpha^* IO(X, \tau)$, for each $\gamma \in \Delta$, then $\bigcup \{U_\gamma : \gamma \in \Delta\} \in S.\alpha^* IO(X, \tau)$ and If $U \in S.\alpha^* IC(X, \tau)$, for each $\gamma \in \Delta$, then $\bigcap \{U_\gamma : \gamma \in \Delta\} \in S.\alpha^* IC(X, \tau)$,
- 2. If $A \in S.\alpha^* IO(X, \tau)$, and $B \in \tau$, then $A \cap B \in S.\alpha^* IO(X, \tau)$ and If $A \in S.\alpha^* IC(X, \tau)$ and $B \in \tau^c$, then $A \cup B \in S.\alpha^* IC(X, \tau)$,
- 3. If $A \in S.\alpha^* IO(X)$ and B is a $S.\beta I-$ open set, then $A \cup B$ is a $\beta^* I-$ open set and If $A \in S.\alpha^* IC(X)$ and B is a $S.\beta I-$ closed set, then $A \cap B$ is a $\beta^* I-$ closed set.

Proof. We only need to prove the case of opennes.

1. Since $U_{\gamma} \in S\alpha^* IO(X, \tau)$, we have $U_{\gamma} \subset itn^*(cl^*(int^*(U_{\gamma})))$, for each $\gamma \in \Delta$. Then we obtain

 $\bigcup_{\gamma \in \Delta} U_{\gamma} \subset \bigcup_{\gamma \in \Delta} int^{*}(cl^{*}(int^{*}(U_{\gamma}))) \\
\subset int^{*}(\bigcup_{\gamma \in \Delta} cl^{*}(int^{*}(U_{\gamma}))) \\
= int^{*}(cl^{*}(\bigcup_{\gamma \in \Delta} int^{*}(U_{\gamma}))) \\
\subset int^{*}(cl^{*}(int^{*}(\bigcup_{\gamma \in \Delta} U_{\gamma})))$

This shows that $\bigcup_{\gamma \in \Delta} U_{\gamma} \in S.\alpha^* IO(X, \tau).$

2. Let $A \in S.\alpha^* IO(X, \tau)$ and $B \in \tau$. Then $A \subset int^*(cl^*(int^*(A)))$ and $B = int(B) \subset int^*(B)$. Thus, we obtain

$$\begin{array}{rcl} A \cap B & \subset & int^*(cl^*(int^*(A))) \cap int^*(B) \\ & \subset & int^*(cl^*(int^*(A)) \cap B) \\ & = & int^*(((int^*(A))^* \cup int^*(A)) \cap B) \\ & = & int^*(((int^*(A))^* \cap B) \cup (int^*(A) \cap B)) \\ & \subset & int^*((int^*(A \cap B))^* \cup int^*(A) \cap B)) \\ & \subset & int^*((int^*(A \cap B))^* \cup int^*(A \cap B)) \\ & = & int^*(cl^*(int^*(A \cap B))). \end{array}$$

Hence $A \cap B$ is a $S \cdot \alpha^* - I -$ open.

3. Let A is a $S.\alpha^* - I-$ open set, then $A \subset int^*(cl^*(int^*(A)))$, B is a $S.\beta - I-$ open, then $B \subset cl^*(int(cl^*(B)))$. Now

$$\begin{array}{rcl} A \cup B & \subset & int^*(cl^*(int^*(A))) \cup cl^*(int(cl^*(B))) \\ & \subset & cl^*(int^*(cl^*(A))) \cup cl^*(int^*(cl^*(B))) \\ & \subset & cl(int^*(cl(A))) \cup cl(int^*(cl(B))) \\ & = & cl(int^*(cl(A)) \cup int^*(cl(B))) \\ & \subset & cl(int^*(cl(A) \cup cl(B))) \\ & = & cl(int^*(cl(A \cup B))). \end{array}$$

Hence $A \cup B$ is a $\beta^* - I$ open set.

Theorem 18. Let (X, τ, I) be a space, where I is codense then the following hold:

- 1. Every $S.\alpha^* I-$ open set is a $\beta I-$ open set,
- 2. Every $S.\alpha^* I-$ open set is a pre -I- open set,
- 3. Every $S.\alpha^* I-$ open set is a weakly semi -I- open set.

