MONADIC INVOLUTIVE PSEUDO-BCK ALGEBRAS

Afrodita Iorgulescu

Abstract.In this paper we introduce and study the monadic involutive pseudo-BCK algebras (porims). As particular cases we obtain the monadic involutive pseudo-BCK (pP) lattices (pseudo-residuated lattices), monadic pseudo-IMTL algebras, monadic pseudo-NM algebras, monadic pseudo-MV algebras, etc. and all the commutative corresponding algebras.

2000 Mathematics Subject Classification: 03G25, 06F05, 06F35.

1. Introduction

In this paper we generalize some results from [29] and [10] concerning monadic MV algebras to the most general, non-commutative, involutive case. Since in [29], all the non-commutative algebras, connected to logics, were redefined as pseudo-BCK algberas, we shall consider involutive pseudo-BCK algebras as the most general non-commutative involutive algebras. Therefore, we define in this paper the monadic involutive pseudo-BCK algebra and we obtain the principal properties. As particular cases, we get monadic involutive pseudo- $\mathrm{BCK}(\mathrm{pP})$ lattices (pseudo-residuated lattices), monadic pseudoIMTL algebras, monadic pseudo-NM algebras, monadic pseudo-MV algebras, etc. [29], [30] and all the commutative corresponding algebras. The study will be continued in a future paper.

We assume the reader is familiar with [29], [30], [31], but the paper is self-contained as much as possible.

The already known results are presented without proof.

2. Classes of pseudo-BCK algebras

In this section we recall definitions and results needed in the sequel, that the reader can find in [29], [31].

2.1. Bounded pseudo-BCK algebras, pseudo-BCK(PP) algebras

BCK algebras were introduced in 1966 by Iséki as "right" algebras with the only bound 0 , starting from the systems of positive implicational calculus, weak positive implicational calculus by A. Church and BCI, BCK-systems by C.A. Meredith (cf. [35]).

Pseudo-BCK algebras were introduced in 2001 [19], as non-commutative generalizations of BCK algebras, i.e. as "right" algebras. We need the "left" definition and the reversed definition (see [29] for details).

Definition 1. A reversed left-pseudo-BCK algebra [28] is a structure

$$
\mathcal{A}=(A, \leq, \rightarrow, \sim>, 1)
$$

where " \leq " is a binary relation on $A, " \rightarrow$ " and " $\sim>$ " are binary operations on A and " 1 " is an element of A verifying, for all $x, y, z \in A$, the axioms:
(I) $(z \rightarrow x) \sim>(y \rightarrow x) \geq y \rightarrow z, \quad(z \sim>x) \rightarrow(y \sim>x) \geq y \sim>z$,
(II) $(y \rightarrow x) \sim>x \geq y, \quad(y \sim>x) \rightarrow x \geq y$,
(III) $x \geq x$,
(IV) $1 \geq x$,
(V) $x \geq y, y \geq x \Longrightarrow x=y$,
(VI) $x \geq y \Longleftrightarrow y \rightarrow x=1 \Longleftrightarrow y \sim>x=1$.

We shall freely write $x \geq y$ or $y \leq x$ in the sequel. From now on we shall simply say "pseudo-BCK algebra" instead of "reversed left-pseudo-BCK algebra".

Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 1)$ be a pseudo-BCK algebra. We shall say that \mathcal{A} is commutative if $x \rightarrow y=x \sim>y$, for all $x, y \in A$ [27]. Any commutative pseudo-BCK algebra is a left-BCK algebra [29].

Proposition 1. (see [28], [27]) The following properties hold in a pseudoBCK algebra:

$$
\begin{gather*}
x \leq y \Longrightarrow y \rightarrow z \leq x \rightarrow z \text { and } y \sim>z \leq x \sim>z, \tag{1}\\
x \leq y, y \leq z \Longrightarrow x \leq z . \tag{2}\\
z \sim>(y \rightarrow x)=y \rightarrow(z \sim>x) . \tag{3}\\
z \leq y \rightarrow x \Longleftrightarrow y \leq z \sim>x, \tag{4}\\
z \rightarrow x \leq(y \rightarrow z) \rightarrow(y \rightarrow x), \quad z \sim>x \leq(y \sim>z) \sim>(y \sim>x) \tag{5}\\
x \leq y \rightarrow x, \quad x \leq y \sim>x, \tag{6}
\end{gather*}
$$

$$
\begin{gather*}
1 \rightarrow x=x=1 \sim>x \tag{7}\\
x \leq y \Longrightarrow z \rightarrow x \leq z \rightarrow y \text { and } z \sim>x \leq z \sim>y \tag{8}\\
{[(y \rightarrow x) \sim>x] \rightarrow x=y \rightarrow x, \quad[(y \sim>x) \rightarrow x] \sim>x=y \sim>x} \tag{9}
\end{gather*}
$$

Recall that " \leq " is a partial order relation and that $(A, \leq, 1)$ is a poset with greatest element 1.

Definition 2. [27] A pseudo-BCK algebra with ($p P$) condition (i.e. with pseudo-product) or a pseudo-BCK (pP) algebra for short, is a pseudo-BCK algebra $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 1)$ satisfying (pP) condition:
(pP) for all $x, y \in A$, there exists $x \odot y \stackrel{\text { notation }}{=} \min \{z \mid x \leq y \rightarrow z\}=$ $\min \{z \mid y \leq x \sim>z\}$.

Note that any linearly ordered bounded pseudo-BCK algebra is with (pP) condition.

Proposition 2. (see [27], Theorem 2.15) Let \mathcal{A} be a pseudo- $B C K(p P)$ algebra. Then, $(p R P)$ condition holds, where:
($p R P$) for all $x, y, z, \quad x \odot y \leq z \Longleftrightarrow x \leq y \rightarrow z \Longleftrightarrow y \leq x \sim>z$.
Lemma 1. [29] A pseudo- $B C K(p P)$ algebra \mathcal{A} is commutative iff $x \odot y=$ $y \odot x$, for any $x, y \in A$.

Proposition 3. [28] Let us consider the pseudo- $\operatorname{BCK}(p P)$ algebra $\mathcal{A}=$ $(A, \leq, \rightarrow, \sim>, 1)$. Then, for all $x, y, z \in A$:

$$
\begin{gather*}
x \odot y \leq x, y \tag{10}\\
(x \rightarrow y) \odot x \leq x, y, \quad x \odot(x \sim>y) \leq x, y \tag{11}\\
y \leq x \rightarrow(y \odot x), \quad y \leq x \sim>(x \odot y) \tag{12}\\
x \rightarrow y \leq(x \odot z) \rightarrow(y \odot z), \quad x \sim>y \leq(z \odot x) \sim>(z \odot y) \tag{13}\\
x \odot(y \rightarrow z) \leq y \rightarrow(x \odot z), \quad(y \sim>z) \odot x \leq y \sim>(z \odot x) \tag{14}\\
(y \rightarrow z) \odot(x \rightarrow y) \leq x \rightarrow z, \quad(x \sim>y) \odot(y \sim>z) \leq x \sim>z \tag{15}\\
x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z, \quad x \sim>(y \sim>z)=(y \odot x) \sim>z \tag{16}\\
(x \odot z) \rightarrow(y \odot z) \leq x \rightarrow(z \rightarrow y), \quad(z \odot x) \sim>(z \odot y) \leq x \sim>(z \sim>y) \tag{17}
\end{gather*}
$$

$$
\begin{align*}
& x \rightarrow y \leq(x \odot z) \rightarrow(y \odot z) \leq x \rightarrow(z \rightarrow y), \tag{18}\\
& x \sim>y \leq(z \odot x) \sim>(z \odot y) \leq x \sim>(z \sim>y) \\
& x \leq y \quad \Rightarrow \quad x \odot z \leq y \odot z, \quad z \odot x \leq z \odot y . \tag{19}
\end{align*}
$$

Proposition 4. [27] Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 1)$ be a pseudo- $B C K(p P)$ algebra. Then the algebra $(A, \leq, \odot, 1)$ is a partially ordered, integral (left-) monoid, or, equivalently, the operation \odot is a pseudo-t-norm on the poset $(A, \leq, 1)$ with greatest element 1 .

Pseudo-BCK (pP) algebras are termwise equivalent with leftporims (partially ordered, residuated, integral left-monoids) [27].

Definition 3. [28] If there is an element, 0 , of a pseudo-BCK algebra $\mathcal{A}=$ $(A, \leq, \rightarrow, \sim>, 1)$, satisfying $0 \leq x$ (i.e. $0 \rightarrow x=0 \sim>x=1$), for all $x \in A$, then 0 is called the zero of \mathcal{A}. A pseudo-BCK algebra with zero is called to be bounded and it is denoted by: $(A, \leq, \rightarrow, \sim>, 0,1)$.

Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$ be a bounded pseudo-BCK algebra. Define, for all $x \in A$, two negations, ${ }^{-}$and ${ }^{\sim}$, by [28]: for all $x \in A$,

$$
\begin{equation*}
x^{-} \stackrel{\text { def }}{=} x \rightarrow 0, \quad x^{\sim} \stackrel{\text { def }}{=} x \sim>0 . \tag{20}
\end{equation*}
$$

Proposition 5. [28] In a bounded pseudo-BCK algebra \mathcal{A} the following properties hold, for all $x, y \in A$:

$$
\begin{gather*}
1^{-}=0=1^{\sim}, 0^{-}=1=0^{\sim}, \tag{21}\\
x \leq\left(x^{-}\right)^{\sim}, \quad x \leq\left(x^{\sim}\right)^{-} \tag{22}\\
x \rightarrow y \leq y^{-} \sim>x^{-}, \quad x \sim>y \leq y^{\sim} \rightarrow x^{\sim}, \tag{23}\\
x \leq y \Rightarrow y^{-} \leq x^{-}, y^{\sim} \leq x^{\sim} \tag{24}\\
y \sim>x^{-}=x \rightarrow y^{\sim}, \tag{25}\\
\left(\left(x^{-}\right)^{\sim}\right)^{-}=x^{-}, \quad\left(\left(x^{\sim}\right)^{-}\right)^{\sim}=x^{\sim} . \tag{26}
\end{gather*}
$$

Proposition 6. [28] Let us consider the bounded pseudo- $B C K(p P)$ algebra $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$. Then, for all $x, y, z \in A$:

$$
\begin{equation*}
0 \odot x=x \odot 0=0 \tag{27}
\end{equation*}
$$

Proposition 7. [29] Let \mathcal{A} be a bounded pseudo- $B C K(p P)$ algebra. Then,

$$
x \odot x^{\sim}=0=x^{-} \odot x
$$

Definition 4. [29] If a bounded pseudo-BCK algebra $\mathcal{A}=(A, \leq, \rightarrow, \sim>$ $, 0,1)$ verifies, for every $x \in A$:

$$
\left(D N^{1}\right)\left(x^{\sim}\right)^{-}=x, \quad\left(D N^{2}\right)\left(x^{-}\right)^{\sim}=x,
$$

then we shall say that \mathcal{A} is with ($p D N$) (pseudo-Double Negation) condition or is an involutive pseudo-BCK algebra (note that the more correct name would be "pseudo-involutive").

We write: $(\mathrm{pDN})=\left(D N^{1}\right)+\left(D N^{2}\right)$.
Lemma 2. Let \mathcal{A} be an involutive pseudo-BCK algebra. Then, for all $x, y \in A$ (see [28]):

$$
\begin{gather*}
x \leq y \Leftrightarrow y^{-} \leq x^{-} \Leftrightarrow y^{\sim} \leq x^{\sim} \tag{28}\\
x \sim>y=y^{\sim} \rightarrow x^{\sim}, \quad x \rightarrow y=y^{-} \sim>x^{-} \tag{29}\\
y^{-} \sim>x=x^{\sim} \rightarrow y . \tag{30}
\end{gather*}
$$

Proposition 8. [19] Let \mathcal{A} be an involutive pseudo-BCK algebra. Then, for all $x, y \in A$:

$$
\begin{equation*}
\left(x \rightarrow y^{-}\right)^{\sim}=\left(y \sim>x^{\sim}\right)^{-} . \tag{31}
\end{equation*}
$$

We recall now the following important result:
Theorem 1. [29] Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$ be an involutive pseudo$B C K$ algebra. Then \mathcal{A} is with ($p P$) condition and we have, for all $x, y \in A$:

$$
\begin{gather*}
x \odot y \stackrel{\text { notation }}{=} \min \{z \mid x \leq y \rightarrow z\}=\min \{z \mid y \leq x \sim>z\}= \tag{32}\\
=\left(x \rightarrow y^{-}\right)^{\sim}=\left(y \sim>x^{\sim}\right)^{-}, \\
x \rightarrow y=\left(x \odot y^{\sim}\right)^{-}, \quad x \sim>y=\left(y^{-} \odot x\right)^{\sim} . \tag{33}
\end{gather*}
$$

In a pseudo-BCK algebra \mathcal{A} we define, for all $x, y \in A$ (see [19], [28]):

$$
\begin{align*}
& x \vee y \stackrel{\text { def }}{=}(x \rightarrow y) \sim>y . \tag{34}\\
& x \cup y \stackrel{\text { def }}{=}(x \sim>y) \rightarrow y . \tag{35}
\end{align*}
$$

Definition 5. [19], [28]
(i) If $x \vee y=y \vee x$, for all $x, y \in A$, then the pseudo-BCK algebra \mathcal{A} is called to be \vee-commutative.
(i') If $x \cup y=y \cup x$, for all $x, y \in A$, then the pseudo-BCK algebra \mathcal{A} is called to be \cup-commutative.

Lemma 3. (see [19], [28])
(i) A pseudo-BCK algebra is \vee-commutative iff it is a semilattice with respect to \vee (under \leq).
(i^{\prime}) A pseudo-BCK algebra is \cup-commutative iff it is a semilattice with respect to $\cup($ under $\leq)$.

Definition 6. [19], [28] We say that a pseudo-BCK algebra is supcommutative if it is both \vee-commutative and \cup-commutative.

Theorem 2. [19], [28] A pseudo-BCK algebra is sup-commutative iff it is a semilattice with respect to both \vee and \cup.

Corollary 1. (see [19], [28] Corollary 3.27) Let \mathcal{A} be a bounded, supcommutative pseudo-BCK algebra. Then, \mathcal{A} is with ($p D N$) condition (and hence it is with ($p P$) condition, by Theorem 1).

In a bounded, sup-commutative pseudo-BCK algebra \mathcal{A}, define, for all $x, y \in A$ (see [19], [28]):

$$
\begin{align*}
& x \wedge y \stackrel{\text { def }}{=}\left(x^{-} \vee y^{-}\right)^{\sim}, \tag{36}\\
& x \cap y \stackrel{\text { def }}{=}\left(x^{\sim} \cup y^{\sim}\right)^{-} . \tag{37}
\end{align*}
$$

Theorem 3. (see [19], [28] Theorem 3.33) If a pseudo-BCK algebra is bounded and sup-commutative, then it is a lattice with respect to both \vee, \wedge and $\cup, \cap($ under $\leq)$ and we have, for all x, y :

$$
x \vee y=x \cup y, \quad x \wedge y=x \cap y
$$

Note that a sup-commutative pseudo-BCK algebra can be a lattice without being bounded.

You can find in [19], [28] some properties of bounded, sup-commutative pseudo-BCK algebras and that bounded, sup-commutative pseudo-BCK algebras coincide (are termwise equivalent) with pseudo-MV algebras.

2.2. The self-duality of involutive pseudo-BCK algebras

We have discussed in details the self-duality of involutive pseudo-BCK algebras in [31]; we recall the following dual operations and their connections, needed in the sequel.

Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$ be an involutive (left) pseudo-BCK algebra, where:

- the "left" operations are: the two "left" implications $\rightarrow, \sim>$, the two "left" corresponding negations $x^{-L}=x^{-}=x \rightarrow 0, x^{\sim L}=x^{\sim}=x \sim>0$ and the pseudo-t-norm \odot;
- the "right" operations are: the two "right" implications $\Rightarrow, \approx>$, the two "right" corresponding negations $x^{-R}=x \Rightarrow 1, x^{\sim_{R}}=x \approx>1$ and the pseudo-t-conorm \oplus;
- the two "left" negations and the corresponding "right" negations coincide, therefore we shall use only the two symbols ${ }^{-}$and ${ }^{\sim}$, where for all $x \in A$, $x^{-}=x \rightarrow 0=x \Rightarrow 1, \quad x^{\sim}=x \sim>0=x \approx>1 ;$
- the "left" partial order relation is \geq, while the "right" partial order relation is \leq, where $x \geq y$ iff $y \leq x$.

Thus, $(A, \leq, \Rightarrow, \approx>, 1,0)$ is the dual involutive (right) pseudo-BCK algebra, and conversely.

Then [31], for all $x, y \in A$:

- the connections between the "left" operations are:

$$
\begin{gather*}
x \odot y=\left(x \rightarrow y^{-}\right)^{\sim}=\left(y \sim>x^{\sim}\right)^{-}, \tag{38}\\
x \rightarrow y=\left(x \odot y^{\sim}\right)^{-}, \quad x \sim>y=\left(y^{-} \odot x\right)^{\sim} ; \tag{39}
\end{gather*}
$$

- the connections between the "right" operations are:

$$
\begin{equation*}
x \oplus y=\left(x \Rightarrow y^{-}\right)^{\sim}=\left(y \approx>x^{\sim}\right)^{-}, \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
x \Rightarrow y=\left(x \oplus y^{\sim}\right)^{-}, \quad x \approx>y=\left(y^{-} \oplus x\right)^{\sim} ; \tag{41}
\end{equation*}
$$

- the "left" operations expressed in terms of "right" operations are:

$$
\begin{gather*}
x \odot y=\left(y^{-} \oplus x^{-}\right)^{\sim}=\left(y^{\sim} \oplus x^{\sim}\right)^{-}, \tag{42}\\
x \rightarrow y=\left(x^{\sim} \Rightarrow y^{\sim}\right)^{-}, \quad x \sim>y=\left(x^{-} \approx>y^{-}\right)^{\sim} ; \tag{43}
\end{gather*}
$$

- the "right" operations expressed in terms of "left" operations are:

$$
\begin{gather*}
x \oplus y=\left(y^{-} \odot x^{-}\right)^{\sim}=\left(y^{\sim} \odot x^{\sim}\right)^{-}, \tag{44}\\
x \Rightarrow y=\left(x^{\sim} \rightarrow y^{\sim}\right)^{-}, \quad x \approx>y=\left(x^{-} \sim>y^{-}\right)^{\sim} . \tag{45}
\end{gather*}
$$

By Lemma 2, we have: for all $x, y \in A$,

$$
\begin{gather*}
x \sim>y=y^{\sim} \rightarrow x^{\sim}, \quad x \rightarrow y=y^{-} \sim>x^{-}, \tag{46}\\
y^{-} \sim>x=x^{\sim} \rightarrow y \tag{47}
\end{gather*}
$$

and dually

$$
\begin{gather*}
x \approx>y=y^{\sim} \Rightarrow x^{\sim}, \quad x \Rightarrow y=y^{-} \approx>x^{-}, \tag{48}\\
y^{-} \approx>x=x^{\sim} \Rightarrow y . \tag{49}
\end{gather*}
$$

2.3. Bounded pseudo-BCK(PP) Lattices

Definition 7. Let $\mathcal{A}=(A, \leq, \sim>, \rightarrow, 0,1)$ be a bounded pseudo-BCK (pseudo- $\mathrm{BCK}(\mathrm{pP})$) algebra. If the poset (A, \leq) is a lattice, then we shall say that \mathcal{A} is a bounded pseudo- $B C K$ (pseudo- $B C K(p P)$) lattice.

