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Abstract. This manuscript’s main objective is to examine the uniqueness and
estimates of the Atangana-Baleanu (AB) fractional mixed Volterra-Fredholm inte-
gral equations under various types of contraction conditions have been investigated
in the context of special spaces. An interesting example is given to demonstrate the
rationality and superiority of obtained results.
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1. Introduction

Recently, many scientists have applied fractional derivatives with different types
of definitions, such as Atangana-Baleanu fractional integral [6], Caputo fractional
derivative [8], and Caputo-Fabrizio fractional derivative [9], to many real-world prob-
lems and pointed-out the powerfulness of using such noninteger-order and nonlocal
kernels to numerically solve different types of integral equations and to describe the
dynamics and properties of these problems; see, for example, [1, 2, 7, 26, 31].

Gronwall inequality plays very important role in studying the various properties
such as estimates of solution, continuous dependence and others of differential equa-
tion. Recently in [5, 10, 12, 33] the authors have obtained the fractional Gronwall
inequality using various fractional definition.

One of these problems is studying numerical solution of the nonlinear Volterra-
Fredholm integral equations by involving the well-known Atangana-Baleanu frac-
tional derivative. Note that nonlinear Volterra-Fredholm integral equations appear
in many applications in different disciplines such as neural networks [21], the pulses
of sound re-flections [27], and mathematical physics such as Lane-Emden-type equa-
tions [32]. The existence, uniqueness and numerical solution have been obtained in
[3, 5, 11, 13, 14, 15, 16, 17, 22, 23, 24, 25, 29].
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Motivated by the previous efforts, we investigate the uniqueness, estimates and
continuous dependent of the solution of a new kind of nonlinear Volterra-Fredholm
fractional equations involving Caputo on Atangana-Baleanu fractional derivatives of
different orders which has the form:

x(t) = f(t, x(t), taI
α
ABk(t, τ, x(τ)),

b
aI

α
ABh(t, τ, x(τ))), (1)

for 0 < α < 1, where I = [a, b], k, h ∈ C(I × I ×R,R) and f ∈ C(I ×R×R×R,R).

The main purpose of this work is to establish some fundamental properties of
solutions of (1). The well known Banach fixed point theorem with Bielecki type
norm and Gronwall type inequality given in [28] is used for presenting the results.

2. Preliminaries

Here we introduce some notations, main definitions, and theorems which are crucial
in what follows [4, 5, 18, 19, 20].

The left Riemann-Liouville fractional integral of order α for α > 0 is defined as
[30]:

(aI
αx) (t) =

1

Γ(α)

∫ t

a
(t− s)α−1x(s)ds.

Definition 1. [4] Let x ∈ H1(a, b), a < b and α in [0, 1]. The Caputo Atangana-
Baleanu (ABC) fractional derivative of x of order α is defined by(

ABC
a

Dαx

)
(t) =

B(α)

1− α

∫ t

a
x′(s)Eα

[
−α

(t− s)α

1− α

]
ds,

where Eα is the Mittag-Leffler function defined by Eα(z) =
∑∞

n=0
zn

Γ( n α+1) and B(α)

is a normalizing positive function satisfying B(0) = B(1) = 1.

The Riemann Atangana-Baleanu fractional derivative of x of order α is defined
by (

ABR
a

Dαx

)
(t) =

B(α)

1− α

∫ t

a
x(s)Eα

[
−α

(t− s)α

1− α

]
ds.

The associated fractional integral is defined by:(
AB
a Iαx

)
(t) =

1− α

B(α)
x(t) +

α

B(α)
((aI

αx) (t)) ,

where aI
α is the left Riemann-Liouville fractional integral.
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Now we construct the appropriate metric space. Let ξ > 0 be a constant and
consider the space of all continuous function C(I,R) where I = [a, b]. We denote
this special space by Cξ,α(I,R)

dξ,α(u, v) = Supt∈I
|u(t)− v(t)|
Eα (ξ(t− a)α)

,

with norm defined by

|u|ξ,α = Supt∈I
|u(t)|

Eα (ξ(t− a)α)

where Eα : R → R is a one parameter Mittag-Leffler function. The above definitions
dξ,α and | · |ξ,α are the variants of Bielecki’s metric and norm.