Proof. 1. Let A is a $S.\alpha^* - I$ open set, then

$$\begin{array}{rcl} A & \subset & int^*(cl^*(int^*(A))) \\ & \subset & cl^*(int^*(cl^*(A))) \\ & = & cl^*(int(cl^*(A))) \\ & \subset & cl(int(cl^*(A))). \end{array}$$

Hence A is a $\beta - I -$ open set.

2. Let A is a $S.\alpha^* - I-$ open set, then

$$\begin{array}{rcl} A & \subset & int^*(cl^*(int^*(A))) \\ & \subset & int^*(cl^*(cl^*(A))) \\ & = & int^*(cl^*(A)) \\ & = & int(cl^*(A)). \end{array}$$

Hence A is a pre - I - open set.

3. Let A is a $S.\alpha^* - I$ open set, then

 $\begin{array}{rcl} A & \subset & int^*(cl^*(int^*(A))) \\ & \subset & cl^*(int^*(cl^*(A))) \\ & = & cl^*(int(cl^*(A))) \\ & \subset & cl^*(int(cl(A))). \end{array}$

Hence A is a weakly semi - I - open set.

Remark 5. The reverse of theorem 18 is not true in general as shown in the following example.

Example 9. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{c\}, \{a, b, d\}\}$ and $I = \{\phi, \{a\}\},$ then we get

- 1. $A = \{b\}$ is a $\beta I open set, but <math>A \notin S.\alpha^* IO(X)$, 2. $A = \{a, b\} \in PIO(X)$ set, but $A \notin S.\alpha^* IO(X)$,
- 3. $A = \{c, d\}$ is a weakly semi -I open set, but it $A \notin S.\alpha^* IO(X)$.

Theorem 19. Let (X, τ, I) be a space and $A \subset X$ be a *- closed set. Then A is a $S.\alpha^* - I-$ open set if and only if A is a $S.P^* - I-$ open set.

Proof. let A be a $S.\alpha^* - I$ - open set, then A is a $S.P^* - I$ - open set. conversely, let A be a $S.P^* - I$ - open set, then $A \subset int^*(cl^*(A))$. Since A is a *- closed set, then $int^*(cl^*(A)) = int^*(A)$. Now $A = int^*(A) \subset int^*(cl^*(int^*(A)))$. Which shows A is a $S.\alpha^* - I$ - open set.

Theorem 20. Let (X, τ, I) be a space, and $A \subset X$, then the followings hold:

- 1. A is a $S \alpha^* I$ open set, if it is both strong βI open set and strong $S_{\beta I}$ set,
- 2. A is a $S.\alpha^* I-$ open set, if it is both semi -I- open set and S-I- set.
- Proof. 1. Let A be a strong βI open set, then $A \subset cl^*(int(cl^*(A)))$. Since A is a strong $S_{\beta I}$ set, then $int(A) = cl^*(int(cl^*(A)))$. Now $A = int(A) \subset int^*(cl^*(int^*(A)))$. Hence A is a $S.\alpha^* - I$ open set.
 - 2. Let A be a semi I open set, then $A \subset cl^*(int(A))$. Since A is a S I set, then $int(A) = cl^*(int(A))$.Now $A = int(A) \subset int^*(cl^*(int^*(A)))$. Hence A is a $S.\alpha^* - I - open$ set.

Theorem 21. Let (X, τ, I) be a space. A is a $S \cdot \alpha^* - I$ open set if it is both $pre^* - I$ open set and closed set (resp. A is a $S \cdot \alpha^* - I$ - closed set if it is both $pre^* - I$ - closed set and open set).

Proof. According to the duality of closeness and opennes, we only need to prove the case of $S.\alpha^* - I-$ open.

Let A is a $pre^* - I$ open set, then $A \subset int^*(cl(A))$. Since A is a closed set, then

$$\begin{array}{rcl} A & \subset & int^*(cl(A)) \\ & = & int^*(A) \\ & \subset & int^*(cl^*(int^*(A))). \end{array}$$

Hence A is a $S \cdot \alpha^* - I -$ open set.

Theorem 22. Let (X, τ, I) be a space and $A \subset X$ be α - open set and β - closed set. Then A is a $S.\alpha^* - I$ - open set.

Proof. Let A is an α - open set, then $A \subset int(cl(int(A)))$, since A is a β - closed set, then $A \supset int(cl(int(A))) \Rightarrow A = int(cl(int(A))) \Rightarrow int(A) = int(cl(int(A)))$. Now $A = int(A) \subset int^*(cl^*(int^*(A)))$. Hence A is a $S.\alpha^* - I$ - open set.

