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Abstract. An important tool in the hyperstructure theory is the fun-
damental relation. The factorization of a multialgebra modulo its fundamen-
tal relation provides a functor into the category of universal algebras. The
question that lead us to the results we will present is whether this functor
commutes with the products.
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1. Introduction

Multialgebras (also called hyperstructures) have been studied for more
than sixty years and they are used in different areas of mathematics as well
as in some applied sciences (see [2]). The results we present here refer to some
categorical problems in hyperstructure theory and their complete proofs are
given in [8]. The basic categorical notions we use can be found in [10].

The multialgebras of a given type determine a category for which the
morphisms are the multialgebra homomorphisms. The direct product is the
product in this category (see [7]). An important tool in hyperstructure the-
ory is the fundamental relation of a multialgebra. From [6] it follows that
the factorization of a multialgebra by the fundamental relation provides a
covariant functor. The problem we investigate here is whether, or when this
functor commutes with the products. In general, the fundamental algebra of
a product of multialgebras is not necessarily (isomorphic to) the product of
their fundamental algebras, but we found classes of multialgebras for which
this property holds. Since the main tools of our investigation are the term
functions of the universal algebra of the nonvoid subsets of a multialgebra,
we considered two particular classes of multialgebras for which we know the
form of these term functions: the class of hypergroups, and the class of the
complete multialgebras (see [6]). This lead us to good results on complete
hypergroups.
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C. Pelea - Products of multialgebras and their fundamental algebras

2. Preliminaries

Let τ = (nγ)γ<o(τ) be a sequence of nonnegative integers, where o(τ) is an
ordinal and for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation
and let us consider the algebra of the n-ary terms (of type τ)

P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

Let A = (A, (fγ)γ<o(τ)) be a multialgebra, where, for any γ < o(τ),

fγ : Anγ → P ∗(A)

is the multioperation of arity nγ that corresponds to the symbol fγ.
If, for any γ < o(τ) and for any A0, . . . , Anγ−1 ∈ P ∗(A), we define

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}},

we obtain a universal algebra on P ∗(A) (see [9]). We denote this algebra by
P∗(A). As in [4], we can construct, for any n ∈ N, the algebra P(n)(P∗(A))
of the n-ary term functions on P∗(A).

Let A be a multialgebra and let ρ be an equivalence relation on its sup-
port set A. We obtain, as in [3], a multialgebra on A/ρ by defining the
multioperations in the factor multialgebra A/ρ as follows: for any γ < o(τ),

fγ(ρ〈a0〉, . . . , ρ〈anγ−1〉) = {ρ〈b〉 | b ∈ fγ(b0, . . . , bnγ−1), aiρbi, i = 0, . . . , nγ−1}

(ρ〈x〉 denotes the class of x modulo ρ).
A mapping h : A → B between the multialgebras A and B of the same

type τ is called homomorphism if for any γ < o(τ) and for all a0, . . . , anγ−1 ∈
A we have

h(fγ(a0, . . . , anγ−1)) ⊆ fγ(h(a0), . . . , h(anγ−1)). (1)

As in [11] we can see a multialgebra A as a relational system (A, (rγ)γ<o(τ))
if we consider that, for any γ < o(τ), rγ is the nγ + 1-ary relation defined by

(a0, . . . , anγ−1, anγ ) ∈ rγ ⇔ anγ ∈ fγ(a0, . . . , anγ−1). (2)

Thus, the definition of the multialgebra homomorphism follows from the
definition of the homomorphism among relational systems.

A bijective mapping h is a multialgebra isomorphism if both h and h−1

are multialgebra homomorphisms. As it results from [9], the multialgebra
isomorphisms can be characterized as being those bijective homomorphisms
h for which we have equality in (1).
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Remark 1 From the steps of construction of a term (function) it follows that
for a homomorphism h : A → B, if n ∈ N, p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A
then

h(p(a0, . . . , an−1)) ⊆ p(h(a0), . . . , h(an−1)).

The definition of the multioperations of A/ρ allows us to see the canonical
mapping from A to A/ρ as a multialgebra homomorphism.

