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Abstract. In this paper, we deal with the growth and the value distribution
of meromorphic solutions of complex linear differential-difference equation

L(z, f) =

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = F (z)

with meromorphic coefficients of logarithmic order. We improve some precedent
results by weakening the relative conditions, and obtain some estimates on the lower
bound of logarithmic order of these solutions.
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1. Introduction and Main Results

Throughout this paper, we assume that the readers are familiar with the funda-
mental results and the standard notations of Nevanlinna value distribution theory of
meromorphic functions (see e.g., [13,14,23,24]). Let f(z) be a meromorphic function
in the complex plane C in the whole paper. Then, we use the notations ρ(f) and
µ(f) to denote the order and the lower order of f(z), use τ(f) and τ(f) to denote the
type and the lower type of f(z), and use τM (f) and τM (f) to denote the M-type and
the lower M-type of f(z) respectively. We also use δ(a, f) to denote the deficiency
of a with respect to f(z), where a ∈ C

⋃
{∞}.

Recently, the study on the properties of meromorphic solutions of complex differ-
ence equations has arisen a great interest (see e.g., [6,15,16,18,19,22]), since Halburd-
Korhonen [12] and Chiang-Feng [9] obtained the difference analogues of the Logarith-
mic Derivative Lemma separately. Especially, by using these variants of Nevanlinna
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theory, many scholars focused on meromorphic solutions of complex linear equa-
tions, and got many good results in the case of complex linear difference equations
(see e.g., [1,3,7,17,20,25]) and in the case of complex linear differential-difference
equations (see e.g., [2,4,21,26]).

Chiang and Feng in [9] investigated the linear difference equation

An(z)f(z + n) + · · ·+A1(z)f(z + 1) +A0(z)f(z) = 0, (1)

where Aj(z)(j = 0, 1, · · · , n) are entire functions. When (1) has an unique domi-
nating coefficient, they obtained the relationship between the order of meromorphic
solutions of (1) and the orders of the coefficients.
Theorem 1. (see [9]) Let Aj(z)(j = 0, 1, · · · , n) be entire functions satisfying that
there exists an integer l(0 ≤ l ≤ n) such that

max{ρ(Aj) : 0 ≤ j ≤ n, j ̸= l} < ρ(Al).

Then every meromorphic solution f(z)(̸≡ 0) of (1) satisfies ρ(f) ≥ ρ(Al) + 1.
As is well known that Theorem 1 is a good result, since the estimate on the lower

bound of the order of meromorphic solutions of (1) is sharp. And Theorem 1 also
holds for the more general equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = 0, (2)

where ci(i = 1, 2, · · · , n) are distinct complex numbers.
Next, Laine and Yang in [15] considered the case that more than one coefficient

has the maximal order and among which only one has the maximal type, and got
the following result.
Theorem 2. (see [15]) Let Aj(z)(j = 0, 1, · · · , n) be entire functions of finite order
such that among those having the maximal order ρ = max{ρ(Aj) : 0 ≤ j ≤ n},
exactly one has its type strictly greater than the others. Then for every meromorphic
solution f(z)(̸≡ 0) of (2), we have ρ(f) ≥ ρ+ 1.

For the case when there is more than one coefficient having the maximal lower
order and among which only one has the maximal lower type, Zheng and Tu in [25]
proved the following result.
Theorem 3. (see [25]) Let Aj(z)(j = 0, 1, · · · , n) be entire functions satisfying that
there exists an integer l(0 ≤ l ≤ n) such that

max{ρ(Aj) : 0 ≤ j ≤ n, j ̸= l} ≤ µ(Al)(0 < µ(Al) < +∞)

and

max{τ(Aj) : ρ(Aj) = µ(Al), 0 ≤ j ≤ n, j ̸= l} < τ(Al).
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Then every meromorphic solution f(z)(̸≡ 0) of (1) satisfies µ(f) ≥ µ(Al) + 1.
Later, Luo and Zheng in [17] studied the linear difference equation (2), where