Theorem 23. Let (X, τ, I) be an ideal topological space, $A \subset X$ and A is a $S.\alpha^* - I-$ open set, then the followings hold:

- 1. $S.S^*Icl(A) = int^*(cl^*(A)),$
- 2. $S.P^*Icl(A) = cl^*(int^*(A)).$

Proof. Let A be a $S \cdot \alpha^* - I -$ open set in X. Then we have:

- 1. $A \subset int^*(cl^*(int^*(A))) \subset int^*(cl^*(A)).$ Thus we have $S.S^*Icl(A) = int^*(cl^*(A)).$
- 2. $A \subset int^*(cl^*(int^*(A))) \subset cl^*(int^*(A)).$ Hence $S.P^*Icl(A) = cl^*(int^*(A)).$

Remark 6. The reverse of theorem 23 is not true in general as shown in the following examples.

Example 10. From example 3 if $A = \{b\}$, then $S.S^*Icl(A) = int^*(cl^*(A))$, but $A \notin S.\alpha^*IO(X)$.

Example 11. From example 4 if $A = \{b, c\}$, then $S.P^*Icl(A) = cl^*(int^*(A))$, but $A \notin S.\alpha^*IO(X)$.

Theorem 24. Let (X, τ, I) be a space, $A \subset X$ and A is a $S.\alpha^* - I-$ closed set then the followings hold:

- 1. $S.S^*Iint(A) = cl^*(int^*(A)),$
- 2. $S.P^*Iint(A) = int^*(cl^*(A)).$

Proof. Let A be a $S.\alpha^* - I$ - closed set in X. Then we have

- 1. $A \supset cl^*(int^*(cl^*(A))) \supset cl^*(int^*(A)).$ Thus we have $S.S^*Iint(A) = cl^*(int^*(A)).$
- 2. $A \supset cl^*(int^*(cl^*(A))) \supset int^*(cl^*(A)).$ Hence $S.P^*Iint(A) = int^*(cl^*(A)).$

Remark 7. The reverse of theorem 24 is not true in general as shown in the following examples.

Example 12. From example 3 if $A = \{a, b\}$, then $S.S^*Iint(A) = cl^*(int^*(A))$, but $A \notin S.\alpha^*IC(X)$.

Example 13. From example 4 if $A = \{c\}$, then $S.P^*Iint(A) = int^*(cl^*(A))$, but $A \notin S.\alpha^*IC(X)$.

Theorem 25. Let (X, τ, I) be a space. If A is *-perfect, and A is $S.\alpha^* - I$ - open set, then the following hold:

- 1. A is an α open set,
- 2. A is an almost strong I- open set,
- 3. A is a semi -I open set.

Proof. 1. Let A be a $S \cdot \alpha^* - I -$ open set, then

 $\begin{array}{rcl} A & \subset & int^*(cl^*(int^*(A))) \\ & & = int(cl^*(int(A)) \\ & \subset & int(cl(int(A))). \end{array}$

This implies A is an α - open set.

2. Let A be a $S \cdot \alpha^* - I -$ open set, then

$$A \subset int^*(cl^*(int^*(A))) \subset cl^*(cl^*(int^*(A))) = cl^*(int(A)) = cl^*(int(A^*)).$$

Hence A is an almost strong I – open set.

3. Let A be a $S.\alpha^* - I-$ open set, then

$$\begin{array}{rcl} A & \subset & int^*(cl^*(int^*(A))) \\ & \subset & cl^*(int^*(A)) \\ & = & cl^*(int(A)). \end{array}$$

This implies A is a semi - I open set.

Theorem 26. Let (X, τ, I) be a space and $A \subset A^*$ and A^* is a $S.\alpha^* - I-$ closed set. Then $X - cl^*(A)$ is a $S.\alpha^* - I-$ open set.

Proof. Given $A \subset A^*$, then $A^* = cl(A) = cl^*(A)$. Also A^* is a $S.\alpha^* - I-$ closed set, $X - A^*$ is $S.\alpha^* - I-$ open set. Therefore, $X - cl^*(A)$ is a $S.\alpha^* - I-$ open set.

Theorem 27. Let (X, τ, I) be a space. Then $A \cup (X - A^*)$ is a $S \cdot \alpha^* - I - closed$ set if and only if $A^* - A$ is a $S \cdot \alpha^* - I - open$ set.