A bounded pseudo-BCK (pseudo-BCK (pP)) lattice $\mathcal{A}=(A, \leq, \rightarrow, \sim>$ $, 0,1)$ will be denoted:

$$
\mathcal{A}=(A, \wedge, \vee, \rightarrow, \sim>, 0,1)
$$

Denote by $\mathbf{p B C K}(\mathbf{p P})-\mathbf{L}^{b}$ the class of bounded pseudo-BCK(pP) lattices.
(Bounded) pseudo-BCK (pP) lattices are termwise equivalent with (bounded) pseudo-residuated lattices[27].

Lemma 4. [29] Let $(A, \wedge, \vee, \rightarrow, \sim>, 1)$ be a pseudo- $B C K$ lattice. Then, for any $x, y, z \in A$, we have:
(i) $z \rightarrow(x \wedge y) \leq(z \rightarrow x) \wedge(z \rightarrow y)$ and $z \sim>(x \wedge y) \leq(z \sim>x) \wedge(z \sim>y)$;
(ii) $z \rightarrow(x \vee y) \geq(z \rightarrow x) \vee(z \rightarrow y)$ and $z \sim>(x \vee y) \geq(z \sim>x) \vee(z \sim>y)$;
(iii) $(x \wedge y) \rightarrow z \geq(x \rightarrow z) \vee(y \rightarrow z)$ and $(x \wedge y) \sim>z \geq(x \sim>z) \vee(y \sim>z)$.

Let I be an arbitrary set.
Proposition 9. [29] Let \mathcal{A} be a pseudo- $B C K(p P)$ lattice. Then the following properties hold, for all $x, y, z \in A$:

$$
\begin{gather*}
a \odot\left(\vee_{i \in I} b_{i}\right)=\vee_{i \in I}\left(a \odot b_{i}\right), \quad\left(\vee_{i \in I} b_{i}\right) \odot a=\vee_{i \in I}\left(b_{i} \odot a\right), \tag{50}\\
g \vee(h \odot k) \geq(g \vee h) \odot(g \vee k), \tag{51}\\
\left(\vee_{i \in I} x_{i}\right) \sim>y=\wedge_{i \in I}\left(x_{i} \sim>y\right), \quad\left(\vee_{i \in I} x_{i}\right) \rightarrow y=\wedge_{i \in I}\left(x_{i} \rightarrow y\right), \tag{52}\\
y \sim>\left(\wedge_{i \in I} x_{i}\right)=\wedge_{i \in I}\left(y \sim>x_{i}\right), \quad y \rightarrow\left(\wedge_{i \in I} x_{i}\right)=\wedge_{i \in I}\left(y \rightarrow x_{i}\right), \tag{53}
\end{gather*}
$$

whenever the arbitrary unions and meets exist.
Proposition 10. [29] Let \mathcal{A} be a pseudo- $B C K(p P)$ lattice. Then we have:

$$
\begin{gather*}
(x \rightarrow y) \odot x \leq x \wedge y, \quad x \odot(x \sim>y) \leq x \wedge y \tag{54}\\
x \rightarrow(x \wedge y)=x \rightarrow y, \quad x \sim>(x \wedge y)=x \sim>y \tag{55}
\end{gather*}
$$

Proposition 11. [29] In a bounded pseudo-BCK (pP) lattice we have the properties:

$$
\begin{align*}
& (x \vee y)^{\sim}=x^{\sim} \wedge y^{\sim}, \quad(x \vee y)^{-}=x^{-} \wedge y^{-}, \tag{56}\\
& x^{-} \vee y^{-} \leq(x \wedge y)^{-}, \quad x^{\sim} \vee y^{\sim} \leq(x \wedge y)^{\sim} \tag{57}\\
& x \rightarrow y^{-}=(x \odot y)^{-}, \quad x \sim>y^{\sim}=(y \odot x)^{\sim} . \tag{58}
\end{align*}
$$

$$
* * *
$$

We say that a pseudo-BCK lattice $\mathcal{A}=(A, \wedge, \vee, \rightarrow, \sim>, 1)$ is with $(p C)$ condition if, for all $x, y \in A$,

$$
\left(C^{1}\right) \quad x \vee y=(y \sim>x) \rightarrow x, \quad\left(C^{2}\right) \quad x \vee y=(y \rightarrow x) \sim>x
$$

We write: $(\mathrm{pC})=\left(C^{1}\right)+\left(C^{2}\right)$.
Remark 1. [29] The pseudo- $\mathrm{BCK}(\mathrm{pP})$ lattice with (pC) condition is a duplicate name for the sup-commutative pseudo- $\mathrm{BCK}(\mathrm{pP})$ algebra.

We say that a bounded pseudo-BCK lattice \mathcal{A} is with ($p D N$) condition or a pseudo- $\mathrm{BCK}_{(p D N)}$ lattice or an involutive pseudo-BCK algbera, for short, if the associated bounded pseudo-BCK algebra is with (pDN) condition. An involutive pseudo-BCK lattice is an involutive pseudo- $\mathrm{BCK}(\mathrm{pP})$ lattice.

Note that involutive pseudo-BCK lattices are termwise equivalent with involutive pseudo-residuated lattices.

Corollary 2. [29] Let $\mathcal{A}=(A, \wedge, \vee, \rightarrow, \sim>, 0,1)$ be a bounded pseudo$B C K(p P)$ lattice with $(p C)$ condition. Then \mathcal{A} is with ($p D N$) condition.

Proposition 12. [29] Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$ be an involutive pseudo- $B C K(p P)$ lattice. Then we have:

$$
\begin{array}{ll}
(x \wedge y)^{-}=x^{-} \vee y^{-}, & (x \wedge y)^{\sim}=x^{\sim} \vee y^{\sim}, \\
x \wedge y=\left(x^{-} \vee y^{-}\right)^{\sim}, & x \wedge y=\left(x^{\sim} \vee y^{\sim}\right)^{-} . \tag{60}
\end{array}
$$

3. Monadic involutive pseudo-BCK algebras

Let $\mathcal{A}=(A, \leq, \rightarrow, \sim>, 0,1)$ be an involutive pseudo-BCK algebra, hence an involutive pseudo- $\mathrm{BCK}(\mathrm{pP})$ algebra, through this section.

Definition 8. We say that an operator $f: A \longrightarrow A$ is a monadic operator of \mathcal{A} if the following condition (m) is satisfied: (m) $\left(f\left(x^{-}\right)\right)^{\sim}=\left(f\left(x^{\sim}\right)\right)^{-}$.

Proposition 13. Let $\exists: A \longrightarrow A$ be a monadic operator of \mathcal{A}. Define \forall by:

$$
\begin{equation*}
\forall x \stackrel{\text { def }}{=}\left(\exists x^{-}\right)^{\sim}=\left(\exists x^{\sim}\right)^{-} \tag{61}
\end{equation*}
$$

Then \forall is a monadic operator of \mathcal{A} and

$$
\begin{equation*}
\exists x=\left(\forall x^{-}\right)^{\sim}=\left(\forall x^{\sim}\right)^{-} . \tag{62}
\end{equation*}
$$

Proof. (61) \Rightarrow (62):
$\left.\exists x \stackrel{(p D N)}{=} \exists\left(\left(x^{\sim}\right)^{-}\right) \stackrel{(p D N)}{=}\left(\left[\exists\left(\left(x^{\sim}\right)^{-}\right)\right)\right]^{\sim}\right)^{-} \stackrel{(61)}{=}\left[\forall x^{\sim}\right]^{-}$and $\left.\exists x \stackrel{(p D N)}{=} \exists\left(\left(x^{-}\right)^{\sim}\right) \stackrel{(p D N)}{=}\left(\left[\exists\left(\left(x^{-}\right)^{\sim}\right)\right)\right]^{-}\right) \sim \stackrel{(61)}{=}\left[\forall x^{-}\right]^{\sim}$.