The fundamental relation of the multialgebra A is the transitive closure
α∗ = α∗

A of the relation α = αA given on A as follows: for x, y ∈ A, xαy if
and only if

∃n ∈ N, ∃p ∈ P(n)(τ), ∃a0, . . . , an−1 ∈ A : x, y ∈ p(a0, . . . , an−1) (3)

(p ∈ P (n)(P∗(A)) denotes the term function induced by p on P∗(A)). The
relation α∗ is the smallest equivalence relation on A with the property that
the factor multialgebra A/α∗ is a universal algebra (see [5] and [6]). The
universal algebra A = A/α∗ is called the fundamental algebra of A. We denote
by ϕA the canonical projection of A onto A and by a the class α∗〈a〉 = ϕA(a)
of an element a ∈ A.

In [6] we proved the following theorem:

Theorem 1 If A, B are multialgebras and A, B respectively, are their fun-
damental algebras and if f : A → B is a homomorphism then there exists only
one homomorphism of universal algebras f : A → B such that the following
diagram is commutative:

A
f //

ϕA

��

B

ϕB

��

A
f // B

(4)

(ϕA and ϕB denote the canonical projections).

Corollary 1 a) If A is a multialgebra then 1A = 1A.
b) If A, B, C are multialgebras of type τ and if f : A → B, g : B → C are
homomorphisms, then g ◦ f = g ◦ f.

The multialgebras of the same type τ , the multialgebra homomorphisms
and the usual mapping composition form a category denoted here by Malg(τ).
Clearly, the universal algebras of the same type τ together with the homomor-
phisms between them form a full subcategory in the above category (denoted
Alg(τ)).
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Remark 2 From Corollary 1 it results a functor

F : Malg(τ) −→ Alg(τ)

defined as follows: for any multialgebra A of type τ,

F (A) = A,

and, using the notations from diagram (4),

F (f) = f.

Let q, r ∈ P(n)(τ). Using the model offered by [4] and the definitions
of the hyperstructures from [1] and of the generalizations presented in [13],
named Hv-structures, we say that the n-ary (strong) identity

q = r

is satisfied on the multialgebra A of type τ if

q(a0, . . . , an−1) = r(a0, . . . , an−1), ∀a0, . . . , an−1 ∈ A,

(q and r are the term functions induced by q and r respectively on P∗(A)).
We also say that a weak identity

q ∩ r 6= ∅

is satisfied on a multialgebra A of type τ if

q(a0, . . . , an−1) ∩ r(a0, . . . , an−1) 6= ∅, ∀a0, . . . , an−1 ∈ A.

Many important particular multialgebras can be defined by using identi-
ties.

Example 1 A hypergroupoid (H, ◦) is a semihypergroup if the identity

(x0 ◦ x1) ◦ x2 = x0 ◦ (x1 ◦ x2) (5)

is satisfied on (H, ◦).
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Remark 3 Let H be a nonempty set. A hypergroup (H, ◦) is a semihyper-
group which satisfies the reproductive law:

a ◦H = H ◦ a = H, ∀a ∈ H.

It results that the mappings /, \ : H ×H → P ∗(H) defined by

a/b = {x ∈ H | a ∈ x ◦ b}, b\a = {x ∈ H | a ∈ b ◦ x}

are two binary multioperations on H. Thus, as we have seen in [6], the
hypergroups can be identified with those multialgebras (H, ◦, /, \) for which
H 6= ∅, ◦ is associative and the multioperations /, \ are obtained from ◦ using
the above equalities. It results that a semihypergroup (H, ◦) (with H 6= ∅) is
a hypergroup if and only if there exist two binary multioperations /, \ on H
such that the following weak identities:

x1 ∩ x0 ◦ (x0\x1) 6= ∅, x1 ∩ (x1/x0) ◦ x0 6= ∅,

x1 ∩ x0\(x0 ◦ x1) 6= ∅, x1 ∩ (x1 ◦ x0)/x0 6= ∅
are satisfied on (H, ◦, /, \) (see again [6]).

If we replace above (5) by

(x0 ◦ x1) ◦ x2 ∩ x0 ◦ (x1 ◦ x2) 6= ∅, (5′)

we obtain the class of the Hv-groups (see [12]).
A mapping h : H → H ′ between two hypergroups is called hypergroup

homomorphism if

h(a ◦ b) ⊆ h(a) ◦ h(b), ∀a, b ∈ H.