Proof. Suppose $A \cup (X - A^*)$ is a $S.\alpha^* - I$ - closed set. Since $X - (A^* - A) = A \cup (X - A^*)$, then $A^* - A$ is a $S.\alpha^* - I$ - open set. Converse part is obviously true.

Theorem 28. Let (X, τ, I) be a space and $A \subset X$, then

- 1. If A is a S.P* I closed set and S. α^* I open set, then A is a *– open set,
- 2. If A is a f_I set which is α open set, then A is a $S.\alpha^* I$ open set.
- *Proof.* 1. Let A is a $S.P^* I closed$ set and $S.\alpha^* I open$ set, then $cl^*(int^*(A)) \subset A$ and $A \subset int^*(cl^*(int^*(A)))$. Now $A \subset int^*(A) = int^*(A)$. Hence A is a *- open set.
 - 2. Let A is a f_I set, then $A \subset (int(A))^*$ and so $int(A) \subset (int(A))^*$ and $cl(int(A)) = cl^*(int(A))$. Since A is an α open set, then

$$\begin{array}{rcl} A & \subset & int(cl(int(A))) \\ & = & int(cl^*(int(A))) \\ & \subset & int^*(cl^*(int^*(A))) \end{array}$$

Hence A is a $S.\alpha^* - I-$ open set .

Remark 8. The converse of the results in theorem 28 are not true in general, as shown by the following examples.

Example 14. From example 2 if we take

- 1. $A = \{a\} \in \tau^* \text{ and } A \in S.\alpha^* IO(X), \text{ but } A \notin SP^* IC(X) \text{ set},$
- 2. $A = \{a, b\} \in S.\alpha^* IO(X)$, but it is not α open set or f_I set.

Example 15. From example 3 if we take

- 1. $A = \{a\}$ then $A \in S.\alpha^* IO(X)$ and A is an α open set, but A is not f_I set,
- 2. $A = \{b, c, d\}$ then $A \in S.\alpha^* IO(X)$ and A is $af_I set$, while A is not α open.

Theorem 29. Let (X, τ, I) be a space. If A is a *- perfect, then every $S \cdot \alpha^* - I -$ open set is a weakly pre -I - open set.

Proof. Let A be a $S \cdot \alpha^* - I -$ open set, then

$$\begin{array}{rcl} \mathbf{A} & \subset & int^*(cl^*(int^*(A))) \\ & \subset & int^*(cl^*(int^*(A \cup A^*))) \\ & = & int(cl^*(int(cl^*(A)))) \\ & \subset & int(cl(int(cl^*(A)))) \\ & = & scl(int(cl^*(A))). \end{array}$$

Hence A is a weakly pre - I - open set.

Theorem 30. Let (X, τ, I) be a space and $A \subset X$, if A is an I_{β} - set, then every $\beta - I$ - open set is a $S.\alpha^* - I$ - open set.

Proof. Let A is a $\beta - I -$ open set, then $A \subset cl(int(cl^*(A)))$. Since A is an $I_{\beta} -$ set, then $cl(int(cl^*(A))) = int(A)$. Hence

$$A \subset cl(int(cl^*(A))) = int(A) \subset int^*(cl^*(int^*(A))).$$

which shows that A is a $S \cdot \alpha^* - I -$ open set.

3. Strong
$$\alpha^* - I -$$
 Interior and strong $\alpha^* - I -$ Closure Operators

This section introduces the definitions of Strong $\alpha^* - I$ – Interior and strong $\alpha^* - I$ – Closure Operators and some of their properties.

Definition 8. The strong $\alpha^* - I$ - interior of a subset A of a space (X, τ, I) denoted by $S.\alpha^*Iint(A)$ is defined by union of all strong $\alpha^* - I$ - open sets of X contained A.

 $S.\alpha^*Iint(A) = \{ \cup B : B \subset A, B \text{ is an } S.\alpha^* - I - \text{ open set} \}.$

The following theorem provides an equivalent definition for definition 8.