Aj(z)(j = 0, 1, · · · , n) are entire or meromorphic functions. They weakened the
conditions of Theorem 3 and obtained the following two theorems.
Theorem 4. (see [17]) Let Aj(z)(j = 0, 1, · · · , n) be entire functions, and let
k, l ∈ {0, 1, · · · , n}. If the following three assumptions hold simultaneously:
(1) max{µ(Ak), ρ(Aj), j ̸= k, l} ≤ µ(Al)(0 < µ(Al) < +∞);
(2) τM (Ak) < τM (Al), when µ(Ak) = µ(Al);
(3) max{τM (Aj) : ρ(Aj) = µ(Al), j ̸= k, l} < τM (Al), when max{ρ(Aj), j ̸= k, l} =
µ(Al).
Then every meromorphic solution f(z)(̸≡ 0) of (2) satisfies ρ(f) ≥ µ(Al) + 1.
Theorem 5. (see [17]) Let Aj(z)(j = 0, 1, · · · , n) be meromorphic functions, and
let k, l ∈ {0, 1, · · · , n}. If the following four assumptions hold simultaneously:
(1) max{µ(Ak), ρ(Aj), j ̸= k, l} ≤ µ(Al)(0 < µ(Al) < +∞);
(2) τ(Ak) < δτ(Al), when µ(Ak) = µ(Al);
(3) max{τ(Aj) : ρ(Aj) = µ(Al), j ̸= k, l} < δτ(Al), when max{ρ(Aj), j ̸= k, l} =
µ(Al);
(4) δ(∞, Al) = δ > 0.
Then every meromorphic solution f(z)(̸≡ 0) of (2) satisfies ρ(f) ≥ µ(Al) + 1.

Recently, Beläıdi and Bellaama in [3] extended Theorems 4 and 5 to the linear
difference equation

An(z)f(z + cn) + · · ·+A1(z)f(z + c1) +A0(z)f(z) = An+1(z), (3)

where Aj(z)(j = 0, 1, · · · , n + 1) are entire or meromorphic functions and ci(i =
1, 2, · · · , n) are distinct complex numbers. By comparing their results and Theorems
4 and 5, we find that the results for the case of the non-homogeneous equation (3)
are weaker than the ones for the case of the homogeneous equation (2).

Generally, for the case of the linear differential-difference equations, Wu and
Zheng in [21] investigated the growth of meromorphic solutions of the homogeneous
equation

L(z, f) =
n∑

i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = 0 (4)

and the non-homogeneous equation

L(z, f) =

n∑
i=0

m∑
j=0

Aij(z)f
(j)(z + ci) = F (z), (5)
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where Aij(z)(i = 0, 1, · · · , n; j = 0, 1, · · · ,m) are meromorphic functions such that
A00(z)An0(z)F (z) ̸≡ 0, ci(i = 0, 1, · · · , n) are distinct complex numbers.

Then, a natural question arises: when the coefficients Aij(z)(i = 0, 1, · · · , n; j =
0, 1, · · · ,m) are of slow growth in the sense that are of order zero, how to express the
growth and the value distribution of meromorphic solutions of (4) and (5)? Beläıdi
in [2] considered the question for the case of the homogeneous equation (4) by using
the concept of finite logarithmic order due to Chern [8].

The main purpose of this paper is to consider the case of the non-homogeneous
equation (5) and our results weaken the relative conditions in [2]. Unfortunately,
the results for the case of the homogeneous equation (4) under similar conditions
are rough and not good. So, we give up the case of the corresponding homogeneous
equation in this paper.

Firstly, We recall the following definitions.
Definition 1. (see [8]) The logarithmic order of a meromorphic function f(z) is
defined as

ρlog(f) = lim
r→+∞

log T (r, f)

log log r
.

Remark 1. (see [1]) Clearly, the logarithmic order of any non-constant rational
function is one, and any transcendental meromorphic function has logarithmic order
no less than one. Conversely, a meromorphic function with logarithmic order one
is not always a rational function. The logarithmic order of any constant function
is zero. That is to say, there are no meromorphic functions having logarithmic
order between zero and one. Furthermore, any meromorphic function with finite
logarithmic order is of order zero.
Definition 2. (see [8]) The logarithmic lower order of a meromorphic function f(z)
is defined as

µlog(f) = lim
r→+∞

log T (r, f)

log log r
.