Proposition 14. Let $\forall: A \longrightarrow A$ be a monadic operator of \mathcal{A}. Define \exists by:

$$
\begin{equation*}
\exists x \stackrel{\text { def }}{=}\left(\forall x^{-}\right)^{\sim}=\left(\forall x^{\sim}\right)^{-} . \tag{63}
\end{equation*}
$$

Then \exists is a monadic operator of \mathcal{A} and

$$
\begin{equation*}
\forall x=\left(\exists x^{-}\right)^{\sim}=\left(\exists x^{\sim}\right)^{-} . \tag{64}
\end{equation*}
$$

Proof. (63) \Rightarrow (64):
$\left.\forall x \stackrel{(p D N)}{=} \forall\left(\left(x^{-}\right)^{\sim}\right) \stackrel{(p D N)}{=}\left(\left[\forall\left(\left(x^{-}\right)^{\sim}\right)\right)\right]^{-}\right)^{\sim} \stackrel{(63)}{=}\left[\exists x^{-}\right]^{\sim}$ and $\left.\forall x \stackrel{(p D N)}{=} \forall\left(\left(x^{\sim}\right)^{-}\right) \stackrel{(p D N)}{=}\left(\left[\forall\left(\left(x^{\sim}\right)^{-}\right)\right)\right]^{\sim}\right) \stackrel{(63)}{=}\left[\exists x^{\sim}\right]^{-}$.

Corollary 3. The following hold: for all $x \in A$,

$$
\begin{gather*}
(\forall x)^{-}=\exists x^{-}, \quad(\forall x)^{\sim}=\exists x^{\sim}, \tag{65}\\
\left(\exists x^{\sim}\right)^{-}=\forall\left(x^{\sim}\right)^{-}=\forall x, \quad\left(\exists x^{-}\right)^{\sim}=\forall\left(x^{-}\right)^{\sim}=\forall x . \tag{66}
\end{gather*}
$$

and

$$
\begin{gather*}
(\exists x)^{-}=\forall x^{-}, \quad(\exists x)^{\sim}=\forall x^{\sim}, \tag{67}\\
\left(\forall x^{\sim}\right)^{-}=\exists\left(x^{\sim}\right)^{-}=\exists x, \quad\left(\forall x^{-}\right)^{\sim}=\exists\left(x^{-}\right)^{\sim}=\exists x \tag{68}
\end{gather*}
$$

Proof. (65): $(\forall x)^{-} \stackrel{(61)}{=}\left[\left(\exists x^{-}\right)^{\sim}\right]^{-} \stackrel{(p D N)}{=} \exists x^{-},(\forall x)^{\sim} \stackrel{(61)}{=}\left[\left(\exists x^{\sim}\right)^{-}\right]^{\sim} \stackrel{(p D N)}{=}$ $\exists x^{\sim}$.
(66): $\left(\exists x^{\sim}\right)^{-} \stackrel{(61)}{=} \forall x \stackrel{(p D N)}{=} \forall\left(x^{\sim}\right)^{-},\left(\exists x^{-}\right)^{\sim} \stackrel{(61)}{=} \forall x \stackrel{(p D N)}{=} \forall\left(x^{-}\right)^{\sim}$.
(67): $(\exists x)^{-} \stackrel{(63)}{=}\left[\left(\forall x^{-}\right)^{\sim}\right]^{-} \stackrel{(p D N)}{=} \forall x^{-},(\exists x)^{\sim} \stackrel{(63)}{=}\left[\left(\forall x^{\sim}\right)^{-}\right]^{\sim} \stackrel{(p D N)}{=} \forall x^{\sim}$.
(68): $\left(\forall x^{\sim}\right)^{-} \stackrel{(63)}{=} \exists x \stackrel{(p D N)}{=} \exists\left(x^{\sim}\right)^{-},\left(\forall x^{-}\right)^{\sim} \stackrel{(63)}{=} \exists x \stackrel{(p D N)}{=} \exists\left(x^{-}\right)^{\sim}$.