The Gronwall inequality in the frame of fractional integrals associated with the
A-B fractional derivative is given in [5, 28] as follows:

Theorem 1. [28] Suppose that α > 0, c(t)
(
1− 1−α

B(α)d(t)
)−1

is nonnegative, nonde-

creasing and locally integrable function on [a, b), αd(t)B(α)

(
1− 1−α

B(α)d(t)
)−1

is nonneg-

ative and bounded on [a, b) and x(t) is nonnegative and locally integrable on [a, b)
with

x(t) ≤ c(t) + d(t)
(
AB
a Iαx

)
(t).

Then

x(t) ≤ c(t)B(α)

B(α)− (1− α)d(t)
Eα

(
αd(t)(t− a)α

B(α)− (1− α)d(t)

)
.

3. Main results

3.1. Uniqueness of Solution

In the first part of this section, we will use the Banach fixed point theorem combined
with the obtained Gronwall’s inequality to prove the uniqueness of solution of the
equation (1).

Theorem 2. Let P > 0, Q ≥ 0, ξ > 1 be constants. Suppose that the functions f, k
in (1) satisfy the conditions

|f(t, u, v, y)− f(t, ū, v̄, ȳ)| ≤ Q[|u− ū|+ |v − v̄|+ |y − ȳ|] (2)

|k(t, s, u)− k(t, s, ū)| ≤ P1|u− ū|, |h(t, s, u)− h(t, s, ū)| ≤ P2|u− ū| (3)

and

m1 = sup
t∈I

1

Eα (ξ(t− a)α)

∣∣∣f(t, 0, taIαABk(t, s, 0),
b
aI

α
ABh(t, s, 0)

)∣∣∣ < ∞. (4)
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If Q
(
1 + P

ξ

)
< 1 then the integral equation (1) has a unique solution x ∈ Cξ,α(I,R)

Proof. Consider the equivalent formulation of (1) we have

x(t) = f
(
t, x(t), taI

α
ABk(t, τ, x(τ)),

b
aI

α
ABh(t, τ, x(τ))

)
− f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

)
+ f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

)
,

(5)

for t ∈ I. We shall show that (5) has unique solution and thus (1) must also have
unique solution. Let x ∈ Cξ,α(I,R) and define the operator T by

(Tx)(t) = f
(
t, x(t), taI

α
ABk(t, τ, x(τ)),

b
aI

α
ABh(t, τ, x(τ))

)
− f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

)
+ f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

)
.

(6)

Now we show that T maps Cξ,α(I,R) into itself. We have

|Tx|ξ,α = Supt∈I

|(Tx)(t)|
Eα (ξ(t− a)α)

≤ sup
t∈I

1

Eα (ξ(t− a)α)

∣∣∣f (t, x(t), taIαABk(t, τ, x(τ)),
b
aI

α
ABh(t, τ, x(τ))

)
− f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

) ∣∣∣
+ sup

t∈I

1

Eα (ξ(t− a)α)

∣∣∣f (t, 0, taIαABk(t, τ, 0),
b
aI

α
ABh(t, τ, 0)

) ∣∣∣
≤ m1 + sup

t∈I

1

Eα (ξ(t− a)α)
Q
[
|x(t)|+ t

aI
α
ABP1|x(τ)|+ b

aI
α
ABP2|x(τ)|

]
= m1 +Q

[
sup
t∈I

|x(t)|
Eα (ξ(t− a)α)

+ P1 sup
t∈I

1

Eα (ξ(t− a)α)
t
aI

α
ABEα (ξ(t− a)α)

|x(τ)|
Eα (ξ(t− a)α)