Definition 3. (see [5]) The logarithmic type of a meromorphic function f(z) with
1 ≤ ρlog(f) < +∞ is defined as

τlog(f) = lim
r→+∞

T (r, f)

(log r)ρlog(f)
.

Remark 2. (see [1]) Obviously, any non-constant polynomial P (z) has logarithmic
type deg(P ), any non-constant rational function has finite logarithmic type, and any
transcendental meromorphic function with logarithmic order one must have infinite
logarithmic type.
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Definition 4. (see [5]) The logarithmic lower type of a meromorphic function f(z)
with 1 ≤ µlog(f) < +∞ is defined as

τ log(f) = lim
r→+∞

T (r, f)

(log r)µlog(f)
.

Definition 5. (see [5,8]) The logarithmic exponent of convergence of a-points of a
meromorphic function f(z) is equal to the logarithmic order of n(r, 1

f−a), that is

λlog(f − a) = λlog(f, a) = lim
r→+∞

log n(r, 1
f−a)

log log r
,

where a ∈ C. And the logarithmic exponent of convergence of poles of a meromorphic
function f(z) is defined as

λlog(
1

f
) = λlog(f,∞) = lim

r→+∞

log n(r, f)

log log r
.

Remark 3. (see [1]) As is well known, the order of n(r, 1
f−a) is equal to the order

of N(r, 1
f−a), where a ∈ C

⋃
{∞} (see e.g., [23,24]). However, it does not hold for

the case of logarithmic order. In fact, the logarithmic order of N(r, 1
f−a) is equal to

λlog(f − a) + 1, where a ∈ C
⋃
{∞}([8]).

Next, we state our main results as follows.
Theorem 6. Let Aij(z)(i = 0, 1, · · · , n; j = 0, 1, · · · ,m), F (z)(̸≡ 0) be meromorphic
functions and assume that there exists an integer l ∈ {0, 1, · · · , n} such that

max{ρlog(Aij), (i, j) ̸= (l, 0)} = σ ≤ µlog(Al0) < +∞

and

λlog(
1

Al0
) + 1 < µlog(Al0).

Then the following results hold.
(i) If one of the following three assumptions hold:
(a) µlog(F ) < µlog(Al0) and

∑
ρlog(Aij)=µlog(Al0)

(i,j) ̸=(l,0)

τlog(Aij) < τ log(Al0) < +∞,

(b) µlog(F ) = µlog(Al0) and
∑

ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

τlog(Aij) + τ log(F ) < τ log(Al0) < +∞,

(c) µlog(F ) = µlog(Al0) and
∑

ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

τlog(Aij) + τ log(Al0) < τ log(F ) < +∞,

then every meromorphic solution f(z) of (5) satisfies ρlog(f) ≥ µlog(Al0).
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(ii) If µlog(F ) > µlog(Al0), then every meromorphic solution f(z) of (5) satisfies
ρlog(f) ≥ µlog(F ).

We also consider the value distribution of meromorphic solutions of (5), and
obtain the following result.
Theorem 7. Let Aij(z)(i = 0, 1, · · · , n, j = 0, 1, · · · ,m), F (z)(̸≡ 0) be meromorphic
functions, and f(z) be a meromorphic solution of (1.5) satisfying

max{ρlog(F ), ρlog(Aij), i = 0, 1, · · · , n; j = 0, 1, · · · ,m} < ρlog(f) < +∞,

then ρlog(f) = λlog(f)+1. Further, if φ(z) is a meromorphic function with ρlog(φ) <
ρlog(f) and φ(z) is not a solution of (5) , then ρlog(f) = λlog(f − φ) + 1.

2. Preparations for proofs

Firstly, we need some definitions of measures (see e.g., [12]). The linear measure of
a set E ⊂ (0,+∞) is defined asmE =

∫ +∞
0 XE(t)dt and the logarithmic measure of a

set F ⊂ (1,+∞) is defined as mlF =
∫ +∞
1

XF (t)
t dt, where XH(t) is the characteristic

function of a set H.
Secondly, we need the following lemmas.