Clearly, h is a homomorphism between (H, ◦, /, \) and (H ′, ◦, /, \) since

h(a/b) ⊆ h(a)/h(b), h(a\b) ⊆ h(a)\h(b), ∀a, b ∈ H.

Remark 4 Any (weak or strong) identity satisfied on a multialgebra A is
satisfied (in a strong manner) in A (see [6]). So, the fundamental algebra of
a hypergroup or of a Hv-group is a group.

Remark 5 Since the hypergroups and the hypergroup homomorphisms form
a category it follows immediately that the mappings from Remark 2 define a
functor F from the category HG of hypergroups into the category of groups
Grp.
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In [6] we introduced a new class of multialgebras which generalize the no-
tion of complete hypergroup that appears in [1] and that is why we suggested
we should name them complete multialgebras.

Proposition 1 [6] Let A = (A, (fγ)γ<o(τ)) be a multialgebra of type τ. The
following conditions are equivalent:

(i) for all γ < o(τ), for all a0, . . . , anγ−1 ∈ A,

a ∈ fγ(a0, . . . , anγ−1) ⇒ a = fγ(a0, . . . , anγ−1).

(ii) for all m ∈ N, for all q, r ∈ P (m)(τ) \ {xi | i ∈ {0, . . . ,m− 1}}, for all
a0, . . . , am−1, b0, . . . , bm−1 ∈ A,

q(a0, . . . , am−1)∩r(b0, . . . , bm−1) 6= ∅ ⇒ q(a0, . . . , am−1) = r(b0, . . . , bm−1).

Remark 6 Since for any n ∈ N, p ∈ P (n)(P∗(A)) and m ∈ N, m ≥ n there
exists q ∈ P (m)(P∗(A)) such that

p(A0, . . . , An−1) = q(A0, . . . , Am−1), ∀A0, . . . , Am−1 ∈ P ∗(A),

it follows that the arities of q and r from condition (ii) need not be equal.

Definition 1 A multialgebra A = (A, (fγ)γ<o(τ)) of type τ is complete if it
satisfies one of the two equivalent conditions from Proposition 1.

Remark 7 [6] We notice that if A is a complete multialgebra, then the re-
lation αA given by (3) is transitive (so α∗

A = αA).

Remark 8 The complete multialgebras of type τ form a subcategory CMalg(τ)
of Malg(τ). So, if we compose F from Remark 2 with the inclusion func-
tor we get a functor (which we will denote by F , too) from CMalg(τ) into
Alg(τ).

Let (Ai = (Ai, (rγ)γ<o(τ)) | i ∈ I) be a family of relational systems of type
τ = (nγ + 1)γ<o(τ). In [4] is defined the direct product of this family as being
the relational system obtained on the Cartesian product

∏
i∈I Ai considering

that for (a0
i )i∈I , . . . , (a

nγ

i )i∈I ∈
∏

i∈I Ai,

((a0
i )i∈I , . . . , (a

nγ

i )i∈I) ∈ rγ ⇔ (a0
i , . . . , a

nγ

i ) ∈ rγ, ∀i ∈ I.
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Let (Ai | i ∈ I) be a family of multialgebras of type τ and consider the
relational systems defined by (2). The relational system obtained on the
Cartesian product

∏
i∈I Ai as in the above considerations is a multialgebra

of type τ with the multioperations:

fγ((a
0
i )i∈I , . . . , (a

nγ−1
i )i∈I) =

∏
i∈I

fγ(a
0
i , . . . , a

nγ−1
i ),

for any γ < o(τ). This multialgebra is called the direct product of the mul-
tialgebras (Ai | i ∈ I). We observe that the canonical projections of the
product, eI

i , i ∈ I, are multialgebra homomorphisms.

Proposition 2 [7] The multialgebra
∏

i∈I Ai constructed this way, together
with the canonical projections, is the product of the multialgebras (Ai | i ∈ I)
in the category Malg(τ).