Theorem 31. For a subset A of a space (X, τ, I) , $S.\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A)))$

Proof. If A is any subset of X, then

$$\begin{array}{rcl} A \cap int^{*}(cl^{*}(int^{*}(A))) & \subset & int^{*}(cl^{*}(int^{*}(A))) \\ & = & int^{*}(cl^{*}(int^{*}(int^{*}(A)))) \\ & = & int^{*}(cl^{*}(int^{*}(A \cap int^{*}(A)))) \\ & \subset & int^{*}(cl^{*}(int^{*}(A \cap int^{*}(A))))). \end{array}$$

Hence $A \cap int^*(cl^*(int^*(A)))$ is a $S.\alpha^* - I-$ open set contained in A. Therefore, $A \cap int^*(cl^*(int^*(A))) \subset S.\alpha^*Iint(A)$. On other hand, since $S.\alpha^*Iint(A)$ is $S.\alpha^* - I-$ open set, then

$$S.\alpha^*Iint(A) \subset int^*(cl^*(int^*(S.\alpha^*IInt(A)))) \\ \subset int^*(cl^*(int^*(A))).$$

, so $S.\alpha^*Iint(A) \subset A \cap int^*(cl^*(int^*(A)))$. Therefore, $S.\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A)))$. **Lemma 32.** Let (X, τ, I) be a space and $A \subset X$, then A is a $S.\alpha^* - I-$ open set if and only if $S.\alpha^*Iint(A) = A$

Proof. Let A is a $S.\alpha^* - I-$ open set, then $A \subset int^*(cl^*(int^*(A)))$. Hence

$$S.\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A)))$$

= A.

Conversely, since $S.\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A)))$ and by hypothesis $S.\alpha^*Iint(A) = A$, we get $A \subset int^*(cl^*(int^*(A)))$. This implies that A is a $S.\alpha^* - I$ open set.

Definition 9. The strong $\alpha^* - I - closure$ of a subset A of a space (X, τ, I) denoted by $S.\alpha^*Icl(A)$ is defined by intersection of all strong $\alpha^* - I - closed$ sets of X containing A.

 $S.\alpha^* Icl(A) = \{ \cap B : B \supset A, B \text{ is an } S.\alpha^* - I - closed \text{ set} \}.$

Lemma 33. Let $A \subset (X, \tau, I)$, then

1.
$$X - S.\alpha^* Iint(A) = S.\alpha^* Icl(X - A),$$

2.
$$X - S \cdot \alpha^* Icl(A) = S \cdot \alpha^* Iint(X - A)$$

Proof. 1. Since $S.\alpha^*Iint(A) = \{ \cup B : B \subset A, B \text{ is a } S.\alpha^* - I - \text{ open set} \}$, then

$$\begin{aligned} X - S.\alpha^* Iint(A) &= X - \{ \cup B : B \subset A, B \text{ is a } S.\alpha^* - I - \text{ open set} \} \\ &= \{ \cap X - B : X - B \supset X - A, X - B \text{ is a } S.\alpha^* - I - \text{ closed set} \} \\ &= \{ \cap F : F \supset X - A, F \text{ is a } S.\alpha^* - I - \text{ closed set} \} \\ &= S.\alpha^* Icl(X - A). \end{aligned}$$

2. Since $S.\alpha^* Icl(A) = \{ \cap B : B \supset A, B \text{ is a } S.\alpha^* - I - \text{ closed set} \}$, then

$$\begin{aligned} X - S.\alpha^* Icl(A) &= X - \{ \cap B : B \supset A, B \text{ is a } S.\alpha^* - I - closed \text{ set} \} \\ &= \{ \cup X - B : X - B \subset X - A, X - B \text{ is a } S.\alpha^* - I - \text{ open set} \} \\ &= \{ \cup F : F \subset X - A, F \text{ is a } S.\alpha^* - I - \text{ open set} \} \\ &= S.\alpha^* Iint(X - A). \end{aligned}$$

The following theorem provides an equivalent definition for definition 9.

Theorem 34. For $A \subset (X, \tau, I)$, $S : \alpha^* Icl(A) = A \cup cl^*(int^*(cl^*(A)))$

Proof. If A is any subset of X, then

$$\begin{array}{lll} A \cup cl^{*}(int^{*}(cl^{*}(A))) & \supset & cl^{*}(int^{*}(cl^{*}(A))) \\ & = & cl^{*}(int^{*}(cl^{*}(cl^{*}(A)))) \\ & = & cl^{*}(int^{*}(cl^{*}(A \cup cl^{*}(A)))) \\ & \supset & cl^{*}(int^{*}(cl^{*}(A \cup cl^{*}(al))))). \end{array}$$

Thus $A \cup cl^*(int^*(cl^*(A)))$ is a $S.\alpha^* - I - closed$ set containing A. Thus $S.\alpha^*Icl(A) \subset A \cup cl^*(int^*(cl^*(A)))$.