Lemma 8. (see [2]) Let f(z) be a meromorphic function with 1 ≤ µlog(f) < +∞.
Then there exists a set E ⊂ (1,+∞) of infinite logarithmic measure such that for
any given ε > 0 and r ∈ E, we have

T (r, f) < (log r)µlog(f)+ε.

Lemma 9. (see [10]) Let f(z) be a meromorphic function with 1 ≤ µlog(f) < +∞
and 0 ≤ τ log(f) < +∞. Then there exists a set E ⊂ (1,+∞) of infinite logarithmic
measure such that for any given ε > 0 and r ∈ E, we have

T (r, f) < (τ log(f) + ε)(log r)µlog(f).

Lemma 10. (see [1]) Let η1, η2 be two arbitrary complex numbers such that η1 ̸= η2
and let f(z) be a meromorphic function with finite logarithmic order ρ. Then for
any given ε > 0, we have

m(r,
f(z + η1)

f(z + η2)
) = O(

(log r)ρ+ε

r
).

Lemma 11. (see [1]) Let f(z) and g(z) be non-constant meromorphic functions
with logarithmic orders ρlog(f) and ρlog(g) respectively. Then we have

ρlog(f + g) ≤ max{ρlog(f), ρlog(g)}
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and
ρlog(fg) ≤ max{ρlog(f), ρlog(g)}.

Furthermore, if ρlog(f) > ρlog(g), then we have

ρlog(f + g) = ρlog(fg) = ρlog(f).

Lemma 12. Let f(z) be a meromorphic function with logarithmic order ρlog(f),
and g(z) be a meromorphic function with logarithmic lower order µlog(g). Then we
have

µlog(f + g) ≤ max{ρlog(f), µlog(g)}

and
µlog(fg) ≤ max{ρlog(f), µlog(g)}.

Proof. Similarly to [23, P.33]. Without loss of generality, we let

ρlog(f) < +∞, µlog(f) < +∞.

By Definition 2, there exists an increasing sequence {rn}(rn → +∞) satisfying

µlog(g) = lim
rn→+∞

log T (rn, g)

log log rn
.

Then for any given ε > 0, there exists a positive integer n0 such that for all n > n0,

T (rn, g) < (log rn)
µlog(g)+ε.

By Definition 1, for the above ε, there exists R > 0 such that for all r > R,

T (r, f) < (log r)ρlog(f)+ε.

Since rn → +∞, there exists a positive integer n1 such that for all n > n1, rn > R
holds and

T (rn, f) < (log rn)
ρlog(f)+ε.

So, when n > max{n0, n1}, we have

T (rn, fg) ≤ T (rn, f) + T (rn, g) ≤ (log rn)
ρlog(f)+ε + (log rn)

µlog(g)+ε ≤ 2(log rn)
λ+ε,

where λ = max{ρlog(f), µlog(g)}. Then, for the above ε > 0,

lim
r→+∞

log T (r, fg)

log log r
≤ lim

rn→+∞

log T (rn, fg)

log log rn
≤ λ+ ε,
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that is,
µlog(fg) ≤ max{ρlog(f), µlog(g)}.

Similarly, by T (r, f + g) ≤ T (r, f) + T (r, g) + log 2, we can obtain

µlog(f + g) ≤ max{ρlog(f), µlog(g)}.

Remark 4. It is shown in [11, P.66] and [9, P.106] that for an arbitrary complex
number c ̸= 0, the following inequalities

(1 + o(1))T (r − |c|, f(z)) ≤ T (r, f(z + c)) ≤ (1 + o(1))T (r + |c|, f(z))

hold as r → +∞ for a general meromorphic function f(z). Therefore, it’s easy to
obtain that

ρlog(f(z + c)) = ρlog(f), µlog(f(z + c)) = µlog(f).