Lemma 1 [7] If n ∈ N, p ∈ P(n)(τ) and (a0
i )i∈I , . . . , (a

n−1
i )i∈I ∈

∏
i∈I Ai,

then
p((a0

i )i∈I , . . . , (a
n−1
i )i∈I) =

∏
i∈I

p(a0
i , . . . , a

n−1
i ). (6)

Proposition 3 [7] If (Ai | i ∈ I) is a family of multialgebras such that the
weak identity q∩ r 6= ∅ is satisfied on each multialgebra Ai then q∩ r 6= ∅ is
also satisfied on the multialgebra

∏
i∈I Ai.

Proposition 4 [7] If (Ai | i ∈ I) is a family of multialgebras such that
q = r is satisfied on each multialgebra Ai then q = r is also satisfied on the
multialgebra

∏
i∈I Ai.

From Example 3, Proposition 3 and Proposition 4 we have the following:

Corollary 2 The subcategory HG of Malg((2, 2, 2)) is closed under pro-
ducts.

Corollary 3 [8] The direct product of complete multialgebras is a complete
multialgebra.

Corollary 4 The subcategory CMalg(τ) of Malg(τ) is closed under pro-
ducts.
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3. On the fundamental algebras of a direct product of
multialgebras

Let us consider the universal algebra
∏

i∈I Ai and its canonical projections

pi :
∏
i∈I

Ai → Ai (i ∈ I).

There exists a unique homomorphism ϕ of universal algebras such that the
following diagram is commutative:∏

i∈I Ai

pj // Aj

∏
i∈I Ai

ϕ

OO

eI
j

;;xxxxxxxxx
.

This homomorphism is given by

ϕ((ai)i∈I) = (ai)i∈I , ∀(ai)i∈I ∈
∏
i∈I

Ai.

It is clear that ϕ is surjective, so the universal algebra
∏

i∈I Ai, with the

homomorphisms (eI
i | i ∈ I) is the product of the family (Ai | i ∈ I) if and

only if ϕ is also injective.
But this does not always happen, as it results from the following example.

Example 2 [8, Example 2] Let us consider the hypergroupoids (H1, ◦) and
(H2, ◦) on the three elements sets H1 and H2 given by the following tables:

H1 a b c
a a a a
b a a a
c a a a

H2 x y z
x x y, z y, z
y y, z y, z y, z
z y, z y, z y, z

then in H1×H2, (b, y) = (b, z) but in H1 ×H2 the supposition (b, y) = (b, z)
leads us to the fact that y = z, which is false.

We will use the above notations and we will search for necessary and
sufficient conditions expressed with the aid of term functions for ϕ to be
injective. We will deal only with the cases when I is finite or αAi

= α∗
Ai

for
all i ∈ I (even if I is not finite).
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Lemma 2 [8, Lemma 2] If I is finite or αAi
is transitive for any i ∈ I, then

the homomorphism ϕ is injective if and only if for any ni ∈ N, qi ∈ P(ni)(τ),
a0

i , . . . , a
ni−1
i ∈ Ai (i ∈ I) and for any

(xi)i∈I , (yi)i∈I ∈
∏
i∈I

qi(a
0
i , . . . , a

ni−1
i )

there exist m, kj ∈ N, qj ∈ P(kj)(τ) and

(b0
i )

j
i∈I , . . . , (b

kj−1
i )j

i∈I ∈
∏
i∈I

Ai (j ∈ {0, . . . ,m− 1})

such that

(xi)i∈I ∈ q0((b0
i )

0
i∈I , . . . , (b

k0−1
i )0

i∈I), (yi)i∈I ∈ qm−1((b0
i )

m−1
i∈I , . . . , (b

km−1−1
i )m−1

i∈I )

and

qj−1((b0
i )

j−1
i∈I , . . . , (b

kj−1−1
i )j−1

i∈I ) ∩ qj((b0
i )

j
i∈I , . . . , (b

kj−1
i )j

i∈I) 6= ∅, (7)

for all j ∈ {1, . . . ,m− 1}.

It seems uncomfortable to work with the condition from the above state-
ment, but we can deduce a sufficient condition which will prove to be useful
in the next part of our paper. Of course, we use the same notations and the
same hypothesis as before.