Proposition 15. The following are equivalent:
(EO) $\exists 0=0$,
(U0) $\forall 1=1$.
Proof. (E0) $\Longrightarrow(\mathrm{U} 0): \forall 1=\forall\left(0^{-}\right) \stackrel{(67)}{=}(\exists 0)^{-} \stackrel{(E 0)}{=} 0^{-}=1$.
$(\mathrm{U} 0) \Longrightarrow(\mathrm{E} 0): \exists 0=\exists\left(1^{-}\right) \stackrel{(65)}{=}(\forall 1)^{-} \stackrel{(\mathrm{U0})}{=} 1^{-}=0$.
Proposition 16. The following are equivalent:
(E1) $\exists x \geq x$,
(U1) $\forall x \leq x$.
Proof. (E1) $\Longrightarrow(\mathrm{U} 1)$: By (E1), $x^{-} \leq \exists x^{-} \stackrel{(65)}{\Leftrightarrow} x^{-} \leq(\forall x)^{-} \Leftrightarrow \forall x \leq x$.
$(\mathrm{U} 1) \Longrightarrow(\mathrm{E} 1): \mathrm{By}(\mathrm{U} 1), \forall x^{-} \leq x^{-} \stackrel{(67)}{\Leftrightarrow}(\exists x)^{-} \leq x^{-} \Leftrightarrow x \leq \exists x$.
Theorem 4. The following four double conditions (E2), (E2'), (U2), (U2') are equivalent:
(E2) ${ }_{1} \exists\left((\exists x)^{\sim} \rightarrow y\right)=(\exists x)^{\sim} \rightarrow \exists y, \quad(\mathrm{E} 2)_{2} \exists\left((\exists x)^{-} \sim>y\right)=(\exists x)^{-} \sim>$ $\exists y$;
$\left(\mathrm{E} 2^{\prime}\right)_{1} \exists(x \oplus \exists y)=\exists x \oplus \exists y, \quad\left(\mathrm{E} 2^{\prime}\right)_{2} \exists(\exists x \oplus y)=\exists x \oplus \exists y ;$
$(\mathrm{U} 2)_{1} \forall\left((\forall x)^{\sim} \Rightarrow y\right)=(\forall x)^{\sim} \Rightarrow \forall y, \quad(\mathrm{U} 2)_{2} \forall\left((\forall x)^{-} \approx>y\right)=(\forall x)^{-} \approx>$ $\forall y$;
$\left(\mathrm{U} 2^{\prime}\right)_{1} \forall(x \odot \forall y)=\forall x \odot \forall y, \quad\left(\mathrm{U} 2^{\prime}\right)_{2} \forall(\forall x \odot y)=\forall x \odot \forall y$.
Proof.
(E2) $\Longrightarrow\left(E 2{ }^{\prime}\right):$
$\exists(x \oplus \exists y) \stackrel{(44)}{=} \exists\left[\left((\exists y)^{-} \odot x^{-}\right)^{\sim}\right] \stackrel{(39)}{=} \exists\left(x^{-} \sim>\exists y\right) \stackrel{(46)}{=} \exists\left((\exists y)^{\sim} \rightarrow x\right) \stackrel{(E 2)_{1}}{=}$ $(\exists y)^{\sim} \rightarrow \exists x \stackrel{(39)}{=}\left((\exists y)^{\sim} \odot(\exists x)^{\sim}\right)^{-} \stackrel{(44)}{=} \exists x \oplus \exists y ;$
$\exists(\exists x \oplus y) \stackrel{(44)}{=} \exists\left[\left(y^{-} \odot(\exists x)^{-}\right)^{\sim}\right] \stackrel{(39)}{=} \exists\left((\exists x)^{-} \sim>y\right) \stackrel{(E 2)_{2}}{=}(\exists x)^{-} \sim>\exists y \stackrel{(39)}{=}$ $\left((\exists y)^{-} \odot(\exists x)^{-}\right)^{\sim} \stackrel{(44)}{=} \exists x \oplus \exists y$.
($\left.\mathrm{E} 2^{\prime}\right) \Longrightarrow$ (U2):
$\forall\left((\forall x)^{\sim} \Rightarrow y\right) \stackrel{(41)}{=} \forall\left[\left((\forall x)^{\sim} \oplus y^{\sim}\right)^{-}\right] \stackrel{(67)}{=}\left[\exists\left((\forall x)^{\sim} \oplus y^{\sim}\right)\right]^{-} \stackrel{(65)}{=}\left[\exists\left(\exists x^{\sim} \oplus\right.\right.$ $\left.\left.y^{\sim}\right)\right]^{-} \stackrel{\left(E 2^{\prime}\right)_{2}}{=}\left(\exists x^{\sim} \oplus \exists y^{\sim}\right)^{-} \stackrel{(65)}{=}\left((\forall x)^{\sim} \oplus(\forall y)^{\sim}\right)^{-} \stackrel{(41)}{=}(\forall x)^{\sim} \Rightarrow \forall y$;
$\forall\left((\forall x)^{-} \approx>y\right) \stackrel{(41)}{=} \forall\left[\left(y^{-} \oplus(\forall x)^{-}\right)^{\sim}\right] \stackrel{(67)}{=}\left[\exists\left(y^{-} \oplus(\forall x)^{-}\right)\right]^{\sim} \stackrel{(65)}{=}\left[\exists\left(y^{-} \oplus\right.\right.$ $\left.\left.\exists x^{-}\right)\right]^{\sim} \stackrel{\left(E 2^{\prime}\right)_{1}}{=}\left(\exists y^{-} \oplus \exists x^{-}\right)^{\sim} \stackrel{(65)}{=}\left((\forall y)^{-} \oplus(\forall x)^{-}\right)^{\sim} \stackrel{(41)}{=}(\forall x)^{-} \approx>\forall y$.
(U2) \Longrightarrow (U2'):
$\forall(x \odot \forall y) \stackrel{(42)}{=} \forall\left[\left((\forall y)^{-} \oplus x^{-}\right)^{\sim}\right] \stackrel{(41)}{=} \forall\left[x^{-} \approx>\forall y\right] \stackrel{(48)}{=} \forall\left((\forall y)^{\sim} \Rightarrow x\right) \stackrel{(U 2)_{1}}{=}$ $(\forall y)^{\sim} \Rightarrow \forall x \stackrel{(40)}{=}\left((\forall y)^{\sim} \oplus(\forall x)^{\sim}\right)^{-} \stackrel{(42)}{=} \forall x \odot \forall y$;
$\forall(\forall x \odot y) \stackrel{(42)}{=} \forall\left[\left(y^{-} \oplus(\forall x)^{-}\right)^{\sim}\right] \stackrel{(41)}{=} \forall\left[(\forall x)^{-} \approx>y\right] \stackrel{(U 2)_{2}}{=}(\forall x)^{-} \approx>\forall y \stackrel{(40)}{=}$ $\left((\forall y)^{-} \oplus(\forall x)^{-}\right)^{\sim} \stackrel{(42)}{=} \forall x \odot \forall y$.
($\left.\mathrm{U} 2^{\prime}\right) \Longrightarrow$ (E2):
$\exists\left((\exists x)^{\sim} \rightarrow y\right) \stackrel{(39)}{=} \exists\left[\left((\exists x)^{\sim} \odot y^{\sim}\right)^{-}\right] \stackrel{(65)}{=}\left[\forall\left((\exists x)^{\sim} \odot y^{\sim}\right)\right]^{-} \stackrel{(67)}{=}\left[\forall\left(\forall x^{\sim} \odot\right.\right.$
$\left.\left.y^{\sim}\right)\right]^{-} \stackrel{\left(U 2^{\prime}\right)_{2}}{=}\left[\forall x^{\sim} \odot \forall y^{\sim}\right]^{-} \stackrel{(67)}{=}\left((\exists x)^{\sim} \odot(\exists y)^{\sim}\right)^{-} \stackrel{(39)}{=}(\exists x)^{\sim} \rightarrow \exists y ;$
$\exists\left((\exists x)^{-} \sim>y\right) \stackrel{(39)}{=} \exists\left[\left(y^{-} \odot(\exists x)^{-}\right)^{\sim}\right] \stackrel{(65)}{=}\left[\forall\left(y^{-} \odot(\exists x)^{-}\right)\right]^{\sim} \stackrel{(67)}{=}\left[\forall\left(y^{-} \odot\right.\right.$
$\left.\left.\forall x^{-}\right)\right]^{\sim} \stackrel{\left(U 2^{\prime}\right)_{1}}{=}\left[\forall y^{-} \odot \forall x^{-}\right]^{\sim} \stackrel{(67)}{=}\left((\exists y)^{-} \odot(\exists x)^{-}\right)^{\sim} \stackrel{(39)}{=}(\exists x)^{-} \sim>\exists y$.
Theorem 5. The following four (double) conditions (E3), (E3'), (U3), (U3') are equivalent:
$(\mathrm{E} 3)_{1} \exists\left(x^{\sim} \rightarrow x\right)=(\exists x)^{\sim} \rightarrow \exists x, \quad(\mathrm{E} 3)_{2} \exists\left(x^{-} \sim>x\right)=(\exists x)^{-} \sim>\exists x ;$
(E3') $\exists(x \oplus x)=\exists x \oplus \exists x$;
$(\mathrm{U} 3)_{1} \forall\left(x^{\sim} \Rightarrow x\right)=(\forall x)^{\sim} \Rightarrow \forall x, \quad(\mathrm{U} 3)_{2} \forall\left(x^{-} \approx>x\right)=(\forall x)^{-} \approx>\forall x$;
(U3') $\forall(x \odot x)=\forall x \odot \forall x$.
Proof.
$(\mathrm{E} 3) \Longrightarrow\left(\mathrm{E} 3^{\prime}\right)$:
$\exists(x \oplus x) \stackrel{(44)}{=} \exists\left[\left(x^{-} \odot x^{-}\right)^{\sim}\right] \stackrel{(39)}{=} \exists\left(x^{-} \sim>x\right) \stackrel{(E 3)_{2}}{=}(\exists x)^{-} \sim>\exists x \stackrel{(39)}{=}\left((\exists x)^{-} \odot\right.$ $\left.(\exists x)^{-}\right)^{\sim} \stackrel{(44)}{=} \exists x \oplus \exists x$.
$\left(\mathrm{E} 3^{\prime}\right) \Longrightarrow(\mathrm{U} 3):$
$\forall\left(x^{\sim} \Rightarrow x\right) \stackrel{(41)}{=} \forall\left[\left(x^{\sim} \oplus x^{\sim}\right)^{-}\right] \stackrel{(67)}{=}\left[\exists\left(x^{\sim} \oplus x^{\sim}\right)\right]^{-} \stackrel{\left(E 3^{\prime}\right)}{=}\left[\exists x^{\sim} \oplus \exists x^{\sim}\right]^{-} \stackrel{(65)}{=}$
$\left[(\forall x)^{\sim} \oplus(\forall x)^{\sim}\right]^{-} \stackrel{(41)}{=}(\forall x)^{\sim} \Rightarrow \forall x$;
$\forall\left(x^{-} \approx>x\right) \stackrel{(41)}{=} \forall\left[\left(x^{-} \oplus x^{-}\right)^{\sim}\right] \stackrel{(67)}{=}\left[\exists\left(x^{-} \oplus x^{-}\right)\right]^{\sim} \stackrel{\left(E 3^{\prime}\right)}{=}\left[\exists x^{-} \oplus \exists x^{-}\right]^{\sim} \stackrel{(65)}{=}$ $\left[(\forall x)^{-} \oplus(\forall x)^{-}\right]^{\sim} \stackrel{(41)}{=}(\forall x)^{-} \approx>\forall x$.
(U3) $\Longrightarrow\left(\mathrm{U}^{\prime}\right)$:
$\forall(x \odot x) \stackrel{(42)}{=} \forall\left[\left(x^{-} \oplus x^{-}\right)^{\sim}\right] \stackrel{(41)}{=} \forall\left[x^{-} \approx>x\right] \stackrel{(U 3)_{2}}{=}(\forall x)^{-} \approx>\forall x \stackrel{(41)}{=}\left((\forall x)^{-} \oplus\right.$ $\left.(\forall x)^{-}\right)^{\sim} \stackrel{(42)}{=} \forall x \odot \forall x$.
$\left(\mathrm{U} 3^{\prime}\right) \Longrightarrow(\mathrm{E} 3):$
$\exists\left(x^{\sim} \rightarrow x\right) \stackrel{(39)}{=} \exists\left[\left(x^{\sim} \odot x^{\sim}\right)^{-}\right] \stackrel{(65)}{=}\left[\forall\left(x^{\sim} \odot x^{\sim}\right)\right]^{-} \stackrel{\left(U 3^{\prime}\right)}{=}\left[\forall x^{\sim} \odot \forall x^{\sim}\right]^{-} \stackrel{(67)}{=}$ $\left[(\exists x)^{\sim} \odot(\exists x)^{\sim}\right]^{-} \stackrel{(39)}{=}(\exists x)^{\sim} \rightarrow \exists x ;$
$\exists\left(x^{-} \sim>x\right) \stackrel{(39)}{=} \exists\left[\left(x^{-} \odot x^{-}\right)^{\sim}\right] \stackrel{(65)}{=}\left[\forall\left(x^{-} \odot x^{-}\right)\right]^{\sim} \stackrel{\left(U 3^{\prime}\right)}{=}\left[\forall x^{-} \odot \forall x^{-}\right]^{\sim} \stackrel{(67)}{=}$ $\left[(\exists x)^{-} \odot(\exists x)^{-}\right]^{\sim} \stackrel{(39)}{=}(\exists x)^{-} \sim>\exists x$.

Theorem 6. The following four double conditions (E4), (E4'), (U4), (U 4 ') are equivalent:
$(\mathrm{E} 4)_{1} \exists(x \odot \exists y)=\exists x \odot \exists y, \quad(\mathrm{E} 4)_{2} \exists(\exists x \odot y)=\exists x \odot \exists y ;$
$\left(\mathrm{E} 4^{\prime}\right)_{1} \exists\left((\exists x)^{\sim} \Rightarrow y\right)=(\exists x)^{\sim} \Rightarrow \exists y, \quad\left(\mathrm{E} 4^{\prime}\right)_{2} \exists\left((\exists x)^{-} \approx>y\right)=(\exists x)^{-} \approx>$
$\exists y ;$
$(\mathrm{U} 4)_{1} \forall(x \oplus \forall y)=\forall x \oplus \forall y, \quad(\mathrm{U} 4)_{2} \forall(\forall x \oplus y)=\forall x \oplus \forall y$;
$\left(\mathrm{U} 4^{\prime}\right)_{1} \forall\left((\forall x)^{\sim} \rightarrow y\right)=(\forall x)^{\sim} \rightarrow \forall y, \quad\left(\mathrm{U} 4^{\prime}\right)_{2} \forall\left((\forall x)^{-} \sim>y\right)=(\forall x)^{-} \sim>$ $\forall y$.