Remark 5. Following Yang and Yi [23, P.37-39], the inequalities

T (r, f (n)) ≤ (n+ 1)T (r, f) + S(r, f)

and
T (r, f) < O(T (2nr, f (n)) + log r)

hold as r → +∞ for an arbitrary meromorphic function f(z). Therefore, by Lemmas
11 and 12, for a transcendent meromorphic function f(z), it is easy to see

ρlog(f
(n)) = ρlog(f), µlog(f

(n)) = µlog(f).

3. Proofs of Theorems 6 and 7

3.1 Proof of Theorem 6
If f(z) has infinite logarithmic order, then the results hold. Now, we suppose

ρlog(f) < +∞.
(i) We divide (5) by f(z + cl) to obtain

−Al0(z) =

n∑
i=0
i ̸=l

m∑
j=0

Aij(z)
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z + cl)
+

m∑
j=1

Alj(z)
f (j)(z + cl)

f(z + cl)
− F (z)

f(z + cl)
.

(6)
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By (6) and Remark 4, for sufficiently large r, we have

T (r,Al0) = m(r,Al0) +N(r,Al0)

≤
n∑

i=0
i ̸=l

m∑
j=0

T (r,Aij) +

m∑
j=1

T (r,Alj) +

n∑
i=0

m∑
j=1

m(r,
f (j)(z + ci)

f(z + ci)
) + T (r, F )

+O(

n∑
i=0
i ̸=l

m(r,
f(z + ci)

f(z + cl)
)) + (1 + o(1))T (r + |cl|, f) +N(r,Al0) +O(1).

(7)

By Lemma 10, for any given ε > 0, we have

m(r,
f(z + ci)

f(z + cl)
) = O(

(log r)ρlog(f)+ε

r
), i = 0, 1, · · · , n, i ̸= l. (8)

By the Logarithmic Derivative Lemma and Remarks 1 and 4, for the above ε and
sufficiently large r, we have

m(r,
f (j)(z + ci)

f(z + ci)
) = O(log r), i = 0, 1, · · · , n, j = 1, · · · ,m. (9)

By Definition 4, for the above ε and sufficiently large r, we have

T (r,Al0) ≥ (τ log(Al0)− ε)(log r)µlog(Al0). (10)

By Remark 3, for the above ε and sufficiently large r, we have

N(r,Al0) ≤ (log r)
λlog(

1
Al0

)+1+ε
. (11)

By Definition 1, for the above ε and sufficiently large r, we have

T (r + |cl|, f) ≤ (log(r + |cl|))ρlog(f)+
ε
2 ≤ (log r)ρlog(f)+ε. (12)

Denote
σ1 = max{ρlog(Aij) : ρlog(Aij) < µlog(Al0), (i, j) ̸= (l, 0)}

and
τ1 =

∑
ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

τlog(Aij).

Then by Definitions 1 and 3, for the above ε and sufficiently large r, we have

T (r,Aij) ≤
{

(log r)σ1+ε, ρlog(Aij) < µlog(Al0)

(τlog(Aij) + ε)(log r)µlog(Al0), ρlog(Aij) = µlog(Al0)
, (13)
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where (i, j) ̸= (l, 0).
(a) If µlog(F ) < µlog(Al0) and τ1 < τ log(Al0) < +∞.
By Lemma 8, there exists a set E1 ⊂ (1,+∞) with infinite logarithmic measure

such that for the above ε and r ∈ E1, we have

T (r, F ) ≤ (log r)µlog(F )+ε. (14)

Then we can choose ε > 0 sufficiently small to satisfy

max{σ1, λlog(
1

Al0
) + 1, µlog(F )}+ 2ε < µlog(Al0), τ1 + (k + 1)ε < τ log(Al0), (15)

where k = (n + 1)(m + 1). By substituting (8)-(14) into (7), for sufficiently large
r ∈ E1, we obtain

(τ log(Al0)− ε)(log r)µlog(Al0)

≤ O((log r)σ1+ε) +O(
(log r)ρlog(f)+ε

r
) + (log r)µlog(F )+ε +O((log r)ρlog(f)+ε)

+ (log r)
λlog(

1
Al0

)+1+ε
+

∑
ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

(τlog(Aij) + ε)(log r)µlog(Al0) +O(log r)

≤ (log r)σ1+2ε + (log r)ρlog(f)+2ε + (log r)µlog(F )+ε + (τ1 + (k − 1)ε)(log r)µlog(Al0)

+ (log r)
λlog(

1
Al0

)+1+2ε
.