Corollary 5 [8, Corollary 5] The (complicated) condition from the previous
lemma is verified if there exist n ∈ N, q ∈ P(n)(τ) and b0

i , . . . , b
n−1
i ∈ Ai (i ∈

I) such that ∏
i∈I

qi(a
0
i , . . . , a

ni−1
i ) ⊆ q((b0

i )i∈I , . . . , (b
n−1
i )i∈I). (8)

Let us take a subcategory C of Malg(τ) and the functor F ◦U obtained as
the composition of the functor F introduced in Remark 2 with the inclusion
functor U : C −→ MAlg(τ). Since we know how U is defined, we will refer
to F ◦ U as F. It follows immediately the following statements:
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Proposition 5 [8, Proposition 5] Let C be a subcategory of Malg(τ) closed
under finite products and let us consider that for any finite set I, for any
family (Ai | i ∈ I) of multialgebras from C and any ni ∈ N, qi ∈ P(ni)(τ),
a0

i , . . . , ani−1
i ∈ Ai (i ∈ I) there exist n ∈ N, q ∈ P(n)(τ) and b0

i , . . . , b
n−1
i ∈

Ai (i ∈ I) such that (8) holds. Then the functor F : C −→ Alg(τ) commutes
with the finite products.

Proposition 6 [8, Proposition 6] Let C be a subcategory of Malg(τ) closed
under products and let us consider that αA is transitive for each A ∈ C. If
for any set I, any family (Ai | i ∈ I) of multialgebras from C and any ni ∈ N,
qi ∈ P(ni)(τ), a0

i , . . . , a
ni−1
i ∈ Ai (i ∈ I) there exist n ∈ N, q ∈ P(n)(τ) and

b0
i , . . . , b

n−1
i ∈ Ai (i ∈ I) such that (8) holds, then the functor F : C −→

Alg(τ) commutes with the products.

In the following we will present the results of the investigation we started
for two particular classes of multialgebras for which the relation α defined
by (3) is transitive: the class of hypergroups and the class of complete mul-
tialgebras.

The case of hypergroups.

What happens with finite products of hypergroups? We remind that the
fundamental relation on a hypergroup (H, ◦, /, \) is the transitive closure of
the relation β =

⋃
n∈N∗ βn where for any x, y ∈ H,

xβny if and only if there exist a0, . . . , an−1 ∈ H, with x, y ∈ a0 ◦ · · · ◦ an−1.

The relation β is transitive, so β∗ = β (see [1]). As we can easily see,
the term functions qi which interest us are only those which are involved
in the definition of the fundamental relations of the multialgebras Ai. As it
results immediately, in the case of hypergroups, these term functions can
be obtained from the canonical projections using only the hyperproduct ◦,
and from the property of reproducibility of a hypergroup follows that any
hyperproduct with n factors is a subset of a hyperproduct with n+1 factors.
So, βn ⊆ βn+1 for any n ∈ N∗. It means that for any two hypergroups (H0, ◦),
(H1, ◦) we can apply Corollary 5 and it follows that H0 ×H1, together with

the homomorphisms e2
0, e2

1, is the product of the groups H0 and H1. Thus we
have proved the following:
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Proposition 7 [8, Proposition 7] The functor F : HG −→ Grp commutes
with the finite products of hypergroups.

Yet, F does not commute with the arbitrary products of hypergroups, as
it follows from the next eample:

Example 3 [8, Example 3] Let us consider the hypergroupoid (Z, ◦), where
Z is the set of the integers and for any x, y ∈ Z, x◦ y = {x+ y, x+ y +1}. It
results immediately that (Z, ◦) is a hypergroup with the fundamental relation
β = Z × Z. It means that the fundamental group of (Z, ◦) is a one-element
group. Now let us consider the product (ZN, ◦). The fundamental group of
this hypergroup has more than one element. Indeed,

f, g : N → Z, f(n) = 0, g(n) = n + 1 (n ∈ N)

are not in the same equivalence class of the fundamental relation of the hy-
pergroup (ZN, ◦).

