A NEW INTEGRAL UNIVALENT OPERATOR

Daniel Breaz¹, Shigeyoshi Owa and Nicoleta Breaz²

ABSTRACT. In this paper the authors introduced an integral operator and proved its properties.

2000 Mathematics Subject Classification: 30C45

Keywords and phrases: analytic functions, univalent functions, integral operator, convex functions.

1.Introduction

Let $U = \{z \in C, |z| < 1\}$ be the unit disc of the complex plane and denote by H(U), the class of the olomorphic functions in U. Consider $A = \{f \in H(U), f(z) = z + a_2z^2 + a_3z^3 + ..., z \in U\}$ be the class of analytic functions in U and $S = \{f \in A : f \text{ is univalent in } U\}$.

Consider S^* , the class of starlike functions in unit disk, defined by

$$S^{*}=\left\{ f\in H\left(U\right):f\left(0\right)=f'\left(0\right)-1=0,\mathbf{Re}\frac{zf'\left(z\right)}{f\left(z\right)}>0,z\in U\right\} .$$

A function $f \in S$ is the starlike function of order $\alpha, 0 \le \alpha < 1$ and denote this class by $S^*(\alpha)$ if f verify the inequality

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > \alpha, z \in U.$$

Denote with K the class of convex functions in U, defined by

$$K = \left\{ f \in H(U) : f(0) = f'(0) - 1 = 0, \mathbf{Re} \left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > 0, z \in U \right\}.$$

¹Supported by GAR 19/2008

²Supported by GAR 19/2008

A function $f \in S$ is convex function of order $\alpha, 0 \le \alpha < 1$ and denote this class by $K(\alpha)$ if f verify the inequality

$$\operatorname{Re}\left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > \alpha, z \in U.$$

A function $f \in UCV$ if and only if

$$\mathbf{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \left|\frac{zf''(z)}{f'(z)}\right|, z \in U.$$

S. N. Kudryashov in 1973 investigated the maximum value of M such that the inequality

$$\left| \frac{f''(z)}{f'(z)} \right| \le M$$

implies that f is univalent in U. He showed that if M = 3,05... and

$$\left| \frac{f''(z)}{f'(z)} \right| \le 3,05...$$

where M is the solution of the equation $8 \left[M \left(M - 2 \right)^3 \right]^{1/2} - 3 \left(3 - M \right)^2 = 12$, then f is univalent in U.

Also, if

$$\left| \frac{f''(z)}{f'(z)} \right| \le 2,8329...,$$

then the function f is starlike in unit disk. This result is obtained by Miller and Mocanu.

Consider the new general integral operator defined by the formula:

$$F_{\alpha_{1},...,\alpha_{n}}(z) = \int_{0}^{z} (f'_{1}(t))^{\alpha_{1}} ... (f'_{n}(t))^{\alpha_{n}} dt.$$
 (1)

2. Main results

In the next theorem we proved the univalence for this operator.

Theorem 1. Let $\alpha_i \in \mathbf{R}, i \in \{1, ..., n\}$ and $\alpha_i > 0$. Consider $f_i \in S$ (univalent functions) and suppose that

$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \le M,\tag{2}$$

where M = 3,05..., for all $z \in U$.

If $\sum_{i=1}^{n} \alpha_i \leq 1$ the integral operator $F_{\alpha_1,...,\alpha_n}$ is univalent.

Proof. We have

$$\frac{F_{\alpha_1,\dots,\alpha_n}''(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)} = \alpha_1 \frac{f_1''(z)}{f_1'(z)} + \dots + \alpha_n \frac{f_n''(z)}{f_n'(z)}.$$
 (3)

that is equivalent with,

$$\left| \frac{F_{\alpha_1,\dots,\alpha_n}''(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)} \right| \le \alpha_1 \left| \frac{f_1''(z)}{f_1'(z)} \right| + \dots + \alpha_n \left| \frac{f_n''(z)}{f_n'(z)} \right|.$$

Now, applying the inequality (2), we obtain that

$$\left| \frac{F_{\alpha_1, \dots, \alpha_n}''(z)}{F_{\alpha_1, \dots, \alpha_n}'(z)} \right| \le \alpha_1 M + \dots + \alpha_n M = M \sum_{i=1}^n \alpha_i \le M.$$

The last inequality implies that the integral operator $F_{\alpha_1,\dots,\alpha_n}$ is univalent.

Theorem 2. Let $\alpha_i \in \mathbf{R}, i \in \{1, ..., n\}$ and $\alpha_i > 0$. Consider $f_i \in S$ (univalent functions) and suppose that

$$\left| \frac{f_i''(z)}{f_i'(z)} \right| \le M_1, \tag{4}$$

where $M_1 = 2,8329...$, is the smallest root of equation xsinx + cosx = 1/e. If $\sum_{i=1}^{n} \alpha_i \leq 1$, the integral operator $F_{\alpha_1,...,\alpha_n}$ is starlike.

Proof. We have

$$\frac{F_{\alpha_1,...,\alpha_n}''(z)}{F_{\alpha_1,...,\alpha_n}'(z)} = \alpha_1 \frac{f_1''(z)}{f_1'(z)} + ... + \alpha_n \frac{f_n''(z)}{f_n'(z)}.$$
 (5)

that is equivalent with,

$$\left| \frac{F_{\alpha_{1},\dots,\alpha_{n}}''(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)} \right| \leq \alpha_{1} \left| \frac{f_{1}''(z)}{f_{1}'(z)} \right| + \dots + \alpha_{n} \left| \frac{f_{n}''(z)}{f_{n}'(z)} \right|.$$

Now, applying the inequality (4), we obtain that

$$\left|\frac{F_{\alpha_{1},\ldots,\alpha_{n}}''\left(z\right)}{F_{\alpha_{1},\ldots,\alpha_{n}}'\left(z\right)}\right|\leq\alpha_{1}M_{1}+\ldots+\alpha_{n}M_{1}=M_{1}\sum_{i=1}^{n}\alpha_{i}\leq M_{1}.$$

The last inequality implies that the integral operator $F_{\alpha_1,\dots,\alpha_n}$ is starlike.