(16)

By (15) and (16), we get
µlog(Al0) ≤ ρlog(f) + 2ε.

Since ε > 0 is arbitrary, we have

ρlog(f) ≥ µlog(Al0).

(b) If µlog(F ) = µlog(Al0) and τ1 + τ log(F ) < τ log(Al0) < +∞.
By Lemma 9, there exists a set E2 ⊂ (1,+∞) with infinite logarithmic measure

such that for the above ε and r ∈ E2, we have

T (r, F ) ≤ (τ log(F ) + ε)(log r)µlog(F ) = (τ log(F ) + ε)(log r)µlog(Al0). (17)

Then we can choose ε > 0 sufficiently small to satisfy

max{σ1, λlog(
1

Al0
) + 1}+ 2ε < µlog(Al0), τ1 + τ log(F ) + (k + 2)ε < τ log(Al0).

(18)
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By substituting (8)-(13), (17) into (7), for sufficiently large r ∈ E2, we obtain

(τ log(Al0)− ε)(log r)µlog(Al0)

≤ O((log r)σ1+ε) +O(
(log r)ρlog(f)+ε

r
) + (log r)

λlog(
1

Al0
)+1+ε

+O((log r)ρlog(f)+ε)

+
∑

ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

(τlog(Aij) + ε)(log r)µlog(Al0) + (τ log(F ) + ε)(log r)µlog(Al0)

+O(log r)

≤ (log r)σ1+2ε + (τ1 + τ log(F ) + kε)(log r)µlog(Al0) + (log r)
λlog(

1
Al0

)+1+2ε

+ (log r)ρlog(f)+2ε.

(19)

By (18) and (19), we get
µlog(Al0) ≤ ρlog(f) + 2ε.

Since ε > 0 is arbitrary, we have

ρlog(f) ≥ µlog(Al0).

(c) If µlog(F ) = µlog(Al0) and τ1 + τ log(Al0) < τ log(F ) < +∞.
By (5) and Remarks 4 and 5, for sufficiently large r, we have

T (r, F ) ≤
∑

(i,j) ̸=(l,0)

T (r,Aij) + T (r,Al0) +
n∑

i=0

m∑
j=0

T (r, f (j)(z + ci))

≤
∑

(i,j) ̸=(l,0)

T (r,Aij) + T (r,Al0) +O(T (2r, f)) +O(log r).

(20)

By Definition 4, for the above ε and sufficiently large r, we have

T (r, F ) ≥ (τ log(F )− ε)(log r)µlog(Al0). (21)

By Definition 1, for the above ε and sufficiently large r, we have

T (2r, f) ≤ (log(2r))ρlog(f)+
ε
2 ≤ (log r)ρlog(f)+ε. (22)

By Lemma 9, there exists a set E3 ⊂ (1,+∞) with infinite logarithmic measure such
that for the above ε and r ∈ E3, we have

T (r,Al0) ≤ (τ log(Al0) + ε)(log r)µlog(Al0). (23)

37



Yi-Xin Luo, Xiu-Min Zheng – Growth of meromorphic solutions of complex . . .

Then we can choose ε > 0 sufficiently small to satisfy

max{σ1, 1}+ 2ε < µlog(Al0), τ1 + τ log(Al0) + (k + 2)ε < τ log(F ). (24)

By substituting (13), (21)-(23) into (20), for sufficiently large r ∈ E3, we obtain

(τ log(F )− ε)(log r)µlog(Al0)

≤
∑

ρlog(Aij)=µlog(Al0)

(i,j)̸=(l,0)

(τlog(Aij) + ε)(log r)µlog(Al0) + (τ log(Al0) + ε)(log r)µlog(Al0)

+O((log r)σ1+ε) +O((log r)ρlog(f)+ε) +O(log r)

≤ (τ1 + τ log(Al0) + kε)(log r)µlog(Al0) + (log r)σ1+2ε + (log r)ρlog(f)+2ε +O(log r).