On other hand, since $S.\alpha^*Icl(A)$ is a $S.\alpha^* - I - closed$ set, we have

$$S.\alpha^*Icl(A) \supset cl^*(int^*(cl^*(S.\alpha^*Icl(A)))) \\ \supset cl^*(int^*(cl^*(A))).$$

, so $S.\alpha^*Icl(A) \supset A \cup cl^*(int^*(cl^*(A)))$. Therefore, $S.\alpha^*Icl(A) = A \cup cl^*(int^*(cl^*(A)))$.

Theorem 35. Let $A \subset (X, \tau, I)$, then A is a $S \cdot \alpha^* - I$ -closed set if and only if $S \cdot \alpha^* Icl(A) = A$.

Proof. Let A is a $S.\alpha^* - I - closed$ set, then $A \supset cl^*(int^*(cl^*(A)))$. Hence $S.\alpha^*Icl(A) = A \cup cl^*(int^*(cl^*(A))) = A$. Conversely, since $S.\alpha^*Icl(A) = A \cup cl^*(int^*(cl^*(A)))$ and by hypothesis $S.\alpha^*Icl(A) = A$, we get $A \supset cl^*(int^*(cl^*(A)))$. This implies that A is a $S.\alpha^* - I - closed$ set.

Theorem 36. For $A \subset (X, \tau, I)$, if I is codense, then the following properties hold:

- 1. $\beta Icl(A) \subset S.\alpha^* Icl(A),$
- 2. $S.\alpha^*Iint(A) \subset pIint(A)$,
- 3. $S.\alpha^*Iint(A) \subset wsIint(A)$,
- 4. $wsIcl(A) \subset S.\alpha^*Icl(A)$.

Proof. 1. Since $\beta Icl(A) = A \cup int(cl(int^*(A)))$, then

 $\begin{array}{lll} \beta Icl(A) &=& A \cup int(cl^*(int^*(A))) \\ &=& A \cup int^*(cl^*(int^*(A))) \\ &\subset& A \cup cl^*(int^*(cl^*(A))). \end{array}$

Hence $\beta Icl(A) \subset S.\alpha^* Icl(A)$.

2. Since $S\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A)))$, then

$$S.\alpha^*IInt(A) \subset A \cap int^*(cl^*(A)) = A \cap int(cl^*(A)) = pIint(A).$$

Hence $S.\alpha^*Iint(A) \subset pIint(A)$.

3. Since $S \cdot \alpha^* Iint(A) = A \cap int^*(cl^*(int^*(A)))$, then

$$\begin{array}{rcl} S.\alpha^*Iint(A) & \subset & A \cap cl^*(int^*(cl^*(A))) \\ & = & A \cap cl^*(int(cl^*(A))) \\ & \subset & A \cap cl^*(int(cl(A))) \\ & = & wsIint(A) \end{array}$$

Hence $S.\alpha^*Iint(A) \subset wsIint(A)$.

4. since $wsIcl(A) = A \cup int^*(cl(int(A)))$, then

$$wsIcl(A) \subset A \cup int^*(cl(int^*(A))) = A \cup int^*(cl^*(int^*(A))) \subset A \cap cl^*(int^*(cl^*(A))) = S.\alpha^*Icl(A)$$

Hence $wsIcl(A) \subset S.\alpha^*Icl(A)$.

Theorem 37. For $A \subset (X, \tau, I)$, the following properties hold.

- $1. \ cl^*(S.\alpha^*Icl(A)) = cl^*(A),$
- 2. $int^*(S.\alpha^*Iint(A)) = int^*(A)$.

Proof. 1. we know that $S.\alpha^*Icl(A) \supset A$, this implies that $cl^*(S.\alpha^*Icl(A)) \supset cl^*(A)$. On other hand,

$$cl^{*}(S.\alpha^{*}Icl(A)) = cl^{*}(A \cup cl^{*}(int^{*}(cl^{*}(A))))$$

= $cl^{*}(A) \cup cl^{*}(cl^{*}(int^{*}(cl^{*}(A))))$
= $cl^{*}(A) \cup cl^{*}(int^{*}(cl^{*}(A)))$
= $cl^{*}(A \cup int^{*}(cl^{*}(A)))$
 $\subset cl^{*}(A \cup cl^{*}(cl^{*}(A)))$
= $cl^{*}(A \cup cl^{*}(A))$
= $cl^{*}(cl^{*}(A))$
= $cl^{*}(A).$

This implies that $cl^*(S.\alpha^*Icl(A)) = cl^*(A)$.