Theorem 3. Let $\alpha_i \in \mathbf{R}, i \in \{1, ..., n\}$ and $\alpha_i > 0$. Consider $f_i \in K$ (convex functions), for all $i \in \{1, ..., n\}$. Then the integral operator $F_{\alpha_1, ..., \alpha_n}$ is convex.

Proof.

$$\operatorname{Re}\left\{\frac{zF_{\alpha_{1},\dots,\alpha_{n}}^{"}\left(z\right)}{F_{\alpha_{1},\dots,\alpha_{n}}^{'}\left(z\right)}+1\right\}=\sum_{i=1}^{n}\alpha_{i}\operatorname{Re}\left(\frac{zf_{i}^{"}\left(z\right)}{f_{i}^{'}\left(z\right)}+1\right)\geq0.$$

Since

$$\operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}+1\right) \geq 0$$

for all $i \in \{1, ..., n\}$, we have the integral operator $F_{\alpha_1, ..., \alpha_n}$ is convex.

Theorem 4. Let $\alpha_i \in \mathbf{R}, i \in \{1, ..., n\}$ and $\alpha_i > 0$. Consider $f_i \in K(\beta_i)$, $0 \le \beta_i < 1$, for all $i \in \{1, ..., n\}$. In these conditions, the integral operator $F_{\alpha_1, ..., \alpha_n}$ is convex of order $\sum_{i=1}^n \alpha_i (\beta_i - 1) + 1$, where $0 \le \sum_{i=1}^n \alpha_i (\beta_i - 1) + 1 < 1$.

Proof. We have

$$\operatorname{Re}\left\{\frac{zF_{\alpha_{1},\dots,\alpha_{n}}^{"}\left(z\right)}{F_{\alpha_{1},\dots,\alpha_{n}}^{'}\left(z\right)}+1\right\} = \sum_{i=1}^{n} \alpha_{i}\operatorname{Re}\left(\frac{zf_{i}^{"}\left(z\right)}{f_{i}^{'}\left(z\right)}+1\right). \tag{6}$$

Since $f_i \in K(\beta_i)$, we have

$$\operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}+1\right) \geq \beta_{i},$$

for all $i \in \{1, ..., n\}$.

We apply this property in (6) and we obtain that:

$$\operatorname{Re}\left\{\frac{zF_{\alpha_{1},\dots,\alpha_{n}}''(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)}+1\right\} = \sum_{i=1}^{n} \alpha_{i}\beta_{i}+1 - \sum_{i=1}^{n} \alpha_{i} = \sum_{i=1}^{n} \alpha_{i} \left(\beta_{i}-1\right)+1. \quad (7)$$

The relation (7) implies that the integral operator $F_{\alpha_1,...,\alpha_n}$ is convex of order $\sum_{i=1}^{n} \alpha_i (\beta_i - 1) + 1$.

Theorem 5. Let $\alpha_i \in \mathbf{R}, i \in \{1, ..., n\}$ and $\alpha_i > 0$. Consider $f_i \in UCV$, for all $i \in \{1, ..., n\}$. In these conditions, the integral operator $F_{\alpha_1, ..., \alpha_n}$ is convex of order $1 - \sum_{i=1}^{n} \alpha_i$, where $1 - \sum_{i=1}^{n} \alpha_i \geq 0$.

Proof. We have

$$\operatorname{Re}\left\{\frac{zF_{\alpha_{1},\dots,\alpha_{n}}^{"}(z)}{F_{\alpha_{1},\dots,\alpha_{n}}^{"}(z)}+1\right\} = \sum_{i=1}^{n} \alpha_{i}\operatorname{Re}\left(\frac{zf_{i}^{"}(z)}{f_{i}^{'}(z)}+1\right). \tag{8}$$

Because $f_i \in UCV$, we have

$$\operatorname{Re}\left\{1 + \frac{zf_i''(z)}{f_i'(z)}\right\} \ge \left|\frac{zf_i''(z)}{f_i'(z)}\right|, z \in U.$$

We apply this inequality in relation (8) and obtain that:

$$\operatorname{Re}\left\{\frac{zF_{\alpha_{1},\dots,\alpha_{n}}''(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)}+1\right\} \geq \sum_{i=1}^{n} \alpha_{i} \left|\frac{zf_{i}''(z)}{f_{i}'(z)}\right| + 1 - \sum_{i=1}^{n} \alpha_{i} \geq 1 - \sum_{i=1}^{n} \alpha_{i}. \quad (9)$$

The relation (9) implies that the integral operator $F_{\alpha_1,...,\alpha_n}$ is convex of order $1 - \sum_{i=1}^{n} \alpha_i$.

References

[1] S.S. Miller and P.T. Mocanu, *Differential Subordinations*. Theory and Applications, Marcel Dekker, INC., New York, Basel, 2000.

[2] F. Ronning, A survey on uniformly convex and uniformly starlike functions, Annales Universitatis Mariae Curie-Sklodowska, vol. XLVII, 13, 123-134, Lublin-Polonia.

Authors:

Daniel Breaz
Department of Mathematics
"1 Decembrie 1918" University
Alba Iulia
Romania
e-mail: dbreaz@uab.ro

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan e-mail: owa@math.kindai.ac.jp

Nicoleta Breaz
Department of Mathematics
"1 Decembrie 1918" University
Alba Iulia
Romania
e-mail:nbreaz@uab.ro