(25)

By (24) and (25), we get
µlog(Al0) ≤ ρlog(f) + 2ε.

Since ε > 0 is arbitrary, we have

ρlog(f) ≥ µlog(Al0).

(ii) If µlog(F ) > µlog(Al0).
Then on the contrary, we suppose that ρlog(f) < µlog(F ). By (5), Lemmas 11

and 12, Remarks 4 and 5, we obtain

µlog(
n∑

i=0

m∑
j=0

Aij(z)f
(j)(z + ci)) ≤ max{µlog(Al0), ρlog(f), ρlog(Aij), (i, j) ̸= (l, 0)}

< µlog(F ),

which is a contradiction. Hence, we have

ρlog(f) ≥ µlog(F ).

Therefore, the proof of Theorem 6 is complete.
3.2 Proof of Theorem 7

By Remark 1, if f(z) is a constant function, then ρlog(f) = 0, not satisfying the
condition. If f(z) is a non-constant rational function, then ρlog(f) = 1, λlog(f) = 0,
that is, the result holds. Now, we suppose that f(z) is a transcendent meromorphic
function.
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Let c0 = 0 without loss of generality, then by (5) we have

1

f(z)
=

1

F (z)
(

n∑
i=0

m∑
j=1

Aij(z)
f (j)(z + ci)

f(z + ci)

f(z + ci)

f(z)
+

n∑
i=1

Ai0(z)
f(z + ci)

f(z)
+A00(z)).

(26)

By (26), we have

T (r, f) = T (r,
1

f
) +O(1) = m(r,

1

f
) +N(r,

1

f
) +O(1)

≤
n∑

i=0

m∑
j=1

m(r,
f (j)(z + ci)

f(z + ci)
) +O(

n∑
i=1

m(r,
f(z + ci)

f(z)
)) +

n∑
i=0

m∑
j=0

T (r,Aij)

+ T (r, F ) +N(r,
1

f
) +O(1).

(27)

Let l = 0, by substituting (8) and (9) into (27), for any given ε > 0 and sufficiently
large r, we have

T (r, f) ≤ O(
(log r)ρlog(f)+ε

r
) +O(log r) +

n∑
i=0

m∑
j=0

T (r,Aij) + T (r, F ) +N(r,
1

f
).

(28)

By (28) and the assumption that max{ρlog(F ), ρlog(Aij), i = 0, 1, · · · , n; j = 0, 1,
· · · ,m} < ρlog(f), for the above ε and sufficiently large r, we obtain

ρlog(f) ≤ λlog(f) + 1.

By Remark 3, we have
λlog(f) + 1 ≤ ρlog(f).

Hence,
ρlog(f) = λlog(f) + 1.

Set g(z) = f(z)−φ(z). By Lemma 11 and the assumption that ρlog(φ) < ρlog(f),
we have

ρlog(g) = ρlog(f). (29)

By substituting f(z) = g(z) + φ(z) into (5), we obtain

n∑
i=0

m∑
j=0

Aij(z)g
(j)(z + ci) = G(z), (30)
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where G(z) = F (z) −
n∑

i=0

m∑
j=0

Aij(z)φ
(j)(z + ci). Since φ(z) is not a solution of (5),

then
G(z) ̸≡ 0.

By Lemma 11 and Remarks 4 and 5, we have

ρlog(G) ≤ max{ρlog(F ), ρlog(φ), ρlog(Aij), i = 0, 1, · · · , n; j = 0, 1, · · · ,m}
< ρlog(f).

(31)

Then by (29) and (31), we have

max{ρlog(G), ρlog(Aij), i = 0, 1, · · · , n; j = 0, 1, · · · ,m} < ρlog(f) = ρlog(g). (32)

By (30) and (32), we obtain

ρlog(g) = λlog(g) + 1,

that is,
ρlog(f) = λlog(f − φ) + 1.

Therefore, the proof of Theorem 7 is complete.
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