2. we know that $S.\alpha^*Iint(A) \subset A$, this implies that $int^*(S.\alpha^*IInt(A)) \subset int^*(A)$. On other hand,

$$int^{*}(S.\alpha^{*}Iint(A)) = int^{*}(A \cap int^{*}(cl^{*}(int^{*}(A)))) \\ = int^{*}(A) \cap int^{*}(int^{*}(cl^{*}(int^{*}(A)))) \\ = int^{*}(A) \cap int^{*}(cl^{*}(int^{*}(A))) \\ = int^{*}(A \cap cl^{*}(int^{*}(A))) \\ \supset int^{*}(A \cap int^{*}(int^{*}(A))) \\ = int^{*}(A \cap int^{*}(A)) \\ = int^{*}(int^{*}(A)) \\ = int^{*}(A).$$

This implies that $int^*(S.\alpha^*Iint(A)) = int^*(A)$.

Theorem 38. For $A \subset X$ of a space (X, τ, I) , the following properties are hold. 1. If A is a $S.P^* - I-$ open set in X, then $S.\alpha^*Icl(A) = cl^*(int^*(cl^*(A)))$, 2. If A is a $S.P^* - I - closed$ set in X, then $S.\alpha^*Iint(A) = int^*(cl^*(int^*(A)))$. *Proof.* 1. Let A is a $S.P^* - I - open set$, then we have

$$\begin{array}{rcl} A & \subset & int^*(cl^*(A)) \\ & \subset & cl^*(int^*(cl^*(A))) \end{array}$$

This implies that

$$S.\alpha^*Icl(A) = A \cup cl^*(int^*(cl^*(A)))$$

= $cl^*(int^*(int^*(A))).$

2. Let A is a $S.P^* - I$ - closed set, then we have

$$\begin{array}{rcl} A & \supset & cl^*(int^*(A)) \\ & \supset & int^*(cl^*(int^*(A))). \end{array}$$

This implies that

$$S.\alpha^*IIint(A) = A \cap int^*(cl^*(int^*(A)))$$

= $int^*(cl^*(int^*(A))).$

Remark 9. The reverse of theorem 38 is not true in general as shown by the following example.

Example 16. From example 4 if

- 1. $A = \{a, b\}$, then $S.\alpha^*Icl(A) = cl^*(int^*(cl^*(A)))$, but $A \notin SP^*IO(X)$,
- 2. $A = \{a\}$, then $S.\alpha^*IInt(A) = int^*(cl^*(int^*(A)))$, but $A \notin SP^*IC(X)$.

Theorem 39. For $A \subset (X, \tau, I)$, the following properties are hold.

- 1. If A is a $S.\beta I-$ open set in X, then $S.\alpha^* Icl(A) = cl^*(int^*(cl^*(A)))$,
- 2. If A is a $S.\beta I closed$ set in X, then $S.\alpha^*Iint(A) = int^*(cl^*(int^*(A)))$.

Proof. 1. Let A is a $S.\beta - I$ open set, then we have

$$\begin{array}{rcl} A & \subset & cl^*(int(cl^*(A))) \\ & \subset & cl^*(int^*(cl^*(A))). \end{array}$$

This implies that

$$S.\alpha^* Icl(A) = A \cup cl^*(int^*(cl^*(A)))$$

= $cl^*(int^*(int^*(A))).$

2. Let A is a $S.\beta - I -$ closed set, then we have

$$\begin{array}{rcl} A & \supset & int^*(cl(int^*(A))) \\ & \supset & int^*(cl^*(int^*(A))). \end{array}$$

This implies that

$$S.\alpha^*Iint(A) = A \cap int^*(cl^*(int^*(A))) = int^*(cl^*(int^*(A))).$$

Remark 10. The reverse of theorem 39 is not true in general as shown by the following example.

Example 17. From example 1 if

1. $A = \{b\}$, then $S \cdot \alpha^* Icl(A) = cl^*(int^*(cl^*(A)))$, but A is not $S \cdot \beta - I - open set$,

2. $A = \{a\}$, then $S.\alpha^*Iint(A) = int^*(cl^*(int^*(A)))$, but A is not $S.\beta - I - closed$ set.