+ P2 sup
t∈I

1

Eα (ξ(t− a)α)
b
aI

α
ABEα (ξ(t− a)α)

|x(τ)|
Eα (ξ(t− a)α)

]
≤ m1 +Q

[
|x|ξ,α + P1|x|ξ,α sup

t∈I

1

Eα (ξ(t− a)α)
a
t
aI

α
ABEα (ξ(t− a)α)

+ P2|x|ξ,α sup
t∈I

1

Eα (ξ(t− a)α)
a
b
aI

α
ABEα (ξ(t− a)α)

]
≤ m1 +Q

[
|x|ξ,α + P1|x|ξ,α sup

t∈I

1

Eα (ξ(t− a)α)
+ P2|x|ξ,α sup

t∈I

1

Eα (ξ(t− a)α)(
(1− α)

B(α)
Eα (ξ(t− a)α) +

α

B(α)
t
aI

α
ABEα (ξ(t− a)α) +

α

B(α)
b
aI

α
ABEα (ξ(t− a)α)

)]
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≤ m1 +Q

[
|x|ξ,α + P1|x|ξ,α sup

t∈I

1

Eα (ξ(t− a)α)
+ P2|x|ξ,α sup

t∈I

1

Eα (ξ(t− a)α)(
(1− α)

B(α)
Eα (ξ(t− a)α) +

2α

B(α)

Eα (ξ(t− a)α)− 1

ξ

)]
≤ m1 +Q|x|ξ,α

[
1 + [P1

1

B(α)
+ P2

1

B(α)
]

(
(1− α) +

2α

ξ

)] (7)

Now we show that the operator T is a contraction map. Let v, w ∈ Cξ,α(I,R), from the
hypotheses we have

dξ,α(Tv,Tw)

= sup
t∈I

|(Tv)(t)− (Tw)(t)|
Eα (ξ(t− a)α)

= sup
t∈I

1

Eα (ξ(t− a)α)
| f

(
t, v(t), taI

α
ABk(t, τ, v(τ)),

b
aI

α
ABh(t, τ, v(τ))

)
−f

(
t, w(t), taI

α
ABk(t, τ, w(τ)),

b
aI

α
ABh(t, τ, w(τ))

)]
≤ sup

t∈I

1

Eα (ξ(t− a)α)
Q
[
|v(t)− w(t)|+ t

aI
α
ABP1|v(τ)− w(τ)|+ b

aI
α
ABP2|v(τ)− w(τ)|

]
≤ Q

[
sup
t∈I

|v(t)− w(t)|
Eα (ξ(t− a)α)

+ sup
t∈I

1

Eα (ξ(t− a)α)
P1

t
aI

α
ABEα (ξ(t− a)α)

|v(τ)− w(τ)|
Eα (ξ(t− a)α)

+ sup
t∈I

1

Eα (ξ(t− a)α)
P2

b
aI

α
ABEα (ξ(t− a)α)

|v(τ)− w(τ)|
Eα (ξ(t− a)α)

]
≤ Q

[
dξ,α(v, w) + P1dξ,α(v, w) sup

t∈I

Eα (ξ(t− a)α)

a
t
aI

α
ABEα (ξ(t− a)α)

+P2dξ,α(v, w) sup
t∈I

Eα (ξ(t− a)α)

a
b
aI

α
ABEα (ξ(t− a)α)

]
= Qdξ,α(v, w)

[
1 + (P1 + P2)

[
dξ,α(v, w) sup

t∈I

1

Eα (ξ(t− a)α)

1

B(α)

] [
(1− α) +

2α

ξ

]
= Q|x|dξ,α(v, w)

Eα (ξ(t− a)α)− 1

ξ
. (8)

It follows from Banach fixed point theorem T has a unique fixed point.