Proof.
$(\mathrm{E} 4) \Longrightarrow\left(\mathrm{E} 4^{\prime}\right)$:
$\exists\left((\exists x)^{\sim} \Rightarrow y\right) \stackrel{(45)}{=} \exists\left[\left(\left((\exists x)^{\sim}\right)^{\sim} \rightarrow y^{\sim}\right)^{-}\right] \stackrel{(46)}{=} \exists\left[\left(y \sim>(\exists x)^{\sim}\right)^{-}\right] \stackrel{(38)}{=} \exists(\exists x \odot$
$y) \stackrel{(E 4)_{2}}{=} \exists x \odot \exists y \stackrel{(38)}{=}\left(\exists y \sim>(\exists x)^{\sim}\right)^{-} \stackrel{(46)}{=}\left[\left((\exists x)^{\sim}\right)^{\sim} \rightarrow(\exists y)^{\sim}\right]^{-} \stackrel{(45)}{=}(\exists x)^{\sim} \Rightarrow$
$\exists y ;$
$\exists\left((\exists x)^{-} \approx>y\right) \stackrel{(45)}{=} \exists\left[\left(\left((\exists x)^{-}\right)^{-} \sim>y^{-}\right)^{\sim}\right] \stackrel{(46)}{=} \exists\left[\left(y \rightarrow(\exists x)^{-}\right)^{\sim}\right] \stackrel{(38)}{=} \exists(y \odot$ $\exists x) \stackrel{(E 4)_{1}}{=} \exists y \odot \exists x \stackrel{(38)}{=}\left(\exists y \rightarrow(\exists x)^{-}\right)^{\sim} \stackrel{(46)}{=}\left[\left((\exists x)^{-}\right)^{-} \sim>(\exists y)^{-}\right] \sim \stackrel{(45)}{=}(\exists x)^{-} \approx>$ $\exists y$.
$\left(\mathrm{E} 4^{\prime}\right) \Longrightarrow(\mathrm{U} 4):$
$\forall(x \oplus \forall y) \stackrel{(40)}{=} \forall\left[\left(\forall y \approx>x^{\sim}\right)^{-}\right] \stackrel{(67)}{=}\left[\exists\left(\forall y \approx>x^{\sim}\right)\right]^{-}=\left[\exists\left(\left(\exists y^{\sim}\right)^{-} \approx>\right.\right.$ $\left.\left.x^{\sim}\right)\right]^{-} \stackrel{\left(E 4^{\prime}\right)_{2}}{=}\left[\left(\exists y^{\sim}\right)^{-} \approx>\exists x^{\sim}\right]^{-} \stackrel{(65)}{=}\left(\forall y \approx>(\forall x)^{\sim}\right)^{-} \stackrel{(40)}{=} \forall x \oplus \forall y$;
$\forall(\forall x \oplus y) \stackrel{(40)}{=} \forall\left[\left(\forall x \Rightarrow y^{-}\right)^{\sim}\right] \stackrel{(67)}{=}\left[\exists\left(\forall x \Rightarrow y^{-}\right)\right]^{\sim}=\left[\exists\left(\left(\exists x^{-}\right)^{\sim} \Rightarrow y^{-}\right)\right]^{\sim} \stackrel{\left(E 4^{\prime}\right)_{1}}{=}$ $\left[\left(\exists x^{-}\right)^{\sim} \Rightarrow \exists y^{-}\right]^{\sim} \stackrel{(65)}{=}\left(\forall x \Rightarrow(\forall y)^{-}\right)^{\sim} \stackrel{(40)}{=} \forall x \oplus \forall y$. $(\mathrm{U} 4) \Longrightarrow\left(\mathrm{U} 4^{\prime}\right)$:
$\forall\left((\forall x)^{\sim} \rightarrow y\right) \stackrel{(39)}{=} \forall\left[\left((\forall x)^{\sim} \odot y^{\sim}\right)^{-}\right] \stackrel{(44)}{=} \forall[y \oplus \forall x] \stackrel{(U 4)_{1}}{=} \forall y \oplus \forall x \stackrel{(44)}{=}\left((\forall x)^{\sim} \odot\right.$ $\left.(\forall y)^{\sim}\right)^{-} \stackrel{(39)}{=}(\forall x)^{\sim} \rightarrow \forall y$;
$\forall\left((\forall x)^{-} \sim>y\right) \stackrel{(39)}{=} \forall\left[\left(y^{-} \odot(\forall x)^{-}\right)^{\sim}\right] \stackrel{(44)}{=} \forall[\forall x \oplus y] \stackrel{(U 4)_{2}}{=} \forall x \oplus \forall y \stackrel{(44)}{=}\left((\forall y)^{-} \odot\right.$ $\left.(\forall x)^{-}\right)^{\sim} \stackrel{(39)}{=}(\forall x)^{-} \sim>\forall y$.

$$
\left(\mathrm{U} 4{ }^{\prime}\right) \Longrightarrow(\mathrm{E} 4):
$$

$\exists(x \odot \exists y) \stackrel{(38)}{=} \exists\left[\left(\exists y \sim>x^{\sim}\right)^{-}\right] \stackrel{(65)}{=}\left[\forall\left(\exists y \sim>x^{\sim}\right)\right]^{-}=\left[\forall\left(\left(\forall y^{\sim}\right)^{-} \sim>\right.\right.$ $\left.\left.x^{\sim}\right)\right]^{-} \stackrel{\left(U 4^{\prime}\right)_{2}}{=}\left[\left(\forall y^{\sim}\right)^{-} \sim>\forall x^{\sim}\right]^{-} \stackrel{(67)}{=}\left[\exists y \sim>(\exists x)^{\sim}\right]^{-} \stackrel{(38)}{=} \exists x \odot \exists y$;
$\exists(\exists x \odot y) \stackrel{(38)}{=} \exists\left[\left(\exists x \rightarrow y^{-}\right)^{\sim}\right] \stackrel{(65)}{=}\left[\forall\left(\exists x \rightarrow y^{-}\right)\right]^{\sim}=\left[\forall\left(\left(\forall x^{-}\right)^{\sim} \rightarrow y^{-}\right)\right]^{\sim} \stackrel{\left(U 4^{\prime}\right)_{1}}{=}$ $\left[\left(\forall x^{-}\right)^{\sim} \rightarrow \forall y^{-}\right]^{\sim} \stackrel{(67)}{=}\left[\exists x \rightarrow(\exists y)^{-}\right] \stackrel{(38)}{=} \exists x \odot \exists y$.

Theorem 7. The following four (double) conditions (E5), (E5'), (U5), (U5') are equivalent:
(E5) $\exists(x \odot x)=\exists x \odot \exists x$;
$\left(\mathrm{E} 5^{\prime}\right)_{1} \exists\left(x^{\sim} \Rightarrow x\right)=(\exists x)^{\sim} \Rightarrow \exists x, \quad\left(\mathrm{E} 5^{\prime}\right)_{2} \exists\left(x^{-} \approx>x\right)=(\exists x)^{-} \approx>\exists x ;$
(U5) $\forall(x \oplus x)=\forall x \oplus \forall x$;
$\left(\mathrm{U} 5^{\prime}\right)_{1} \forall\left(x^{\sim} \rightarrow x\right)=(\forall x)^{\sim} \rightarrow \forall x, \quad\left(\mathrm{U} 5^{\prime}\right)_{2} \forall\left(x^{-} \sim>x\right)=(\forall x)^{-} \sim>\forall x$.
Proof.
$(\mathrm{E} 5) \Longrightarrow\left(\mathrm{E} 5^{\prime}\right):$
$\exists\left(x^{\sim} \Rightarrow x\right) \stackrel{(45)}{=} \exists\left[\left(\left(x^{\sim}\right)^{\sim} \rightarrow x^{\sim}\right)^{-}\right] \stackrel{(46)}{=} \exists\left[\left(x \sim>x^{\sim}\right)^{-}\right] \stackrel{(38)}{=} \exists(x \odot x) \stackrel{(E 5)}{=}$
$\exists x \odot \exists x \stackrel{(38)}{=}\left(\exists x \sim>(\exists x)^{\sim}\right)^{-} \stackrel{(46)}{=}\left(\left((\exists x)^{\sim}\right)^{\sim} \rightarrow(\exists x)^{\sim}\right)^{-} \stackrel{(45)}{=}(\exists x)^{\sim} \Rightarrow \exists x$;
$\exists\left(x^{-} \approx>x\right) \stackrel{(45)}{=} \exists\left[\left(\left(x^{-}\right)^{-} \sim>x^{-}\right)^{\sim}\right] \stackrel{(46)}{=} \exists\left[\left(x \rightarrow x^{-}\right)^{\sim}\right] \stackrel{(38)}{=} \exists(x \odot x) \stackrel{(E 5)}{=}$
$\exists x \odot \exists x \stackrel{(38)}{=}\left(\exists x \rightarrow(\exists x)^{-}\right)^{\sim} \stackrel{(46)}{=}\left(\left((\exists x)^{-}\right)^{-} \sim>(\exists x)^{-}\right)^{\sim} \stackrel{(45)}{=}(\exists x)^{-} \approx>\exists x$.
(E5') \Longrightarrow (U5):