Acknowledgements. The acknowledgements are not compulsory. They may contain thanks, contract support, etc. Please note that the acknowledgments should *not* be included as footnote and that they are *not* located on the first page.

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ 12 (1983), 77-90.

[2] R. M. Aqeel, A. A. Bin Kuddah, On strong semi*-I-open sets in ideal topological spaces, Univ.Aden J.Nat. and Appl. Sc.Vol.23 No.2- october 2019.

[3] R. M. Aqeel, A. A. Bin Kuddah, On strong pre*-I-open sets in ideal topological spaces, Journal of New Theory, 28 (2019),44-52.

[4] A. S. Bin Kuddah, A contribution to the study of ideal topological spaces, M.Sc. Thesis, Faculty of Education, Aden University, Yemen, (2019).

[5] J. Dontchev, On pre-I-open and a docomposition of I-continuity, Banyan Math.J., 2(1996).

[6] J.Dontchev, M. Ganster, D. Rose, *Ideal resolvability*, Topology Appl 93 (1) (1999), 1 16.

[7] E. Ekici, On AC_I -sets, BC_I -sets, β_I^* – open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform 20(1) (2011), 47-54.

[8] E. Ekici, E. Erdal, On pre-I-open sets, semi-I-open sets and b-I-open sets in ideal topological spaces, Acta Univ. Apulensis, 30 (2012), 293-303.

[9] A. C. Guler and Gulhan Aslim, *b-I-open sets and decomposition of continuity via idealization*, Institue of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Vol. 22(2005), pp.27-32.

[10] E. Hatir, T. Noiri, Weakly pre-I-open sets and decomposition of continuity, Acta Math. Hungar, 106(3) (2005), 227-238.

[11] E. Hatir, A. Keskin, T. Noiri, On a decomposition of continuity via idealization, Acta Math. Hungar., 96(2002), 341-349.

[12] E. Hatir and S. Jafari, On weakly semi-I-open sets and another decomposition continuity via ideals, Sarajevo J. Math 2 (14) (2006), 107-114.

[13] E. Hatir, T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar 96(4) (2002), 341-349.

[14] E. Hatir, A. Keskin, T. Noiri, On a new decomposition of continuity via idealization, JP J. Geometry Topology 3(1) (2003), 53-64.

[15] E. Hayashi, Topologies defined by local properties, Math. Ann 156 (1964), 205-215.

[16] D. Jankovi´c, T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97(1990), 295-310.

[17] D. Jankovic, T.R. Hamlett, *Compatible extensions of ideals*, to appear in the Boll.U.M.I., (1991).

[18] A. Keskin, T. Noiri and S. Yuksel, f_I – sets and decomposition of R_IC – continuity, Acta Math. Hungar., 104(4) (2004), 307–313.

[19] K. Kuratowski, *Topologies I*, Warszawa 1933.

[20] A. A. Nasef, *Ideals in general topology*, Ph.D.Thesis, Faculty of Science, Tanta University, Egypt, (1992).

[21] O. Njastad, On some classes of nearly open sets, Pacific J.Math 15 (1965),961-970.

[22] V. Renuka Devi, D. Sivaraj, T. Tamizh Chelvam, Properties of some *-dense in itself subsets, Internat. J. Math. Sci., 72 (2004), 3989-3999.

[23] V. Renuka Devi and D. Sivaraj, On weakly semi-I-open sets, Sarajevo J. Math., 3 (16) (2007), 267-276.

[24] V. Vaidyanathaswamy, *The localisation theory in set topology*, Proc. Indian Acad. Sci., 20 (1945), 51-61.

[25] S. Yuksel, A. Acikgoz, E.Gursel, $On \beta - I - Regular sets$, Far East J.Math. Sci.(FJMS), 25(2)(2007), 353-366.

Radhwan Mohammed Aqeel Department of Mathematics, Faculty of Science, University of Aden, Aden,Yemen , email: raqeel1976@yahoo.com

Fawzia Abdullah Ahmed Department of Mathematics, Faculty of Education, University of Aden, Aden,Yemen , email: fawziaahmed89@yahoo.com

Rqeeb Gubran Department of Mathematics, Faculty of Education, University of Lahj, Lahj,Yemen , email: rqeeeb@gmail.com