3.2. Estimates of Solution

Now we obtain estimates on the solutions of equation (1) with some suitable assumptions

Theorem 3. Suppose that the functions f, k, h are continuous and satisfy the conditions

|f(t, u, v, y)− f(t, ū, v̄, ȳ))| ≤ G[|u− ū|+ |v − v̄|+ |y − ȳ|] (9)

|k(t, τ, u)− k(t, τ, v)| ≤ h1(t)|u− v| (10)

|h(t, τ, u)− h(t, τ, v)| ≤ h2(t)|u− v| (11)
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where 0 ≤ G < 1 is a constant

m2 = Sup
t∈I

∣∣f (t, 0, taIαABk(t, s, 0),
b
aI

α
ABh(t, s, 0)

)∣∣ < ∞ (12)

If x(t) is any solution of (1) and H1(t) = Supt∈I h1(t), H2(t) = Supt∈I h2(t) then

|x(t)|

≤ m2

(1−G)

[ B(α)(
B(α)− (1− α)

(
G

1−G

)
H1(t)

)Eα

 α G
1−GH1(t)(t− a)α(

B(α)− (1− α)
(

G
1−G

)
H1(t)

)


+
B(α)(

B(α)− (1− α)
(

G
1−G

)
H2(t)

)Eα

 α G
1−GH2(t)(t− a)α(

B(α)− (1− α)
(

G
1−G

)
H2(t)

)
]

(13)

Proof. Since the solution x(t) of equation (1) satisfies the equation (5) and the hypoth-
esis we have

|x(t)| ≤
∣∣f (t, 0, taIαABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

)∣∣
+
∣∣∣f (t, x(t), taIαABk(t, τ, x(τ)),

b
aI

α
ABh(t, τ, x(τ))

)
− f

(
t, 0, taI

α
ABk(t, τ, 0),

b
aI

α
ABh(t, τ, 0)

) ∣∣∣
≤ m2 +G

[
|x(t)|+ t

aI
α
ABh1(τ)|x(τ)|+ b

aI
α
ABh2(τ)|x(τ)|

]
.

(14)

From (14) and hypotheses 0 ≤ G < 1 we have

|x(t)| ≤ m2

(1−G)
+

G

1−G
H1(t)

t
aI

α
AB |x(τ)|+

G

1−G
H2(t)

b
aI

α
AB |x(τ)|. (15)

Now applying the Gronwall inequality Theorem 1 to (15) we get (13).

4. An Example

Example. Consider the nonlinear ABC-fractional Volterra-Fredholm integral equation:

x(t) =
1

10(t+ 1)
x(t) +

1

10
t
0I

α
ABe

−2tx(τ) +
1

10
1
0I

α
ABe

−4tx(τ), t ∈ [0, 1]. (16)

Set

f(t, x(τ),Xx(τ),Yx(τ)) =
1

10(t+ 1)
x(t) +

1

10
t
0I

α
ABe

−2tx(τ) +
1

10
1
0I

α
ABe

−4tx(τ),

Xx(τ) = t
0I

α
ABe

−2tx(τ),

Yx(τ) = 1
0I

α
ABe

−4tx(τ).
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From above it can be easy to see that

|f(t, u(τ),Xu(τ),Yu(τ))− f(t, v(τ),Xv(τ),Yv(τ))|

≤ 1

10
[|u− v|+ |Xu−Xv|+ |Yu−Yv|],

|Xu−Xv| ≤ 1

10e2ta
t
0I

α
ABx(τ)

|Yu−Yv| ≤ 1

10e4ta
1
0I

α
ABx(τ).

Thus from above equation the conditions (2)-(3) holds we have Q = 1
10 and P1 = 1

10e2t , P2 =
1

10e4t then for ξ = 2 we have

Q

(
1 +

P1 + P2

ξ

)
∼= 0.1007665 < 1.

Thus the assumptions of the Theorem 2 are satisfied and thus the integral equation (16) has
a unique solution.
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