$$
\begin{aligned}
& \forall(x \oplus x) \stackrel{(40)}{=} \forall\left[\left(x \Rightarrow x^{-}\right)^{\sim}\right] \stackrel{(67)}{=}\left[\exists\left(x \Rightarrow x^{-}\right)\right]^{\sim} \stackrel{(p D N)}{=}\left[\exists\left(\left(x^{-}\right)^{\sim} \Rightarrow x^{-}\right)\right]^{\sim} \stackrel{\left(E 5^{\prime}\right)_{1}}{=} \\
& {\left[\left(\exists x^{-}\right)^{\sim} \Rightarrow \exists x^{-}\right] \sim \stackrel{(65)}{=}\left[\forall x \Rightarrow(\forall x)^{-}\right]^{\sim} \stackrel{(40)}{=} \forall x \oplus \forall x .} \\
& \quad(\mathrm{U} 5) \Longrightarrow(\mathrm{U} 5): \\
& \forall\left(x^{\sim} \rightarrow x\right) \stackrel{(39)}{=} \forall\left[\left(x^{\sim} \odot x^{\sim}\right)^{-}\right] \stackrel{(44)}{=} \forall(x \oplus x) \stackrel{(U 5)}{=} \forall x \oplus \forall x \stackrel{(44)}{=}\left((\forall x)^{\sim} \odot(\forall x)^{\sim}\right)^{-} \stackrel{(39)}{=} \\
& (\forall x)^{\sim} \rightarrow \forall x ; \\
& \forall\left(x^{-} \sim>x\right) \stackrel{(39)}{=} \forall\left[\left(x^{-} \odot x^{-}\right)^{\sim}\right] \stackrel{(44)}{=} \forall(x \oplus x) \stackrel{(U 5)}{=} \forall x \oplus \forall x \stackrel{(44)}{=}\left((\forall x)^{-} \odot\right. \\
& \left.(\forall x)^{-}\right)^{\sim} \stackrel{(39)}{=}(\forall x)^{-} \sim>\forall x . \\
& \left(\mathrm{U}^{\prime}\right) \Longrightarrow(\mathrm{E} 5): \\
& \exists(x \odot x) \stackrel{(38)}{=} \exists\left[\left(x \rightarrow x^{-}\right)^{\sim}\right] \stackrel{(65)}{=}\left[\forall\left(x \rightarrow x^{-}\right)\right]^{\sim} \stackrel{(p D N)}{=}\left[\forall\left(\left(x^{-}\right)^{\sim} \rightarrow x^{-}\right)\right]^{\sim} \stackrel{\left(U 5^{\prime}\right)_{1}}{=} \\
& {\left[\left(\forall x^{-}\right)^{\sim} \rightarrow \forall x^{-}\right] \sim \stackrel{(67)}{=}\left[\exists x \rightarrow(\exists x)^{-}\right]^{\sim} \stackrel{(\stackrel{(3)}{=}}{=} \exists x \odot \exists x .} \\
& \quad \text { Definition 9. Let } \mathcal{A}=(A, \leq, \rightarrow, \sim>0,1) \text { be an involutive pseudo-BCK }
\end{aligned}
$$ algebra, hence an involutive pseudo- $\mathrm{BCK}(\mathrm{pP})$ algebra.

(1) An existential quantifier on \mathcal{A} is a monadic operator $\exists: A \longrightarrow A$ which verifies the above conditions (E0), (E1), (E2), (E3),(E4) and (E5).
(2) A universal quantifier on \mathcal{A} is a monadic operator $\forall: A \longrightarrow A$ which verifies the above conditions (U0), (U1), (U2'), (U3'),(U4') and (U5').
(3) A monadic involutive pseudo-BCK algebra is a pair (\mathcal{A}, \exists), where \exists is an existential quantifier on \mathcal{A} or a pair (\mathcal{A}, \forall), where \forall is a universal quantifier on \mathcal{A}.

Remark 2. Note that for the particular case of a monadic MV algbera (\mathcal{A}, \exists), we obtain the definition from [20].

Proposition 17.

(1) Let (\mathcal{A}, \exists) be a monadic involutive pseudo-BCK algebra and \forall defined by (61). Then (\mathcal{A}, \forall) is a monadic involutive pseudo- $B C K$ algebra termwise equivalent with (\mathcal{A}, \exists).
(2) Let (\mathcal{A}, \forall) be a monadic involutive pseudo-BCK algebra and \exists defined by (63). Then (\mathcal{A}, \exists) is a monadic involutive pseudo-BCK algebra termwise equivalent with (\mathcal{A}, \forall).

Proof. By Propositions 15 and 16 and Theorems 4, 5, 6, 7.
Proposition 18. Let (\mathcal{A}, \exists) be a monadic involutive pseudo-BCK algebra and \forall defined by (61). Then the following properties hold:

$$
\begin{gather*}
\exists \exists x=\exists x, \quad \forall \forall x=\forall x, \tag{69}\\
\exists 1=1, \quad \forall 0=0, \tag{70}
\end{gather*}
$$

$$
\begin{align*}
& \exists(\exists x \odot \exists y)=\exists x \odot \exists y, \quad \exists(\exists x \oplus \exists y)=\exists x \oplus \exists y, \tag{71}\\
& \forall \exists x=\exists x, \quad \exists \forall x=\forall x, \tag{72}\\
& \exists(\exists x)^{-}=(\exists x)^{-}, \quad \exists(\exists x)^{\sim}=(\exists x)^{\sim}, \tag{73}\\
& \exists(\forall x \sim>y)=\forall x \sim>\exists y, \quad \exists(\forall x \rightarrow y)=\forall x \rightarrow \exists y, \tag{74}\\
& \exists(x \rightarrow \forall y)=\forall x \rightarrow \forall y, \quad \exists(x \sim>\forall y)=\forall x \sim>\forall y, \tag{75}\\
& \exists(\exists x \rightarrow y)=\exists x \rightarrow \exists y, \quad \exists(\exists x \sim>y)=\exists x \sim>\exists y, \tag{76}\\
& \forall(\exists x \sim>y)=\exists x \sim>\forall y, \quad \forall(\exists x \rightarrow y)=\exists x \rightarrow \forall y, \tag{77}\\
& \forall(x \rightarrow \exists y)=\exists x \rightarrow \exists y, \quad \forall(x \sim>\exists y)=\exists x \sim>\exists y, \tag{78}\\
& \forall(\forall x \rightarrow y)=\forall x \rightarrow \forall y, \quad \forall(\forall x \sim>y)=\forall x \sim>\forall y, \tag{79}\\
& x \leq y \Longrightarrow(\exists x \leq \exists y \quad \text { and } \quad \forall x \leq \forall y) . \tag{80}
\end{align*}
$$