As for arbitrary products (not necessarily finite) of hypergroups we have:

Theorem 2 [8, Theorem 2] Let I be a set and consider the hypergroups
Hi (i ∈ I) with the fundamental relations βHi . The group

∏
i∈I Hi, with the

homomorphisms (eI
i | i ∈ I), is the product of the family of groups (Hi | i ∈ I)

if and only if there exists n ∈ N∗ such that βHi ⊆ βHi
n , for all the elements i

from I, except for a finite number of i’s.

The case of complete multialgebras.

It is known that for a complete multialgebra A the classes from A have the
form {a} or fγ(a0, . . . , anγ−1), with γ < o(τ), a, a0, . . . , anγ−1 ∈ A (situations
which not exclude each other). Using this the following can be proved:

Theorem 3 [8, Theorem 3] For a family (Ai | i ∈ I) of complete multialge-
bras of the same type τ, the following statements are equivalent:

i)
∏

i∈I Ai (together with the homomorphisms eI
i (i ∈ I)) is the product of

the family of the universal algebras (Ai | i ∈ I);

ii) For any ni ∈ N, qi ∈ P(ni)(τ), a0
i , . . . , a

ni−1
i ∈ Ai, (i ∈ I) there exist

n ∈ N, q ∈ P(n)(τ) and b0
i , . . . , b

n−1
i ∈ Ai (i ∈ I) such that (8) holds;
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iii) For any ni ∈ N, qi ∈ P(ni)(τ), a0
i , . . . , a

ni−1
i ∈ Ai (i ∈ I) either∣∣∣∣∣∏

i∈I

qi(a
0
i , . . . , a

ni−1
i )

∣∣∣∣∣ = 1

or there exist γ < o(τ), b0
i , . . . , b

nγ−1
i ∈ Ai (i ∈ I) such that∏

i∈I

qi(a
0
i , . . . , a

ni−1
i ) ⊆ fγ((b

0
i )i∈I , . . . , (b

nγ−1
i )i∈I). (9)

Remark 9 If all Ai are universal algebras then iii) is trivially satisfied.

Remark 10 For a family of complete multialgebras (Ai | i ∈ I) the following
conditions are equivalent:

a) there exist n ∈ N and p ∈ P(n)(τ)\{xi | i ∈ {0, .., n−1}} such that for
each i ∈ I and for any ai ∈ Ai we have ai ∈ p(a0

i , . . . , a
n−1
i ) for some

a0
i , . . . , a

n−1
i ∈ Ai;

b) there exists a γ < o(τ) such that for each i ∈ I and for any ai ∈ Ai we
have ai ∈ fγ(a

0
i , . . . , a

nγ−1
i ) for some a0

i , . . . , a
nγ−1
i ∈ Ai.

Corollary 6 [8, Corollary 8] If for a family of complete multialgebras one
of the equivalent conditions a) or b) is satisfied, then the condition i) from
the previous theorem holds.

Remark 11 The condition a), respectively b) from above are not necessary
for i) to be satisfied, and the exception is not covered by the case when all Ai

are universal algebras.

Example 4 [8, Example 4] Let us consider the multialgebras A0 and A1, of
the same type (2,3,4) obtained on the sets A0 = {1, 2, 3} and A1 = {1, 2, 3, 4}
as follows:

A0 = (A, f0
0 , f0

1 , f0
2 ), A1 = (A, f1

0 , f1
1 , f1

2 ),

where f i
j : Aj+2

i → P ∗(Ai), i = 0, 1, j = 0, 1, 2,

f 0
0 (x, y) = {1}, f0

1 (x, y, z) = {2, 3}, f0
2 (x, y, z, t) = {2, 3},

f 1
0 (x, y) = {1, 2, 3}, f1

1 (x, y, z) = {4}, f1
2 (x, y, z, t) = {1, 2, 3}.

These complete multialgebras satisfy condition iii) and, consequently, the
condition i), but they do not verify condition b).
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Either using the fact that for the complete hypergroups we have β = β2

and Theorem 2 or using Corollary 6 we obtain the following result:

Corollary 7 The functor F commutes with the products of complete hyper-
groups.

Remark 12 The complete semihypergroups from [1, Proposition 346] satisfy
the condition b) from Remark 10.
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