Proof.
(69): $\exists \exists x=\exists(\exists x \oplus 0) \stackrel{\left(E 2^{\prime}\right)}{=} \exists x \oplus \exists 0=\exists x \oplus 0=\exists x$; the other has a similar proof.
(70): By (E1), $1 \leq \exists 1$, hence $\exists 1=1$; by (U1), $\forall 0 \leq 0$, hence $\forall 0=0$.
(71): $\exists(\exists x \odot \exists y) \stackrel{(E 4)}{=} \exists \exists x \odot \exists y=\exists x \odot \exists y ; \exists(\exists x \oplus \exists y) \stackrel{\left(E 2^{\prime}\right)}{=} \exists \exists x \oplus \exists y=$ $\exists x \oplus \exists y$.
(72): By (U1), $\forall \exists x \leq \exists x$; on the other hand, $1=\forall 1=\forall(\exists x \rightarrow$ $\exists x)=\exists x \rightarrow \forall \exists x$, hence $\exists x \leq \forall \exists x$; thus, $\forall \exists x=\exists x ; \exists \forall x=\exists\left(\left(\exists x^{\sim}\right)^{-}\right)=$ $\left[\forall\left(\exists x^{\sim}\right)\right]^{-}=\left(\exists x^{\sim}\right)^{-}=\forall x$.
(73): $\exists(\exists x)^{-}=\exists\left(\forall x^{-}\right)=\forall x^{-}=(\exists x)^{-} ; \exists(\exists x)^{\sim}=\exists\left(\forall x^{\sim}\right)=\forall x^{\sim}=$ $(\exists x)^{\sim}$.
(74): $\exists(\forall x \sim>y) \stackrel{(p D N)}{=} \exists\left(\forall\left(\left(x^{\sim}\right)^{-}\right) \sim>y\right)=\exists\left(\left(\exists x^{\sim}\right)^{-} \sim>y\right) \stackrel{(E 2)}{=}$ $\left(\exists x^{\sim}\right)^{-} \sim>\exists y=\forall x \sim>\exists y ; \exists(\forall x \rightarrow y) \stackrel{(p D N)}{=} \exists\left(\forall\left(\left(x^{-}\right)^{\sim}\right) \rightarrow y\right)=$ $\exists\left(\left(\exists x^{-}\right)^{\sim} \rightarrow y\right) \stackrel{(E 2)}{=}\left(\exists x^{-}\right)^{\sim} \rightarrow \exists y=\forall x \rightarrow \exists y$.
(75): $\exists(x \rightarrow \forall y) \stackrel{(p D N)}{=} \exists\left(\left(x^{-}\right)^{\sim} \rightarrow \forall y\right)=\exists\left((\forall y)^{-} \sim>x^{-}\right)=\exists\left((\exists(\forall y))^{-} \sim>\right.$ $\left.x^{-}\right) \stackrel{(E 2)}{=}(\exists(\forall y))^{-} \sim>\exists x^{-}=(\forall y)^{-} \sim>(\forall x)^{-}=\left((\forall x)^{-}\right)^{\sim} \rightarrow\left((\forall y)^{-}\right)^{\sim}=$ $\forall x \rightarrow \forall y$; the other has a similar proof.
(76): $\exists(\exists x \rightarrow y) \stackrel{(p D N)}{=} \exists\left(\left(\forall x^{-}\right)^{\sim} \rightarrow y\right)=\exists\left(y^{-} \sim>\forall x^{-}\right)=\forall y^{-} \sim>$ $\forall x^{-}=(\exists y)^{-} \sim>(\exists x)^{-}=\exists x \rightarrow \exists y$; the other has a similar proof.
(77): $\forall(\exists x \sim>y) \stackrel{(p D N)}{=} \forall\left[\exists\left(x^{\sim}\right)^{-} \sim>y\right]=\forall\left[\left(\forall x^{\sim}\right)^{-} \sim>y\right] \stackrel{\left(U 4^{\prime}\right)}{=}\left(\forall x^{\sim}\right)^{-} \sim>$ $\forall y=\exists x \sim>\forall y ; \forall(\exists x \rightarrow y) \stackrel{(p D N)}{=} \forall\left[\exists\left(x^{-}\right)^{\sim} \rightarrow y\right]=\forall\left[\left(\forall x^{-}\right)^{\sim} \rightarrow y\right] \stackrel{\left(U 4^{\prime}\right)}{=}$ $\left(\forall x^{-}\right)^{\sim} \rightarrow \forall y=\exists x \rightarrow \forall y$.
(78): $\forall(x \rightarrow \exists y) \stackrel{(p D N)}{=} \forall\left(\left(x^{-}\right)^{\sim} \rightarrow \exists y\right)=\forall\left((\exists y)^{-} \sim>x^{-}\right)=\forall\left((\forall \exists y)^{-} \sim>\right.$ $\left.x^{-}\right) \stackrel{\left(U 4^{\prime}\right)}{=}(\forall \exists y)^{-} \sim>\forall x^{-}=(\exists y)^{-} \sim>\forall x^{-}=(\exists y)^{-} \sim>(\exists x)^{-}=\left((\exists x)^{-}\right)^{\sim} \rightarrow$ $\left((\exists y)^{-}\right)^{\sim} \stackrel{(p D N)}{=} \exists x \rightarrow \exists y$; the other has a similar proof.
(79): $\forall(\forall x \rightarrow y) \stackrel{(p D N)}{=} \forall\left(\left(\exists x^{-}\right)^{\sim} \rightarrow y\right)=\forall\left(y^{-} \sim>\exists x^{-}\right)=\exists y^{-} \sim>$ $\exists x^{-}=(\forall y)^{-} \sim>(\forall x)^{-}=\forall x \rightarrow \forall y ; \forall(\forall x \sim>y) \stackrel{(p D N)}{=} \forall\left(\left(\exists x^{\sim}\right)^{-} \sim>y\right)=$ $\forall\left(y^{\sim} \rightarrow \exists x^{\sim}\right)=\exists y^{\sim} \rightarrow \exists x^{\sim}=(\forall y)^{\sim} \rightarrow(\forall x)^{\sim}=\forall x \sim>\forall y$.
(80): Let $x \leq y$; then $x \leq y \leq \exists y$, by (E1); but $x \leq \exists y \Leftrightarrow x \rightarrow \exists y=1$; then, $\exists x \rightarrow \exists y=\forall(x \rightarrow \exists y)=\forall 1=1$, hence $\exists x \leq \exists y$. On the other hand, $\forall x \leq x \leq y$, by (U1); but $\forall x \leq y \Leftrightarrow \forall x \rightarrow y=1$; then, $\forall x \rightarrow \forall y=\forall(\forall x \rightarrow$ $y)=\forall 1=1$, hence $\forall x \leq \forall y$.

References

[1] M. Andersen, T. Feil, Lattice-Ordered Groups - An Introduction -, D. Reidel Publishing Company, 1988.
[2] R. Balbes, P. Dwinger, Distributive lattices, Univ. Missouri Press, 1974.
[3] G. Birkhoff, Lattice Theory, 3rd ed., American Mathematical Society, Providence, 1967.
[4] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
[5] R. Ceterchi, On Algebras with Implications, categorically isomorphic to Pseudo-MV Algebras, The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, May 1999, 912-916.
[6] R. Ceterchi, Pseudo-Wajsberg Algebras, Mult. Val. Logic (A special issue dedicated to the memory of Gr. C. Moisil), 2001, Vol. 6, No. 1-2, 67-88.
[7] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, 1958, 467-490.
[8] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: Part I, Multi. Val. Logic, 2002, Vol. 8 (5-6), 673-714.
[9] A. Di Nola, G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: Part II, Multi. Val. Logic, 2002, Vol. 8 (5-6), 717-750.
[10] A. Di Nola, R. Grigolia, Monadic MV-algebras, to appear.
[11] R. P. Dilworth, Non-commutative residuated lattices, Trans. of the American Math. Soc. 46, 1939, 426-444.
[12] A. Dvurečenskij, Pseudo MV-algebras are intervals in l-groups, Journal of Australian Mathematical Society, 72, 2002, 427-445.
[13] F. Esteva, L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, Vol. 124, No. 3, 2001, 271-288.
[14] P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo-t-norms and pseudoBL algebras, Soft Computing, 5, No 5, 2001, 355-371.
[15] J.M. Font, A. J. Rodriguez, A. Torrens, Wajsberg algebras, Stochastica Vol. VIII, No. 1, 1984, 5-31.
[16] G. Georgescu, A. Iorgulescu, Pseudo-MV Algebras: a Noncommutative Extension of MV Algebras, The Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, Romania, May 1999, 961968.
[17] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Mult. Val. Logic, Vol. 6, Nr. 1-2, 2001, 95-135.
[18] G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: A noncommutative extension of $B L$ algebras, Abstracts of The Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
[19] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: An extension of $B C K$ algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
[20] G. Georgescu, A. Iorgulescu, I. Leuştean, Monadic and closure MV
algebras, International Journal of Multiple-Valued Logic, 3, No.3, 1998, 235257.
[21] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Braunschweig, Wiesbaden, Vieweg, 1993.
[22] R. Grigolia, Monadic BL-algebras, Georgian Mathematical Journal, Vol. 13, 2006, no. 2, 267-276.
[23] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682, 1996.
[24] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[25] U. Höhle, Commutative, residuated l-monoids. In: U. Höhle and E.P. Klement eds., Non-Classical Logics and Their Applications to Fuzzy Subsets, Kluwer Acad. Publ., Dordrecht, 1995, 53-106.
[26] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42, 1966, 19-22.
[27] A. Iorgulescu, On pseudo-BCK algebras and porims, Scientiae Mathematicae Japonicae, Vol. 10, Nr. 16, 2004, 293-305.
[28] A. Iorgulescu, Pseudo-Iséki algebras. Connection with pseudo-BL algebras, J. of Multiple-Valued Logic and Soft Computing, Vol. 11 (3-4), 2005, 263-308.
[29] A. Iorgulescu, Classes of pseudo-BCK algebras - Part I, Multiple Valued Logic and Soft Computing, Vol. 12, No. 1-2, 2006, 71-130.
[30] A. Iorgulescu, Classes of pseudo-BCK algebras - Part II, Multiple Valued Logic and Soft Computing, Vol. 12, No. 5-6, 2006, 575-629.
[31] A. Iorgulescu, The involutive center of a good pseudo-BCK algebra, manuscript.
[32] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad., 42, 1966, 26-29.
[33] K. Iséki, A special class of BCK-algebras, Math. Seminar Notes, Kobe University, 5, 1977, 191-198.
[34] K. Iséki, On a positive implicative algebra with condition (S), Math. Seminar Notes, Kobe University, 5, 1977, 227-232.
[35] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23, No.1, 1978, 1-26.
[36] P. Jipsen, C. Tsinakis, A Survey of Residuated Lattices, www.math.vanderbilt.edu/ pjipsen/
[37] J. Kalman, Lattices with involution, Trans. Amer. Math. Soc. 87, 1958, 485-491.
[38] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, 2000.
[39] T. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at logics without contraction, monograph, 2001
[40] W. Krull, Axiomatische Begründung der allgemeinen Idealtheorie, Sitzungsberichte der physikalisch medizinischen Societät der Erlangen 56, 1924, 47-63.
[41] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31, No. 6, 1986, 889-894.
[42] H. Ono, Y. Komori, Logics without the contraction rule, Journal of Symbolic Logic 50, 1985, 169-201.
[43] J. Pavelka, On fuzzy logic II. Enriched residuated lattices and semantics of propositional calculi, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 25, 1979, 119-134.
[44] A.N. Prior, Formal logic, 2nd ed. 1962, Oxford.
[45] J. Rachunek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J., 52, 2002, 255-273.
[46] C.J. Van Alten, J.G. Raftery, On the lattice of varieties of residuation algebras, Algebra univers. 41, 1999, 283-315.
[47] M. Wajsberg, Beiträge zum Mataaussagenkalkül, Monat. Math. Phys. 42, 1935, p. 240.
[48] M. Ward, Residuated distributive lattices, Duke Math. Journal 6, 1940, 641-651.
[49] M. Ward, R. P. Dilworth, Residuated lattices, Trans. of the American Math. Soc. 45, 1939, 335-354.

Author:

Afrodita Iorgulescu
Department of Computer Science
Academy of Economic Studies
Address: Piaţa Romană Nr. 6 - R 70167,
Oficiul Poştal 22, Bucharest, Romania
e-mail: afrodita@ase.ro

